首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autolysis of Lactococcus lactis Is Influenced by Proteolysis   总被引:3,自引:0,他引:3       下载免费PDF全文
The autolysin AcmA of Lactococcus lactis was shown to be degraded by the extracellular lactococcal proteinase PrtP. Autolysis, as evidenced by reduction in optical density of a stationary-phase culture and concomitant release of intracellular proteins, was greatly reduced when L. lactis MG1363 cells expressed the cell wall-anchored lactococcal proteinase PrtP of the PI-type caseinolytic specificity (PI). On the other hand, lactococcal strains that did not produce the proteinase showed a high level of autolysis, which was also observed when the cells produced the secreted form of PI or a cell wall-anchored proteinase with PIII-type specificity. Autolysis was also increased when MG1363 expressed the cell wall-anchored hybrid PI/PIII-type proteinase PIac. Zymographic analysis of AcmA activity during stationary phase showed that AcmA was quickly degraded by PI and much more slowly by PrtP proteinases with PIII-type and intermediate specificities. Autolysis of L. lactis by AcmA was influenced by the specificity, amount, and location of the lactococcal proteinase. No autolysis was observed when the various proteinases were expressed in an L. lactis acmA deletion mutant, indicating that PrtP itself did not cause lysis of cells. The chain length of a strain was significantly shortened when the strain expressed a cell wall-anchored active proteinase.  相似文献   

2.
Previous studies have indicated that scrapie infection results in the accumulation of a proteinase K-resistant form of an endogenous brain protein generally referred to as prion protein (PrP). The molecular nature of the scrapie-associated modification of PrP accounting for proteinase K resistance is not known. As an approach to understanding the cellular events associated with the PrP modification in brain tissue, we sought to identify proteinase K-resistant PrP (PrP-res) in scrapie-infected neuroblastoma cells in vitro and to compare properties of PrP-res with those of its normal proteinase K-sensitive homolog, PrP-sen. PrP-res was detected by immunoblot in scrapie-infected but not uninfected neuroblastoma clones. Densitometry of immunoblots indicated that there was two- to threefold more PrP-res than PrP-sen in one infected clone. Metabolic labeling and membrane immunofluorescence experiments indicated that PrP-sen was located on the cell surface and could be removed from intact cells by phosphatidylinositol-specific phospholipase C and proteases. In contrast, PrP-res was not removed after reaction with these enzymes. Thus, either the scrapie-associated PrP-res was not on the cell surface or it was there in a form that is resistant to these hydrolytic enzymes. Attempts to detect intracellular PrP-res by immunofluorescent staining of fixed and permeabilized cells revealed that PrP was present in discrete perinuclear Golgi-like structures. However, the staining pattern was similar in both scrapie-infected and uninfected clones, and thus the intracellular staining may have represented only PrP-sen. Analysis of scrapie infectivity in cells treated with extracellular phospholipase, proteinase K, and trypsin indicated that, like PrP-res, the scrapie agent was not removed from the infected cells by any of these enzymes.  相似文献   

3.
The active site of the rat intestinal brush-border membranal proteinase [Alhanaty E. and Shaltiel S. (1979) Biochem. Biophys. Res. Commun. 89, 323-332], which splits the catalytic subunit (C) of cAMP-dependent protein kinase with a remarkable specificity [Alhanaty E., Tauber-Finkelstein, M., Schmeeda, H. and Shaltiel, S. (1985) Curr. Topics Cell. Regul. 27, 267-277], is shown to face predominantly the cell exterior; vesicles prepared from these brush-borders (mostly sealed and right-side-out) fully express the proteinase activity as judged by the fact that there is no increase in activity upon rupture or solubilization of the vesicles. Although the brush-border vesicles contain a cAMP-dependent protein kinase, this membrane-bound kinase is not likely to be the physiological target of the proteinase, since it appears to have an intracellular orientation and, at least in the vesicles, to be inaccessible to the proteinase. It is, therefore, suggested that the physiological substrate of the proteinase might be either an extracellular cAMP-dependent protein kinase, which is lost (e.g. removed, inactivated or degraded) in the course of vesicle isolation, or a kinase domain in one of the family of proteins recently shown to have a considerable structural and conformational homology with C. Alternatively the physiological site of action of this kinase-splitting proteinase might be an intracellular organelle to which it is translocated by endocytosis.  相似文献   

