首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel method is proposed for the study of the conformation in solution of small molecules bound to proteins. In transfer of saturation experiments, irradiation at the frequency of a proton in the bound ligand can result in an intensity change in the signal from a different proton in the free excess ligand via a nuclear Overhauser effect between the two protons in the bound ligand. Approximatel calculations show that the observation of such effects depends upon the close spatial proximity (within about 4.0 Å) of the two protons involved and thus gives useful conformational information. Two examples of this method are given, for the binding of trimethoprim and NADP+, respectively, to Lactobacillus casei dihydrofolate reductase.  相似文献   

2.
Lanthanide DOTA-tetraglycinate (LnDOTA-(gly)4 ) complexes contain four magnetically equivalent amide protons that exchange with protons of bulk water. The rate of this base catalyzed exchange process has been measured using chemical exchange saturation transfer (CEST) NMR techniques as a function of solution pH for various paramagnetic LnDOTA-(gly)4 complexes to evaluate the effects of lanthanide ion size on this process. Complexes with Tb(III), Dy(III), Tm(III) and Yb(III) were chosen because these ions induce large hyperfine shifts in all ligand protons, including the exchanging amide protons. The magnitude of the amide proton CEST exchange signal differed for the four paramagnetic complexes in order, Yb>Tm>Tb>Dy. Although the Dy(III) complex showed the largest hyperfine shift as expected, the combination of favorable chemical shift and amide proton CEST linewidth in the Tm(III) complex was deemed most favorable for future in vivo applications where tissue magnetization effects can interfere. TmDOTA-(gly)4 at various concentrations was encapsulated in the core interior of liposomes to yield lipoCEST particles for molecular imaging. The resulting nanoparticles showed less than 1% leakage of the agent from the interior over a range of temperatures and pH. The pH versus amide proton CEST curves differed for the free versus encapsulated agents over the acidic pH regions, consistent with a lower proton permeability across the liposomal bilayer for the encapsulated agent. Nevertheless, the resulting lipoCEST nanoparticles amplify the CEST sensitivity by a factor of ∼104 compared to the free, un-encapsulated agent. Such pH sensitive nano-probes could prove useful for pH mapping of liposomes targeted to tumors.  相似文献   

3.
Sakano K 《Plant physiology》1990,93(2):479-483
Upon absorption of phosphate, cultured cells of Catharanthus roseus (L.) G. Don caused a rapid alkalinization of the medium in which they were suspended. The alkalinization continued until the added phosphate was completely exhausted from the medium, at which time the pH of the medium started to drop sharply toward the original pH value. Phosphate exposure caused the pH of the medium to increase from pH 3.5 to values as high as 5.8, while the rate of phosphate uptake was constant throughout (10-17 micromoles per hour per gram fresh weight). This indicates that no apparent pH optimum exists for the phosphate uptake by the cultured cells. The amount of protons cotransported with phosphate was calculated from the observed pH change up to the maximum alkalinization and the titration curve of the cell suspension. Proton/phosphate transport stoichiometry ranged from less than unity to 4 according to the amount of phosphate applied. At low phosphate doses, the stoichiometries were close to 4, while at high phosphate doses, smaller stoichiometries were observed. This suggests that, at high phosphate doses, activation of the proton pump is induced by the longer lasting proton influx acidifying the cytoplasm. The increased H+ efflux due to the proton pump could partially compensate protons taken up via the proton-phosphate cotransport system. Thus, the H+/H2PO4 stoichiometry of the cotransport is most likely to be 4.  相似文献   

4.
The reduced forms of cytochrome P-450cam and chloroperoxidase were examined by proton NMR spectroscopy. The pH and temperature dependences of the proton NMR spectra of both ferrous enzymes are reported. A series of alkyl mercaptide complexes of both synthetic and natural-derivative iron(II) porphyrins was also examined. The proton NMR spectra of these complexes facilitated the assignment of resonances due to the axial ligand in the model compounds on the basis of their isotropic shifts and multiplicities. Comparison of model compound data with that for the reduced enzymes supports assignment of the methylene protons for the axial cysteinate of ferrous cytochrome P-450cam and ferrous chloroperoxidase to proton NMR resonances at 279 and 200 ppm (pH 7.0, 298K), respectively. Differences in the active site structure of the two enzymes are further demonstrated by 15N-NMR spectroscopy of the cyanide complexes of the ferric forms.  相似文献   

5.
Models with three, four and eight salt-bridges have been used to study the mechanism of action of haemoglobin. Both side chains forming a salt-bridge, i.e. the proton acceptor and the proton donor, are postulated to change pK on ligation of oxygen. The eight salt-bridge model is able to predict, as a unified theory, both the degree of oxygenation and the Bohr effect at any PH and pO2 value; this has not been done by any other published model. The predicted pK values for the Borh groups corresponde well with those measured experiemntally. This model predicts the pK values of those side chains responsible for the acid Bohr effect, suggesting that these correspond to the proton acceptors of the salt-bridges. The model also fulfils the condition of linearity between the fractional degree of oxygenation and fractional number of protons released. It is postulated that there is a gradual change in structure on going from deoxy to oxyhaemoglobin, due to the rupture of salt-bridges. The path folowed during this process will be both pH and pO2 dependent. A formula describing the number of intact or broken salt-bridges as a function of pH and pO2 was developed. This formula shows that the fractional number of broken salt-bridges reaches a minimum value of 0.2 at around pH 6.3 in the absence of oxygen. However, if oxygen is added, this fractional number approaches 1.0 soon after the partial pressure of oxygen goes above 40 mm Hg.  相似文献   

6.
The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H+ + 2e → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.  相似文献   

