首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure for the isolation of assembly-competent glial fibrillary acidic (GFA) protein from 2 m urea extracts of bovine spinal cord by anion-exchange chromatography is reported. The tissue was previously extracted with low-ionic-strength buffer. The procedure allowed the separation of nondegraded GFA protein from GFA protein comprising degraded species. As previously reported for neurofilament preparations obtained from porcine spinal cord (N. Geisler and K. Weber, J. Mol. Biol., 151, 565–571 (1981)), the procedure also allowed the simultaneous separation of the three neurofilament polypeptides (200,000; 150,000; and 70,000 daltons) contained in the 2 m urea extract. Brain filament proteins sequentially eluted at increasing salt concentration (25–200 mm NaCl) according to their isoelectric point. Proteins with higher pI eluted first. Tubulin eluted between the 200,000- and 150,000-dalton neurofilament polypeptides.  相似文献   

2.
The 200,000-dalton neurofilament subunit (P200) and the 160,000-dalton (P160) and 78,000-dalton (P78) neurofilament subunits were partially purified from bovine brain. Intact neurofilaments were prepared by high- speed and sucrose-zone centrifugation. The crude neurofilament was solubilized in 8 M urea solution containing pyridine, formic acid, and 2-mercaptoethanol. The solubilized neurofilament was purified by carboxymethyl (CM) cellulose column and hydroxylapatite column chromatography. The P200 was purified as separate from P160 and P78, but the P160 and P78 subunits were copurified on CM cellulose, hydroxylapatite, Bio-Gel A150m, and Sephadex G-150 column chromatography. Electron microscopy of these purified neurofilament subunits revealed the P200 subunit as a globular structure, and the P160 and P78 subunits as a rod-shaped structure extending up to 120 nm with a 8- to 12-nm width. In the presence of 200 mM KCl, 15 mM MgCl2, and 1 mM ATP, the purified subunits assembled into long filaments. Under the assembly condition, P160 and P78 subunits elongated up to 500 nm, but the longer filament formation required the presence of P200 subunits. The filaments formed in vitro were of two types: long straight filaments and intertwined knobby-type filaments. From these results, we have suggested that P160 and P78 form the neurofilament backbone structure and P200 facilitates the assembly of the backbone units into longer filaments.  相似文献   

3.
1. Isolated individual components of the triplet of neurofilaments from bovine brain can reassemble to make filaments with a specific structure, contrary to the already reported result that NF-H and NF-M cannot make filaments alone but can only make filaments by co-polymerization with NF-L. 2. This result suggests an alternative mechanism of assembly of the neurofilaments in which individual components of the triplet make filaments first, and then these aggregate to form the intact neurofilaments. 3. The triplet components of neurofilaments are reduced to a monomeric form in 8 M urea and 1% beta-mercaptoethanol (beta-ME) solution. However, in the absence of beta-ME, a part of each component of the triplet was preserved as oligomeric forms. 4. Among them, a stable tetramer of NF-L was isolated by DE-52 column chromatography using 6 M urea solution in the absence of beta-ME. 5. This results supports the hypothesis that this tetramer can be considered as a protofilament of the neurofilament structure.  相似文献   

4.
Excessive accumulation of neurofilaments in the cell bodies and proximal axons of motor neurons is a major pathological hallmark of motor neuron diseases. In this communication we provide evidence that the neurofilament light subunit (68 kDa) and G-actin are capable of forming a stable interaction. Cytochalasin B, a cytoskeleton disrupting agent that interrupts actin-based microfilaments, caused aggregation of neurofilaments in cultured mesencephalic dopaminergic neurons, suggesting a possible interaction between neurofilaments and actin; which was tested further by using crosslinking reaction and affinity chromatography techniques. In the cross-linking experiment, G-actin interacted with individual neurofilament subunits and covalently cross-linked disuccinimidyl suberate, a homobifunctional cross-linking reagent. Furthermore, G-actin was extensively cross-linked to the light neurofilament subunit with this reagent. The other two neurofilament subunits showed no cross-linking to G-actin. Moreover, neurofilament subunits were retained on a G-actin coupled affinity column and were eluted from this column by increasing salt concentration. All three neurofilament subunits became bound to the G-actin affinity column. However, a portion of the 160 and 200 kDa neurofilament subunits did not bind to the column, and the remainder of these two subunits eluted prior to the 68 kDa subunit, suggesting that the light subunit exhibited the highest affinity for G-actin. Moreover, neurofilaments demonstrated little or no binding to F-actin coupled affinity columns. The phosphorylation of neurofilament proteins with protein kinase C reduced its cross-linking to G-actin. The results of these studies are interpreted to suggest that the interaction between neurofilaments and actin, regulated by neurofilament phosphorylation, may play a role in maintaining the structure and hence the function of dopaminergic neurons in culture.  相似文献   