4.
Intracellular serine proteinase was isolated from sporulating cells of Bacillus subtilis Marburg 168 by gramicidin S-Sepharose 4B affinity chromatography. The enzymological characteristics, the amino acid composition and the 19 residues of the N-terminal sequence of the enzyme are reported. The isolated proteinase was closely related to, but not completely identical with, the intracellular serine proteinase of B. subtilis A-50. The divergence between these two intracellular enzymes was less than that between the corresponding extracellular serine proteinases (subtilisins) of types Carlsberg and BPN', produced by these bacterial strains. This may be connected with the more strict selection constraints imposed in intracellular enzymes during evolution.  相似文献   

5.
Lysosomal cysteine proteinase cathepsin B is implicated in remodeling the extracellular matrix, a crucial step in the process of tumor cell invasion. In this study the contributions of intracellular and extracellular cathepsin B activities in the invasion of ras-transformed human breast epithelial cells, MCF-10A neoT, were assessed using specific cathepsin B neutralizing monoclonal antibody (Mab) 2A2, together with other general and specific cysteine proteinase inhibitors. We showed that the degradation of extracellular matrix by living MCF-10A neoT cells was predominantly intracellular, as imaged by confocal assays using quenched fluorescent substrate DQ-collagen IV. CA-074, a membrane-impermeable cathepsin B-selective inhibitor and its membrane-permeable analogue CA-074Me showed similar inhibition of invasion at 10 microM, i.e., 24.9 and 27.0%, respectively. Neutralizing monoclonal antibody exhibited a significantly higher inhibitory effect, decreasing invasion at 0.5 microM by 42.7%. Tumor cells may internalize monoclonal antibody; therefore, 2A2 Mab could impair both the intracellular and the extracellular fractions of cathepsin B activity. However, both 2A2 Mab and cathepsin B-selective inhibitors were less potent than the general cysteine proteinase inhibitors chicken cystatin and E-64, indicating that other cysteine proteinases, presumably cathepsin L, are involved in invasion. Our results show that intracellular and extracellular cathepsin B activity contribute to in vitro invasion of MCF-10A neoT cells and suggest that inhibitors capable of impairing both fractions have a potential as new anticancer drugs.  相似文献   

6.
The extracellular proteinase (EPR) of Candida albicans was induced in a medium containing bovine serum albumin as sole nitrogen source. There were two intracellular forms in cells induced to produce EPR, a 43 kDa protein (EPR) and a 45 kDa protein (cross-reacting material of EPR; CRM-EPR); these were detected by immunoblotting using anti-EPR antiserum. The 43 kDa protein (EPR) may be the same as the extracellular form judging by molecular mass, and the 45 kDa protein (CRM-EPR) may be a precursor form of EPR. Many dense granules were observed by electron microscopy near the plasma membrane of the mother cells in EPR-producing cells. Both the 43 and 45 kDa proteins were recovered in a membrane fraction and were solubilized by Triton X-100. When the membrane fraction was further fractionated by sucrose density gradient centrifugation, the 43 and 45 kDa proteins were differentially fractionated. This suggests that they were located in different membrane-bound structures and is consistent with an assumption that the 45 kDa protein is a precursor for EPR.  相似文献   

7.
Our recent studies have shown that cathepsin L is first synthesized as an enzymatically inactive proform in endoplasmic reticulum and is successively converted into an active form during intracellular transport and we postulated that aspartic proteinases would be responsible for the intracellular propeptide-processing step of procathepsin L accompanied by the activation of enzyme (Y. Nishimura, T. Kawabata, and K. Kato (1988) Arch. Biochem. Biophys. 261, 64-71). To better understand this proposed mechanism, we investigated the effect of pepstatin, a potent inhibitor of aspartic proteinases, on the intracellular processing kinetics of cathepsin L analyzed by pulse-chase experiments in vivo with [35S]methionine in the primary cultures of rat hepatocytes. In the pepstatin-treated cells, the proteolytic conversion of cellular procathepsin L of 39 kDa to the mature enzyme was significantly inhibited and considerable amounts of proenzyme were found in the cell after 5-h chase periods. Further, the subcellular fractionation experiments demonstrated that the intracellular processing of procathepsin L in the high density lysosomal fraction was significantly inhibited and that considerable amounts of the procathepsin L form were still observed in the light density microsomal fraction after 2 h of chase. These results suggest that pepstatin treatment caused a significant inhibitory effect on the intracellular processing and also on the intracellular movement of procathepsin L from the endoplasmic reticulum to the lysosomes. These findings provide the first evidence showing that aspartic proteinase may play an important role in the intracellular proteolytic processing and activation of lysosomal cathepsin L in vivo. Therefore, we suggest that cathepsin D, a major lysosomal aspartic proteinase, is more likely to be involved in this proposed model in the lysosomes.  相似文献   

