首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper is focused on the analysis of the behaviour of biocomposites (biodegradable composites) which are reinforced with different fillers fractions, with varying lignin contents. These materials have been carried-out by extrusion and injection moulding. The matrix, an aromatic copolyester (polybutylene adipate-co-terephthalate), is biodegradable. The lignocellulose fillers are a by-product of an industrial fractionation process of wheat straw. From the raw agro-material and by lignin extractions, various fillers fractions have been obtained by varying the fractionation conditions, both on the liquid media (aqueous or organic) and on the temperature. The fillers lignin contents vary from 30 to 14 wt% with a resultant increase of the cellulose content. We have analysed the impact of the different extraction conditions on the fillers surface and size distribution, and also on the final thermal and mechanical properties of the biocomposites. These materials present significant differences of behaviour which can fulfil some requirements for applications, such as non-food packaging or other short-lived applications (agriculture, sport …) where long-lasting polymers are not entirely adequate.  相似文献   

2.
Poly(hydroxybutyrate) (PHB) has become an attractive biomaterial in research and development for past few years. It is natural bio-based aliphatic polyester produced by many types of bacteria. Due to its biodegradable, biocompatible, and eco-friendly nature, PHB can be used in line with bioactive species. However, high production cost, thermal instability, and poor mechanical properties limit its desirable applications. So there is need to incorporate PHB with other materials or biopolymers for the development of some novel PHB based biocomposites for value addition. Many attempts have been employed to incorporate PHB with other biomaterials (or biopolymers) to develop sustainable biocomposites. In this review, some recent developments in the synthesis of PHB based biocomposites and their biomedical, packaging and tissue engineering applications have been focused. The development of biodegradable PHB based biocomposites with improved mechanical properties could be used to overcome its native limitations hence to open new possibilities for industrial applications.  相似文献   

3.
Polylactic acid(PLA)possesses good mechanical and biodegradability properties which make it a suitable material for polymer composites whereas brittleness and high costs limit its utilization in various applications.The reinforcement of natural fibres with biopolymers has been formed to be an efficient technique to develop composites having the ability to be fully biodegradable.This study concerns with the incorporation of various percentages of untreated and alkali-treated Coir Fibres(CF)and pineapple leaf fibres(PALF)in PLA biocomposites and characterizations of flexural,morphological and dynamic mechanical properties.Flexural properties showed that the treated C1P1 hybrid composites(C1P1A)displayed highest flexural strength(35.81 MPa)and modulus(5.28 GPa)among all hybrid biocomposites.Scanning Electron Micros-copy(SEM)revealed a behaviour of fibre-matrix adhesion in untreated treated biocomposites.SEM observation revealed good dispersion of the fillers in PLA.Dynamic mechanical analysis revealed that C1P1A showed highest glass transition temperature(Tg)and storage modulus(E')while untreated C3P7 displayed the least Tg and E'.Overall findings showed that alkali-treated hybrid biocomposites(CF/PALF/PLA)especially C1P1A have improved flexural properties,dynamic and morphological properties over untreated biocomposites.Success of these findings will provide attracting consideration of these hybrid biocomposites for various lightweight uses in a broad selection of industrial applications such as biomedical sectors,automobile,construction,electronics equipment,and hardware tools.  相似文献   

4.
This study was based on the influence of lignocellulosic fillers and content on the morphology, crystallization behavior and thermal, mechanical and barrier properties of fully biodegradable eco-composites based on polycaprolactone for packaging applications. The biodegradation in soil as a function of time was also analyzed. Composites with 5 and 15 wt% of cotton (CO); cellulose (CE) and hydrolyzed-cellulose (HCE) were prepared by melt-mixing. It was determined that, whereas lower content of CO and CE produced a decrease on the crystallinity of the matrix, HCE did not affect it. Increasing the filler content, the crystallinity degree of the matrix decreased at less extent, which was independent on the filler type. A clear reduction on the theoretical melting point, attributed to heterogeneous nucleation sites, took place for the lower content of CO and CE. Induction and half-crystallization times diminished when fillers were incorporated but the effect was less notorious at higher filler contents. All fillers enhanced the Young's modulus of the matrix but the optimal mechanical properties were not obtained with HCE, as was expected, but with CE. After analyzing the main parameters that affect the mechanical properties of the composite; such as morphology, hydrophilicity, crystallinity, mechanical properties and thermal stability of the fillers themselves, interface interaction, filler dispersion and thermal aspects of the composites, we concluded that the parameters responsible for such behavior were the larger aspect ratio, better dispersion and enhanced interface interaction of the CE filler. These parameters also affected the barrier properties and the process of biodegradation in soil of the composites.  相似文献   