5.
Abstract: Intact neurofilaments were isolated from bovine spinal cord white matter, washed by sedimentation in 0.1 m -NaCl, and extracted with 8 m -urea. Solubilized neurofilament triplet proteins of molecular weights approximately 68,000 (P68), 150,000 (P150), and 200,000 (P200) were purified by preparative electrophoresis, using an LKB 7900 Uniphor apparatus. The method provides for an enhanced yield of purified protein and has markedly reduced admixture of electrophoresed protein with acrylamide and associated protein contaminants. Amino acid compositions of the purified neurofilament triplet proteins are reported and compared.  相似文献   

6.
When crude neurofilaments were dissolved in a solution containing 8 M urea and 1% beta-mercaptoethanol (beta-ME), the component proteins of the neurofilaments and other contaminating filaments were solubilized into monomeric forms. However, when reassembled filaments were solubilized again by the addition of urea to 8 M without beta-ME, several bands which seemed to be oligomeric forms of filament proteins were observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Among them, a band which appeared between microtubule-associated protein-1 (MAP-1) and fodrin was most remarkable. This band was also observed when a triplet mixture of the neurofilaments (NF-H, NF-M, NF-L) was reassembled. The molecular weight of this band was estimated to be 280 kDa. In addition, much of this component was easily isolated on DE-52 column chromatography of the reassembled crude neurofilament proteins with buffers containing 6 M urea, while the low molecular weight component of the neurofilaments (NF-L, 70 kDa) was hardly detected. Furthermore, the isolated 280 kDa component was reduced to NF-L on the addition of beta-ME to 1%. In contrast, the 280 kDa component was produced on dialysis of isolated NF-L against the assembly buffer. From these results, it is deduced that this component is the stable tetramer of NF-L which is produced through spontaneous interchain disulfide formation among protofilament tetramers.  相似文献   

7.
Abstract. A panel of 10 mouse monoclonal antibodies specific for glial fibrillary acidic protein (GFA) has been isolated using porcine GFA as antigen. Although all antibodies recognize GFA purified from porcine spinal cord in the western blot technique, they can be subdivided into at least three groups on the basis of their reactivity against defined fragments of the molecule. Immunofluorescence staining patterns with the monoclonal antibodies performed on tissues and cell lines resemble those reported with conventional polyclonal antibodies directed against GFA. In particular astrocytes and Bergmann glia are strongly stained. In addition mouse monoclonal antibodies specific for either the 200 kd, or the 160 kd, or the 68 kd neurofilament triplet protein have been isolated and characterized. These antibodies are specific for neuronal cells and support conclusions made with similar antigen affinity-purified polyclonal antibodies. The combined set of monoclonal antibodies seems a valuable tool to characterize the different cell types of the nervous system.  相似文献   