8.
In stationary cultures of Trametes versicolor seven proteinase bands were revealed by electrophoresis in mycelium and five in the medium. Under conditions of nitrogen starvation the number of bands in mycelium was unchanged whereas one extracellular proteinase was missing. In the case of carbon starvation one new intracellular proteinase activity appeared and one extracellular activity disappeared. Moreover, in all starved cultures distinct differences in the intensity of particular bands were observed.  相似文献   

9.
During stroke, cells in the infarct core exhibit rapid failure of their permeability barriers, which releases ions and inflammatory molecules that are deleterious to nearby tissue (the penumbra). Plasma membrane degradation is key to penumbral spread and is mediated by matrix metalloproteinases (MMPs), which are released via vesicular exocytosis into the extracellular fluid in response to stress. DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) preserves membrane integrity in neurons challenged with an in vitro ischemic penumbral mimic (ischemic solution: IS) and we asked whether this action was mediated via inhibition of MMP activity. In cultured murine hippocampal neurons challenged with IS, intracellular proMMP-2 and -9 expression increased 4-10 fold and extracellular latent and active MMP isoform expression increased 2-22 fold. MMP-mediated extracellular gelatinolytic activity increased ~20-50 fold, causing detachment of 32.1±4.5% of cells from the matrix and extensive plasma membrane degradation (>60% of cells took up vital dyes and >60% of plasma membranes were fragmented or blebbed). DIDS abolished cellular detachment and membrane degradation in neurons and the pathology-induced extracellular expression of latent and active MMPs. DIDS similarly inhibited extracellular MMP expression and cellular detachment induced by the pro-apoptotic agent staurosporine or the general proteinase agonist 4-aminophenylmercuric acetate (APMA). Conversely, DIDS-treatment did not impair stress-induced intracellular proMMP production, nor the intracellular cleavage of proMMP-2 to the active form, suggesting DIDS interferes with the vesicular extrusion of MMPs rather than directly inhibiting proteinase expression or activation. In support of this hypothesis, an antagonist of the V-type vesicular ATPase also inhibited extracellular MMP expression to a similar degree as DIDS. In addition, in a proteinase-independent model of vesicular exocytosis, DIDS prevented stimulus-evoked release of von Willebrand Factor from human umbilical vein endothelial cells. We conclude that DIDS inhibits MMP exocytosis and through this mechanism preserves neuronal membrane integrity during pathological stress.  相似文献   

10.
The transmembrane domain of the nicotinic acetylcholine receptor (nAChR) from Torpedo californica electric tissue contains both alpha-helical and beta structures. The secondary structure was investigated by Fourier transform infrared (FTIR) spectroscopy after the extramembrane moieties of the protein from the extracellular and intracellular sides of the membrane were removed by proteolysis using proteinase K. The secondary structure composition of this membrane structure was: alpha-helical 50%, beta structure and turns 40%, random 10%. The alpha-helices are shown to be oriented with respect to the membrane plane in a way allowing them to span the membrane, while no unidirectional structure for the beta structures was observed. These findings contradict previous secondary structure models based on hydropathy plots alone.  相似文献   

11.
M yhara , R.M. & S kura , B. 1990. Centroid search optimization of cultural conditions affecting the production of extracellular proteinase by Pseudomonas fragi ATCC 4973. Journal of Applied Bacteriology 69 , 530–538.
The production of extracellular proteinase by Pseudomonas fragi ATCC 4973 grown in a defined citrate medium, containing glutamine as the sole nitrogen source, was determined under varying cultural conditions. Simultaneous evaluation of cultural conditions using a 'centroid search' optimization technique showed that the optimum cultural conditions for proteinase production by Ps. fragi were: incubation temperature, 12.5°C; incubation time, 38 h; initial pH, 6.8; organic nitrogen concentration, 314 mmol nitrogen/1 (glutamine); a gas mixture containing 16.4% oxygen flowing over the medium (7.42 ppm dissolved oxygen). Oxygen was the major factor influencing proteinase production by Ps. fragi . The results may have applications in the storage of fluid milk. Centroid search optimization was shown to be suitable for microbiological experiments.  相似文献   