5.

Purpose

Polymers typically have intrinsic thermal conductivity much lower than other materials. Enhancement of this property may be obtained by the addition of conductive fillers. Nanofillers are preferred to traditional ones, due to their low percolation threshold resulting from their high aspect ratio. Beyond these considerations, it is imperative that the development of such new fillers takes place in a safe and sustainable manner. A conventional life cycle assessment (LCA) has been conducted on epoxy-based composites, filled with graphite nanoplatelets (GnP). In particular, this study focuses on energy requirements for the production of such composites, in order to stress environmental hot spots and primary energy of GnP production process (nano-wastes and nanoparticles emissions are not included).

Methods

A cradle-to-grave approach has been employed for this assessment, in an attributional modeling perspective. The data for the LCA have been gathered from both laboratory data and bibliographic references. A technical LCA software package, SimaPro (SimaPro 7.3), which contains Ecoinvent (2010) life cycle inventory (LCI) database, has been used for the life cycle impact assessment (LCIA), studying 13 mid-point indicators. Sensitivity and uncertainty analyses have also been performed.

Results and discussion

One kilogram of GnP filler requires 1,879 MJ of primary energy while the preparation of 1 kg of epoxy composite loaded with 0.058 kg of GnP 303 MJ. Besides energy consumption in the filler preparation, it is shown that the thermoset matrix material has also a non-negligible impact on the life cycle despite the use of GnP: the primary energy required to make epoxy resin is 187 MJ, i.e., 62 % of the total energy to make 1 kg of composite.

Conclusions

Raw material extraction and filler and resin preparation phase exhibit the highest environmental impact while the composite production is negligible. Thermosetting resin remains the highest primary energy demand when used as matrix for GnP fillers. The result of the sensitivity analysis carried out on the electricity mix used during the GnP and the composite production processes does not affect the conclusions.  相似文献   

6.
Cao X  Dong H  Li CM 《Biomacromolecules》2007,8(3):899-904
New nanocomposite films were prepared from a suspension of cellulose nanocrystals as the filler and a polycaprolactone-based waterborne polyurethane (WPU) as the matrix. The cellulose nanocrystals, prepared by acid hydrolysis of flax fiber, consisted of slender rods with an average length of 327 +/- 108 nm and diameter of 21 +/- 7 nm, respectively. After the two aqueous suspensions were mixed homogeneously, the nanocomposite films were obtained by casting and evaporating. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of attenuated total reflection Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and tensile testing. The results indicated that the cellulose nanocrystals could disperse in the WPU uniformly and resulted in an improvement of microphase separation between the soft and hard segments of the WPU matrix. The films showed a significant increase in Young's modulus and tensile strength from 0.51 to 344 MPa and 4.27 to 14.86 MPa, respectively, with increasing filler content from 0 to 30 wt %. Of note is that the Young's modulus increased exponentially with the filler up to a content of 10 wt %. The synergistic interaction between fillers and between the filler and WPU matrix played an important role in reinforcing the nanocomposites. The superior properties of the new nanocomposite materials could have great potential applications.  相似文献   