8.
A panel of 10 mouse monoclonal antibodies specific for glial fibrillary acidic protein (GFA) has been isolated using porcine GFA as antigen. Although all antibodies recognize GFA purified from porcine spinal cord in the western blot technique, they can be subdivided into at least three groups on the basis of their reactivity against defined fragments of the molecule. Immunofluorescence staining patterns with the monoclonal antibodies performed on tissues and cell lines resemble those reported with conventional polyclonal antibodies directed against GFA. In particular astrocytes and Bergmann glia are strongly stained. In addition mouse monoclonal antibodies specific for either the 200 kd, or the 160 kd, or the 68 kd neurofilament triplet protein have been isolated and characterized. These antibodies are specific for neuronal cells and support conclusions made with similar antigen affinity-purified polyclonal antibodies. The combined set of monoclonal antibodies seems a valuable tool to characterize the different cell types of the nervous system.  相似文献   

9.
Neurofilaments were isolated from bovine spinal cords by ultra-speed centrifugation and examined by negative staining. The neurofilament triplet proteins: NF-L, NF-M and NF-H were purified by DE-52 anion exchange chromatography in the presence of 6 mol/L urea. The reassembly of NF-L under controlled conditions was studied. NF-L can reassemble into 10 nm width filaments within 60 minutes at physiological condition of around 0.15 mol/L NaCl, 2 mmol/L MgCl2, neutral pH(pH 6.8) and 37 degrees C. In 6 mol/L urea, NF-L was examined as 12 nm-diameter particle by low angle rotary shadowing. When dialyzed against reassembly buffer for 20 minutes, some irregular filaments were formed. Further dialyzed for another 40 minutes, the long smooth filaments appeared. Some filaments were unraveled at the end regions, where existed 2-4 subfilaments. Four subfilaments were more often observed. That is to say, the 10 nm-width filament was composed of 4 subfilaments. While dialyzed against the alkaline buffer containing 0.15 mol/L NaCl, NF-L reconstituted into 45-180 nm-long, 10 nm-width filaments, which were not able to elongate into long filaments.  相似文献   

10.
Rat retina structure was studied between embryonic day 14 and adult with antibodies specific for vimentin, glial fibrillary acidic protein (GFA) and the proteins of the neurofilament triplet. Vimentin could be detected in radial processes throughout the retina at all stages studied. These processes are believed to correspond, in the developing retina, to ventriculocytes, and in the mature retina to Müller cells. They could not normally be stained with any of the other intermediate filament antibodies employed here. We did find, however, that some older albino rats possessed GFA staining in addition to vimentin in these processes. Since we never saw such staining in the retinae of mature non-albino rats, and the retinae of older albino rats often showed signs of degeneration, we concluded that such GFA expression was most likely pathological. Neurofilament protein-positive processes were first detectable at embryonic day 15 1/2 in the inner regions of the retina, and corresponded to the axons of retinal ganglion cells. Such processes were equivalently displayed with antibodies to 68 K and 145 K protein, but were negative with 200 K protein. Some 68 K and 145 K positive fibers could also be decorated with vimentin antibody at this stage, though at later stages this was not the case. At later development stages more 68 K and 145 K neurofilament positive processes appeared, and after the first post-natal week progressively more of such processes became in addition 200 K positive, so that almost all neurofilament positive fibers in the adult stained for all three proteins. Such fibers, in the mature retina corresponded to 68 K and 145 K positive optic nerve fibers, and the processes of neurones in the inner plexiform layer. All fibers in the mature optic nerve fiber layer, but not all of those in the inner plexiform layer were stainable with 200 K antibodies. At 4 days post-natal we were able to detect 68 K and 145 K protein positive profiles in the outer regions of the developing retina, the prospective outer plexiform layer. Such profiles were always in addition vimentin positive, but negative for 200 K protein. During further development such profiles became ordered into a well defined layer and from about post-natal day 13 all of them began to acquire 200 K protein. They could be identified as the processes of horizontal cells. They continued to express vimentin in addition to the three triplet proteins in the adult, a so far unprecedented situation. We were able to detect neurofilament staining in the mature retina only in the above described regions, the inner and outer nuclear layer and the photoreceptor processes being completely free of staining. GFA was first detected in short processes adjacent to the inner limiting membrane which penetrated the optic nerve fiber layer. Such profiles were first detectable in the eye of the newborn animal, and were invariably identically stainable with vimentin at this age. These profiles could be stained with both vimentin and GFA at all later stages examined, although GFA staining became very much stronger than vimentin staining in some profiles in the adult. The results presented here are discussed in terms of development of the different retinal cell types.  相似文献   