12.
The matrix metalloproteinases (MMPs) are a family of structurally related metalloendopeptidases so named due to their propensity to target extracellular matrix (ECM) proteins. Accumulating evidence, however, suggests that these proteases cleave numerous non-ECM substrates including enzymes and cell surface receptors. MMPs may also bind to cell surface receptors, though such binding has typically been thought to mediate internalization and degradation of the bound protease. More recently, it has been shown that MMP-1 coimmunoprecipitates with the alpha2beta1 integrin, a receptor for collagen. This association may serve to localize the enzymatic activity of MMP-1 so that collagen is cleaved and cell migration is facilitated. In other studies, however, it has been shown that integrin engagement may be linked to the activation of signaling cascades including those mediated by Gialpha containing heterotrimers. As an example, alpha2beta1 can form a complex with CD47 that may associate with Gialpha. In the present study we have therefore investigated the possibility that MMP-1 may affect intracellular changes that are linked to the activation of a Gi protein-coupled receptor. We show that treatment of neural cells with MMP-1 is followed by a rapid reduction in cytosolic levels of cAMP. Moreover, MMP-1 potentiates proteinase activated receptor-1 (PAR-1) agonist-linked increases in intracellular calcium, an effect which is often observed when an agonist of a Gi protein-coupled receptor is administered in association with an agonist of a Gq coupled receptor. In addition, MMP-1 stimulates pertussis toxin sensitive release ofMMP-9 both from cultured neural cells and monocyte/macrophages. Together, these results suggest that MMP-1 signals through a pertussis toxin-sensitive G protein-coupled receptor.  相似文献   

13.
We have previously shown that thrombin reverses the growth inhibition caused in human fibroblasts when a cell-surface proteinase is inhibited. A similar result was obtained with asynthetic thrombin receptor agonist peptide, which mimics the conformational change resulting from receptor cleavage by thrombin. Consideration of the effects of the growth-related proteinase on intracellular second messengers indicates that cleavage of the thrombin receptor by this endogenous proteinase is not a significant event for normal fibroblast growth in culture. Inhibition of the growth-related proteinase also fails to block the mitogenic action of bombesin. In conjunction with earlier results, this suggests that the intracellularpoint of action of GRP inhibition may be at, or closely connected with, the receptor-linked tyrosine kinases, and evidence for inhibition of protein phosphorylation following from GRP inhibition is presented.  相似文献   

14.
目的探讨阴道白色念珠菌致病株和携带株菌丝相和酵母相分泌型酸性蛋白酶和细胞外磷脂酶活性以及与其毒力的关系。方法分别采用牛奶平板和卵黄培养基法检测白色念珠菌致病株和携带株200株分泌型酸性蛋白酶和细胞外磷脂酶的活力,分别将致病产酶株的菌丝相和孢子相菌悬液(5×10^6CFU/ral)注射小鼠尾静脉,1个月内观察小鼠死亡率及平均存活时间,以平均存活时间评价菌株毒力。结果白色念珠菌致病株和携带株分泌型酸性蛋白酶检出率分别为83.3%和35.7%(P〈0.01);细胞外磷脂酶阳性率分别为87.5%和39.3%(P〈0.01)。动物实验结果表明,白色念珠菌致病株菌丝相分泌型酸性蛋白酶和细胞外磷脂酶的活力均显著高于孢子相(P〈0.01,P〈0.005);注射菌丝相白色念珠菌的小鼠死亡率高于注射孢子相的小鼠(P〈0.01),且平均存活期短于注射孢子相的小鼠(P〈0.01)。结论分泌型酸性蛋白酶和细胞外磷脂酶是白色念珠菌重要毒力因子,致病株毒力高于携带株,菌丝相毒力高于酵母相。  相似文献   

15.
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.  相似文献   

16.
The structural analogy between prions pathogenic form and serine proteinase inhibitors (serpins) was laid into the basis of explaining the prion diseases main peculiarities--nucleic-acid-free transfer of infection, neurodegenerative processes, existence of the minimal infective dose, long-term latent period and some others. The assumption about pathogenic prions as the proteins supplying the extracellular proteinases transport into the intracellular space permits to bring the pathogenesis of prion diseases to the known and partially proved processes order regarding the case of prion diseases.  相似文献   