7.
In this study, the challenge of selecting porous coordination networks (PCNs) as filler particles in mixed matrix membranes (MMMs) was examined using molecular simulations. PCNs are promising nanoporous materials in gas separations because of their tunable pore sizes, high porosities, good thermal and mechanical stabilities. Gas permeability and selectivity of 200 new MMMs composed of 20 different PCNs and 10 different polymers were calculated for CO2/N2 separation. We showed that selecting the appropriate PCN as filler particles in polymers results in MMMs that have high CO2/N2 selectivities and high CO2 permeabilities compared with pure polymer membranes. Several PCN/polymer MMMs were identified to exceed the upper bound established for CO2/N2 separation. Effect of framework flexibility of PCNs on the performance of MMMs was also examined. Results showed that considering the flexibility of PCNs is important for predicting gas permeability of pure PCNs but has less significance for predicting gas permeability of PCN-filled MMMs whenever the PCN volume fraction is low. For rapid screening of PCN/polymer MMMs, flexibility of the fillers can be neglected as a reasonable approximation if the filler volume fraction is < 0.3. The methods introduced in this study will create many opportunities for selecting PCN/polymer combinations for MMMs with useful properties in CO2 separation applications.  相似文献   

8.
Mineral fillers have long been used in papermaking. The furnish of the writing and printing paper depends on using the fillers as internal or surface treatments. Talc, as an Egyptian filler material, was used as it is or after modification to be used as internal sizing for bleached rice straw pulp. Talc was modified chemically with phthalic anhydride and urea, as well as with using rosin size. Talc is chemically inert. The modification was carried out to change the nature of the native talc. The mechanical and optical properties for internal sizing papers were studied. The results indicated that modified talc with phthalic anhydride enhances the mechanical and optical properties for sized hand-sheets. It was clear that modification of the talc plays a role in improvement of the fiber–filler–fiber bond.  相似文献   

9.
Biocomposites were subject to exposure to a mixture of fungi and algae in a microenvironment chamber. Surface and bulk property changes of polypropylene/wood flour, recycled polypropylene/cellulose and polylactide/wood flour were monitored by tensile testing, Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) and Field Emission Scanning Electron Microscope (FE-SEM).All the biocomposites showed a substantial decrease in toughness after 28 and 56 days of hydrolysis. The ductility increased after 28 and 56 days, but deteriorated after 84 days of hydrolysis. Biofilm formation occurred on all biocomposites even if the polymer itself was inert to biodegradation. The microbial colonization affected mainly the surface properties of polypropylene biocomposites while changes were monitored also in the bulk properties of polylactide biocomposites.The cellulose fibres in the composites gave a more easily colonized surface mainly attributed to water uptake. In the short term perspective, the water uptake offered better conditions for biofilm adhesion, and in the longer perspective the exposure to microorganisms also resulted in mechanical degradation, followed by biodegradation of cellulose. With time this will leave a porous matrix of polypropylene, while biodegradable polymers such as polylactide will degrade in parallel with the fibre part.  相似文献   

10.

Background

Secondary caries are considered the main cause of dental restoration failure. In this context, anti-biofilm and bactericidal properties are desired in dental materials against pathogens such as Streptococcus mutans. To this purpose, graphene based materials can be used as fillers of polymer dental adhesives. In this work, we investigated the possibility to use as filler of dental adhesives, graphene nanoplatelets (GNP), a non toxic hydrophobic nanomaterial with antimicrobial and anti-biofilm properties.

Results

Graphene nanoplatelets have been produced starting from graphite intercalated compounds through a process consisting of thermal expansion and liquid exfoliation. Then, a dental adhesive filled with GNPs at different volume fractions has been produced through a solvent evaporation method. The rheological properties of the new experimental adhesives have been assessed experimentally. The adhesive properties have been tested using microtensile bond strength measurements (µ-TBS). Biocidal activity has been studied using the colony forming units count (CFU) method. The anti-biofilm properties have been demonstrated through FE-SEM imaging of the biofilm development after 3 and 24 h of growth.