11.
Abstract: Protein kinase C (PKC) activity, western blot analysis of PKCα, β, γ, ε, and ζ by isozyme-specific antibodies, and in vitro phosphorylation of endogenous substrate proteins were studied in the mice brain after pentyl-enetetrazole-induced chemoshock. The PKC isozymes and endogenous substrates in the crude cytosolic and membrane fractions were partially purified by DE-52 columns eluted with buffer A containing 100 or 200 m M KCI. This method consistently separates cytosolic and membrane proteins and various PKC isoforms. The 100 m M KCI eluates from DE-52 columns contain more PKC α and β in both cytosol and membrane than the 200 m M KCI eluates, whereas PKCγ, ε, and ζappear in equal amounts in these two eluates. The kinase activity assayed by phosphorylation of exogenous histone was increased in the chemoshocked mice in both the cytosol and membrane of 200 m M KCI eluates. In further analysis by immunoblotting, this increased activity was found to be due to the increase in content of PKC7 isozyme. As for novel-type ε and ζ isozymes, they were not altered in the chemoshocked mice. From autoradiography, the endogenous substrate 17-kDa neurogranin, which was shown below 21 kDa, was mostly eluted by 100 m M KCI from the DE-52 column, whereas 43-kDa neuromodulin, which was also demonstrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, only appeared in the 200 m M KCI eluates. The in vitro phosphorylation of neuromodulin was found to be increased in the chemoshocked mice. Therefore, the increased phosphorylation of neuromodulin and increased content of the PKCγ isoform were involved in the pentylenetetrazole-induced chemoshock.  相似文献   

12.
Two forms of DNA-dependent DNA-polymerase have been isolated and partially purified from the limited amount of biomass of cells Acholeplasma laidlawii PG-8, a typical representative of genus Acholeplasmataceae, as a result of successive chromatography on the columns with DEAE-cellulose DE-52 and Green A-sepharose. The first form of DNA-polymerase is eluted from the ion-exchange column with NaCl concentration of 0.1 M from the column with Green A-sepharose of 0.27 M, while the second form-with NaCl concentrations of 0.6 and 0.4 M, respectively. The both enzymatic activities are able to implement DNA synthesis. The conditions of DNA-polymerase production proved to be rather convenient for isolation of the concentrated and highly active enzymes.  相似文献   

13.
The binding of the natural mineralocorticoid aldosterone and the glucocorticoid corticosterone to macromolecules in rat liver and kidney cytoplasmic fractions was compared by various chromatographic procedures. Equilibration of kidney cytosol with 10nM-aldosterone, either alone or in the presence of a competing steroid, was ideal for ionexchange chromatography of DEAE-cellulose DE-52, and revealed the presence of four sorts of binding components. One of these, eluted in the 0.001M-phosphate pre-wash, and another, less abundant, forming a peak at 0.006M-phosphate, did not bind corticosterone at equimolar concentrations, and appear to constitute the mineralocorticoid-specific 'MR' receptor in rat kidney. They could not be detected in the liver. Radioactivity eluted in the 0.02 and 0.06M-phosphate regions on DEAE-cellulose DE-52 appears to be due to [3H]aldosterone binding to glucocorticoid-specific 'GR' receptors and to transcortin respectively, since labelling was greater with corticosterone even at 10 nM than with the mineralocorticoid at 100nM and since [14C]corticosterone bound to blood serum transcortin was always co-chromatographed in the 0.06M-phosphate region. These two components appear to be identical with those in the liver and could be labelled maximally only by 100nM-corticosterone. The separation between specific mineralo- and glucocorticoid-binding species was less clear when chromatography was attempted on DEAE-Sephadex A-50 columns, possibly because of disaggregation into subunits in the presence of the high KC1 concentrations required for elution. Competitive binding followed by filtration through Sephadex G-200 gel indicated that cellular MR binders, unlike GR receptors, exist mostly as high-molecular-weight aggregates, although both appear to exhibit a comparable monomeric molecular weight of approx. 67000.  相似文献   