17.
Pig small intestinal mucosal explants, labelled with [35S]-methionine, were fractionated into Mg2+-precipitated (intracellular and basolateral) and microvillar membranes, and the orientation of newly synthesized aminopeptidase N (EC 3.4.11.2) in vesicles from the two fractions was studied by its accessibility to proteolytic cleavage. The mature polypeptide of Mr 166 000 from the latter fraction was cleaved by trypsin, proteinase K and papain, consistent with an extracellular location of the enzyme at its site of function. In contrast, both the mature form and the transient form of Mr 140 000 from the Mg2+-precipitated fraction were equally well protected from proteolytic cleavage (in the absence of Triton X-100). This indicates that the basolateral plasma membrane is unlikely to be involved in the post-Golgi transport of newly synthesized aminopeptidase N and suggests instead a direct delivery of the enzyme to the apical plasma membrane. A crude membrane preparation from labelled explants was used in immunoelectrophoretic purification of membranes to determine at what stage during intracellular transport newly synthesized microvillar enzymes are sorted, i.e., accumulated in areas of the membrane from where other proteins are excluded. The transient form of aminopeptidase N was only moderately enriched by immunopurification, using antibodies against different microvillar enzymes, but the mature form was enriched approximately 30-fold from explants, labelled for 30 min. This suggests that for microvillar enzymes, the aspects of sorting studied take place in, or shortly after exit from, the Golgi complex.  相似文献   

18.
It has been known that the extracellular proteinase of Coccus P is found only in cultures grown in the presence of Ca2+. It is now shown that this cation is required neither for synthesis, excretion, or activation of a zymogen nor as a prosthetic factor necessary for enzymatic activity. The only function of Ca2+ is to stabilize the active structure of the enzyme molecule, presumably by substituting for absence of S-S bridges. In the absence of Ca2+, the excreted proteinase undergoes rapid autodigestion and, instead of the active protein, its hydrolytic products are accumulated in the culture fluid. In minimal medium and under conditions of enzyme stability [presence of Ca2+ and Ficoll (Pharmacia)], Coccus P accumulates the proteinase at a gradually reduced speed although the rate of cultural growth remains constant. It is shown that this decline in rate of accumulation is caused by the excreted proteinase itself, possibly acting on its own precursor emerging from the cell in a form susceptible to proteolytic attack and not amenable to Ca2+ protection. A proteinase precursor is actually demonstrable in a calciumless culture at the onset of the enzyme accumulation which follows Ca2+ addition. It is suggested that excreted proteins require an unfolded (or incompletely folded) structure to cross the cell envelope.  相似文献   

19.
Cysteine proteinases play a major role in invasion and intracellular survival of a number of pathogenic parasites. We cloned a single copy gene, tgcp1, from Toxoplasma gondii and refolded recombinant enzyme to yield active proteinase. Substrate specificity of the enzyme and homology modeling identified the proteinase as a cathepsin B. Specific cysteine proteinase inhibitors interrupted invasion by tachyzoites. The T. gondii cathepsin B localized to rhoptries, secretory organelles required for parasite invasion into cells. Processing of the pro-rhoptry protein 2 to mature rhoptry proteins was delayed by incubation of extracellular parasites with a cathepsin B inhibitor prior to pulse-chase immunoprecipitation. Delivery of cathepsin B to mature rhoptries was impaired in organisms with disruptions in rhoptry formation by expression of a dominant negative micro1-adaptin. Similar disruption of rhoptry formation was observed when infected fibroblasts were treated with a specific inhibitor of cathepsin B, generating small and poorly developed rhoptries. This first evidence for localization of a cysteine proteinase to the unusual rhoptry secretory organelle of an apicomplexan parasite suggests that the rhoptries may be a prototype of a lysosome-related organelle and provides a critical link between cysteine proteinases and parasite invasion for this class of organism.  相似文献   

20.
1. The solubilization and partial purification of a proteinase from the intestinal smooth muscle of rats fed on protein-free diets are described. 2. It has a mol.wt. of about 33000 and it is stable over a narrow pH range. 3. From its susceptibility to known modifers of proteolytic enzymes, it appears to be a serine proteinase of a trypsin-like nature. Active-site titration with soya-bean trypsin inhibitor shows that the concentration of proteinase was about 3 microgram/g wet wt. of intestinal smooth muscle. However, the muscle proteinase demonstrates a marked ability for inactivating enzymes in their native conformation at neutral pH. It is about 100 times more efficient than pancreatic trypsin when the inactivating activities are compared on an approximately equimolar basis. 4. Inactivation of the substrate enzymes is accompanied by limited proteolysis, as demonstrated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 5. An endogenous inhibitor was separated from the proteinase by fractionation with (NH4)2SO4. 6. Contamination of the muscle tissue by lumen, mucosal or blood proteinases and inhibitors is shown to be unlikely. 7. A role for the neutral trypsin-like proteinase in initiating the degradation of intracellular enzymes is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号