Conclusions

A significantly lower vitality of S. mutans cells has been demonstrated when in contact with the GNP filled dental adhesives. Biofilm growth on adhesive-covered dentine tissues demonstrated anti-adhesion properties of the produced materials. µ-TBS results demonstrated no significant difference in µ-TBS between the experimental and the control adhesive. The rheology tests highlighted the necessity to avoid low shear rate regimes during adhesive processing and application in clinical protocol, and confirmed that the adhesive containing the 0.2%wt of GNPs possess mechanical properties comparable with the ones of the control adhesive.
  相似文献   

11.
Aims: To develop novel polypropylene composite materials with antimicrobial activity by adding different types of copper nanoparticles. Methods and Results: Copper metal (CuP) and copper oxide nanoparticles (CuOP) were embedded in a polypropylene (PP) matrix. These composites present strong antimicrobial behaviour against E. coli that depends on the contact time between the sample and the bacteria. After just 4 h of contact, these samples are able to kill more than 95% of the bacteria. CuOP fillers are much more effective eliminating bacteria than CuP fillers, showing that the antimicrobial property further depends on the type of copper particle. Cu2+ released from the bulk of the composite is responsible for this behaviour. Moreover, PP/CuOP composites present a higher release rate than PP/CuP composites in a short time, explaining the antimicrobial tendency. Conclusions: Polypropylene composites based on copper nanoparticles can kill E. coli bacteria depending on the release rate of Cu2+ from the bulk of the material. CuOP are more effective as antimicrobial filler than CuP. Significance and Impact of the Study: Our findings open up novel applications of these ion‐copper‐delivery plastic materials based on PP with embedded copper nanoparticles with great potential as antimicrobial agents.  相似文献   

12.
The purpose of this article is to illustrate a new classification of resin based aesthetic materials laying on the characterization of their matrix and their filler morphology. Four samples per material have been prepared for SEM evaluation. Each sample has been treated with chloroform to dissolve its matrix in order to evidence the filler morphology. A general schema of four different matrix systems which characterize the material's level of hydrophobicity can be put in evidence. The subsequent filler analysis individuates a more complex schema based on filler size and construction. A new classification based on matrix nature and filler morphology has been proposed. Based on this concept mechanical and aesthetic characteristics of the materials can be presumed.  相似文献   

13.
A method of care for these infected nonunions is prolonged intravenous systemic antibiotic treatment and implantation of methyl methacrylate antibiotic carrier beads to delivery high local doses of antibiotics. This method requires a second surgery to remove the beads once the infection has cleared. Recent studies have investigated the use of biodegradable materials that have been impregnated with antibiotics as tools to treat bone infections. In the present study, human demineralized bone matrix (DBM) was investigated for its ability to be loaded with an antibiotic. The data presented herein demonstrates that this osteoinductive and biodegradable material can be loaded with gentamicin and release clinically relevant levels of the drug for at least 13 days in vitro. This study also demonstrates that the antibiotic loaded onto the graft has no adverse effects on the osteoinductive nature of the DBM as measured in vitro and in vivo. This bone void filler may represent a promising option for local antibiotic delivery in orthopedic applications.  相似文献   

14.
There are numerous examples where animals or plants synthesize extracellular high-performance skeletal biocomposites consisting of a matrix reinforced by fibrous biopolymers. Cellulose, the world's most abundant natural, renewable, biodegradable polymer, is a classical example of these reinforcing elements, which occur as whisker-like microfibrils that are biosynthesized and deposited in a continuous fashion. In many cases, this mode of biogenesis leads to crystalline microfibrils that are almost defect-free, with the consequence of axial physical properties approaching those of perfect crystals. This quite "primitive" polymer can be used to create high performance nanocomposites presenting outstanding properties. This reinforcing capability results from the intrinsic chemical nature of cellulose and from its hierarchical structure. Aqueous suspensions of cellulose crystallites can be prepared by acid hydrolysis of cellulose. The object of this treatment is to dissolve away regions of low lateral order so that the water-insoluble, highly crystalline residue may be converted into a stable suspension by subsequent vigorous mechanical shearing action. During the past decade, many works have been devoted to mimic biocomposites by blending cellulose whiskers from different sources with polymer matrixes.  相似文献   