14.
Summary Antisera to chicken brain antigen (CBA) isolated by hydroxyapatite chromatography from 8 M urea extracts following repeated extractions with phosphate buffer selectively decorate neurofilaments (NF) in neuronal perikarya, dendrites and axons. The antisera also reacted with GFA protein, the astrocyte-specific intermediate filament protein, as indicated by the adsorption of NF immunoreactivity following passage of the antisera through columns prepared with purified GFA protein. Moreover, the antisera stained the polypeptides of the NF triplet (70 kd, 150 kd, 200 kd) and GFA protein by the immunoblotting procedure. Monoclonal antibodies selectively decorating NF in tissue sections were isolated from a fusion of mouse myeloma cells with spleen cells of mice immunized with CBA. By the immunoblotting procedure the antibodies decorated the 150 kd NF polypeptide and GFA protein. No staining of glial filaments or any other structure on tissue sections was also observed with antibodies derived from another fusion strongly reacting with GFA protein on immunoblots. All antibodies (monoclonal and polyclonal) appeared to react with the same region of the GFA polypeptide as indicated by immunoblots of cleavage products.  相似文献   

15.
Abstract Cell-envelope fragments were prepared from Listeria monocytogenes L242, serotype 4b. Delayed hypersensitivity (DH)-inducing proteins were extracted with deoxycholate and separated into two fractions by filtration through a Sephacryl S-200 column equilibrated with deoxycholate buffer. The second peak eluting from the Sephacryl column was fractionated using ion exchange chromatography on a DEAE Sepharose CL-6B column in the presence of 6 M urea. A purified 20 400-Da protein which induced DH against L. monocytogenes was obtained by isocratic elution. Three other DH-inducing fractions containing several protein bands were eluted by a gradient of potassium thiocyanate (KSCN) in urea buffer. Our results indicate that denaturing conditions can be employed for the fractionation and purification of DH inducing proteins from L. monocytogenes . In addition, it is suggested that the procedure described might also be useful for the purification of other antigens involved in cellular immune reactions.  相似文献   

16.
Bovine brain tissue was extracted and the 50 000g supernatant was separated by electrophoresis, DEAE-Sephadex chromatography and gel filtration on Sephadex G-200 and Bio-Gel P-200. The electrophoretic separation showed that the beta-N-acetyl-D-hexosaminidases (hexosaminidases) of bovine brain tissue were composed of four different fractions. Two fractions (A and B) exerted both glucosaminidase and galactosaminidase activity, a third fraction (C) showed only glucosaminidase activity, whereas a fourth form (D) with specificity towards the galactosaminide moiety was found to be present. DEAE-Sephadex chromatography at pH 7.0 showed that the B form was eluted with the void volume, whereas the A and D forms could be eluted in one peak by raising that salt concentration. The C form could not be detected in the eluate. Gel filtration on Sephadex G-200 showed that the B, A and D forms had almost equal molecular weights. In this case also the C form could not be detected in the column eluates. Gel filtration on Bio-Gel P-200 revealed that the C form was eluted with the void volume.  相似文献   

17.
Calcium-dependent protease activity was found associated with a neurofilament-enriched cytoskeleton isolated from the bovine spinal cord. The protease was extracted from the cytoskeleton by 0.6 M KCl, and purified to apparent homogeneity (3300-fold) by chromatography on organomercurial-Sepharose 4B, casein-Sepharose 4B, and Sepharose CL-6B. A cytosolic calcium-dependent protease was similarly purified from the bovine spinal cord, after the cytosol was fractionated on DEAE-cellulose. Both cytoskeleton-bound and cytosolic enzymes had an apparent molecular mass of 100 kDa as judged by gel filtration, and consisted of two subunits (79 kDa and 20 kDa) upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Both enzymes exhibited caseinolytic activity with 0.5 mM Ca2+ and above, and the activity was strongly inhibited by various thiol protease inhibitors. In the presence of 0.1-0.2 mM Ca2+, the 68-kDa and 160-kDa components, and to a lesser extent the 200-kDa component, of the neurofilament triplet polypeptides were degraded by the cytosolic protease, whereas the cytoskeleton-bound protease needed two-fold higher concentration of Ca2+ to degrade the neurofilaments. Nevertheless, the cytoskeleton-bound protease in situ, i.e. before its extraction form the cytoskeleton by 0.6 M KCl, preferentially degraded the 160-kDa component in the presence of 0.1-0.2 mM Ca2+, suggesting that a proper locational relation of this enzyme to the neurofilament structure is a prerequisite to its preference for the 160-kDa component. It appears that a factor or factors involved in such an interaction between the protease and the neurofilament were eliminated during the course of enzyme purification. The glial fibrillary acidic protein was almost insensitive to the proteases purified in the present study.  相似文献   

18.
Hepatic tyrosine aminotransferase of the frog Rana temporaria was partially purified by (NH4)2SO4 fractionation and successive chromatography on DEAE-cellulose DE-52, Ultrogel AcA-34, DEAE-cellulose DE-52 again and, finally, hydroxyapatite. During the last step, the enzyme activity separated into two fractions; traces of a third fraction were also found. The major form was purified 6000-fold to a specific activity of 200 units/mg of protein; it was about 50% pure by electrophoretic criteria. It had mol.wt. about 85 000 as determined by gel filtration on a Sephadex G-100 column. It was not activated by added pyridoxal 5'-phosphate. The enzyme was, however, inactivated by the pyridoxal phosphate reactants canaline and amino-oxyacetate. The enzyme was specific for 2-oxoglutarate as the amino group acceptor. Homogentisate inhibited the enzyme and adrenaline was an activator; both effects were seen at low concentrations of the effectors. The relationship between initial rate and tyrosine or 2-oxoglutarate concentration was abnormal and complex. Form-2 enzyme had similar or identical molecular weight, cofactor requirements, oxo acid specificity and kinetics.  相似文献   

19.
报道了用DEAE-纤维素(DE-23)离子交换柱层析从鹿茸二杠中分离、纯化及鉴定硫酸软骨素的方法.首先用适量蒸馏水浸泡鹿茸二杠并将其捣碎,离心取沉淀用盐酸胍浸提,浸提液对尿素液透析后经DEAE-纤维素(DE-23)离子交换柱层析,吸附大量的硫酸软骨素;再用含盐尿素溶液梯度洗脱、分离后,经软骨素酶消化及琼脂糖凝胶电泳, 与硫酸软骨素标准品比较,证实得到的物质为纯的硫酸软骨素蛋白聚糖,其得率约为48.77%.该方法使硫酸软骨素分离纯化一步完成,大大简化了纯化步骤.  相似文献   

20.
Transcortin-bound gluco- and mineralocorticoids were fractionated on a number of chromatographic systems. Contrary to earlier suggestions of a homogenous unit by competition binding and Scatchard analysis, a polymorphic nature of the globulin was evident with corticosterone on Sephadex A-50 columns (components in 0.4 and 0.6 m KCl) and with synthetic steroids (triamcinolone acetonide, dexamethasone) or natural mineralocorticoids (aldosterone, 18-hydroxy-deoxy-corticosterone) on diethylaminoethyl cellulose-52 gels (species in 0.001 and 0.06 m phosphate). Besides the major component of molecular weight 55,000, a heavier shoulder in the 67,000 molecular weight region was obtained with cortisol, dexamethasone, triamcinolone, and aldosterone from Sephadex G-200 columns, on which binding was reduced in the presence of high salt (0.4 m KCl). Triamcinolone- and dexamethasone-bound components eluted at lower salt concentrations from the DE-52 column than natural steroid-corticosteroid-binding globulin complexes. The various features of serum carrier binding are discussed in terms of steroid-receptor association in hormone-specific target tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号