15.
Based on the remarkable demand for facial reconstitute or reshape fillers due to the dermal defects arising from specific diseases, trauma, or aging, several natural or synthetic materials have been investigated. Among the evaluated materials, decellularized dermis is one of the most biocompatible choices for the aim of skin tissue regenerative approaches. On the other hand, Carboxymethyl Cellulose (CMC), a synthetic polysaccharide, with the desirable degradability, biomechanical stability, and nontoxicity seems to be an acceptable reinforcement agent for decellularized dermis. Thus, in this research, an injectable soft tissue filler contained of human-derived decellularized collagen and CMC was fabricated. The cell-removal approving was performed utilizing H&E staining assay. The biocompatibility of the prepared samples was confirmed by MTT assay. The rheology examination demonstrated the increased storage modulus and enhanced elastic property as a consequence of CMC presence. Furthermore, the required flow force of the collagen/CMC filler was decreased as a consequence of decreasing the viscosity and its injectability was improved. According to the provided biomechanical and biological results, it could be claimed that the collagen/CMC hydrogel is a suitable substitute filler for skin tissue engineering.  相似文献   

16.
A cradle-to-grave environmental life cycle assessment (LCA) of a few poly(3-hydroxybutyrate) (PHB) based composites has been performed and was compared to commodity petrochemical polymers. The end products studied are a cathode ray tube (CRT) monitor housing (conventionally produced from high-impact polystyrene, HIPS) and the internal panels of an average car (conventionally produced from glass-fibers-filled polypropylene, PP-GF). The environmental impact is evaluated on the basis of nonrenewable energy use (NREU) and global warming potential over a 100 years time horizon (GWP100). Sugar cane bagasse (SCB) and nanoscaled organophilic montmorillonite (OMMT) are used as PHB fillers. The results obtained show that, despite the unsatisfying mechanical properties of PHB composites, depending on the type of filler and on the product, it is possible to reach lower environmental impacts than by use of conventional petrochemical polymers. These savings are mainly related to the PHB production process, while there are no improvements related to composites preparation. SCB-based composites seem to be environmentally superior to clay-based ones.  相似文献   

17.
Cassava mesocarp carbohydrate and its modified form were used as fillers in low density polyethylene to give plastic films that were biodegradable. It was found that the tensile strength of the films decreased with an increase in the amount of the filler incorporated. The water absorption results of the films showed that modification of the cassava mesocarp carbohydrate made it hydrophobic and therefore more compatible with the polyethylene.  相似文献   

18.
Surgical adhesives have been used for several applications, including haemostasis, sealing air leakages and tissue adhesion. The aim of this work was to develop a biodegradable urethane-based bioadhesive containing free isocyanate groups. This material presents the advantage of being biodegradable, biocompatible and having the capacity of reacting with amino groups present in the biological molecules. A urethane based on castor oil (CO) was synthesized by reaction of the molecule with isophorone diisocyanate (IPD). The characterization of the material was accomplished by different techniques: ATR-FT-IR (attenuated transmittance reflection-Fourier transform infrared), swelling capacity determination, evaluation of the moisture curing kinetics, reaction with aminated substrates and determination of surface energy by contact angle measurement. The study of the urethane thermal properties was performed by DMTA (dynamical mechanical thermal analysis) and TGA (thermogravimetric analysis). The haemocompatibility of the urethane was also evaluated by thrombosis and haemolysis tests.  相似文献   

19.
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers.The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.  相似文献   

20.
Glass‐based seals for planar solid‐oxide fuel‐cell (SOFC) stacks are open to uncontrolled deformation and mechanical damages, limiting both sealing integrity and stack reliability, particularly in thermal cycle operations. If the glass‐based seals work like an elastomer‐based compressive seal, SOFC stacks may survive unprecedented numbers of thermal cycles. A novel composite sealing gasket is successfully developed to mimic the unique features of the elastomer‐based compressive seal by controlling the composition and packing behavior of binary ceramic fillers. A single‐cell SOFC stack undergoes more than 100 thermal cycles with little performance loss, during which the sealing integrity is lost/recovered repeatedly upon cooling and reheating, corresponding to unloading/loading of the elastomer‐based compressive seal. The thermal‐cycle responses of the SOFC stack are explained in sequence by the concurrent events of elastic deformation/recovery of ceramic filler network and corresponding redistribution of sealing glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号