7.
The product of pxcA (formerly known as cotA) is involved in light-induced Na+-dependent proton extrusion. In the presence of 2,5-dimethyl-p-benzoquinone, net proton extrusion by Synechocystis sp. strain PCC6803 ceased after 1 min of illumination and a postillumination influx of protons was observed, suggesting that the PxcA-dependent, light-dependent proton extrusion equilibrates with a light-independent influx of protons. A photosystem I (PS I) deletion mutant extruded a large number of protons in the light. Thus, PS II-dependent electron transfer and proton translocation are major factors in light-driven proton extrusion, presumably mediated by ATP synthesis. Inhibition of CO2 fixation by glyceraldehyde in a cytochrome c oxidase (COX) deletion mutant strongly inhibited the proton extrusion. Leakage of PS II-generated electrons to oxygen via COX appears to be required for proton extrusion when CO2 fixation is inhibited. At pH 8.0, NO3 uptake activity was very low in the pxcA mutant at low [Na+] (~100 μM). At pH 6.5, the pxcA strain did not take up CO2 or NO3 at low [Na+] and showed very low CO2 uptake activity even at 15 mM Na+. A possible role of PxcA-dependent proton exchange in charge and pH homeostasis during uptake of CO2, HCO3, and NO3 is discussed.  相似文献   

8.
High resolution proton nuclear magnetic resonance has been used to observe protons at the active site of chymotrypsin Aδ and at the same region of chymotrypsinogen A. A single resonance with the intensity of one proton is located in the low field region of the nuclear magnetic resonance spectrum. This resonance is observed in H2O solutions but not in 2H2O. On going from low to high pH the resonance titrates upfield 3 parts per million in both proteins and has a pK of 7.5. The titration can be prevented by alkylating His57 with either of two active site directed chloromethyl ketones. Using these data the proton resonance has been assigned to a proton in a hydrogen bond between His57 and Asp102. Further confirmation of this assignment lies in the observation of a similar resonance in this same low field region of the nuclear magnetic resonance spectrum of trypsin, trypsinogen, subtilisin BPN′ and α-lytic protease all of which have the Asp-His-Ser triad at their active sites.This proton resonance in chymotrypsin Aδ was used as a probe to monitor the charge state of the active site upon formation of a stable acyl-enzyme analogue N2(N-acetylalanyl)-N1benzoylcarbazoyl-chymotrypsin Aδ. In this derivative the His-Asp proton resonance titrates from the same low pH end point as in the native enzyme, ?18 parts per million, to a new high pH end point of ?14.4 parts per million (versus ?15.0 parts per million in the native enzyme). The difference of 0.6 parts per million in the high pH end points between the native and acyl enzyme is interpreted as supporting the suggestion that a hydrogen bond exists between Ser195 and His57 in the native enzyme and zymogen.We conclude from these studies that the charge relay system from Asp102 across His57 to Ser195 is intact in chymotrypsin Aδ and chymotrypsinogen A, and that, in the native enzyme, it slightly polarizes Ser195.  相似文献   

9.
Péter Maróti 《BBA》2019,1860(4):317-324
In the native and most mutant reaction centers of bacterial photosynthesis, the electron transfer is coupled to proton transfer and is rate limiting for the second reduction of QB??→?QBH2. In the presence of divalent metal ions (e.g. Cd2+) or in some (“proton transfer”) mutants (L210DN/M17DN or L213DN), the proton delivery to QB? is made rate limiting and the properties of the proton pathway can be directly examined. We found that small weak acids and buffers in large concentrations (up to 1?M) were able to rescue the severely impaired proton transfer capability differently depending on the location of the defects: lesions at the protein surface (proton gate H126H/H128H?+?Cd2+), beneath the surface (M17DN?+?Cd2+, L210DN/M17DN) or deep inside the protein (L213DN) could be completely, partially or to very small extent recovered, respectively. Small zwitterionic acids (azide/hydrazoic acid) and buffers (tricine) proved to be highly effective rescuers consistent with their enhanced binding affinity and access to any of the proton acceptors (including QB? itself) in the pathway. As a consequence, back titration of the protons at L212Glu could be observed as a pH-dependence of the rate constant of the charge recombination in the presence of azide or formate. Model calculations support the collective influence of the acid cluster on the change of the protonation states upon extension of the cluster with the bound small acid. In proton transfer mutants, the rescuing agents decreased the free energy of activation together with their enthalpic and entropic components. This is in agreement with the hypothesis that they function as protein-penetrating protonophores delivering protons into the chain and select dominating paths out of many alternate routes. We estimate that the proton delivery will be accelerated in one pathway out of 100–200 alternate pathways. The implications for design of the chemical recovery of impaired intra-protein proton transfer pathways in proton transfer mutants are discussed.  相似文献   

10.
Several members of the CLC family are secondary active anion/proton exchangers, and not passive chloride channels. Among the exchangers, the endosomal ClC-5 protein that is mutated in Dent''s disease shows an extreme outward rectification that precludes a precise determination of its transport stoichiometry from measurements of the reversal potential. We developed a novel imaging method to determine the absolute proton flux in Xenopus oocytes from the extracellular proton gradient. We determined a transport stoichiometry of 2 Cl/1 H+. Nitrate uncoupled proton transport but mutating the highly conserved serine 168 to proline, as found in the plant NO3/H+ antiporter atClCa, led to coupled NO3/H+ exchange. Among several amino acids tested at position 168, S168P was unique in mediating highly coupled NO3/H+ exchange. We further found that ClC-5 is strongly stimulated by intracellular protons in an allosteric manner with an apparent pK of ∼7.2. A 2:1 stoichiometry appears to be a general property of CLC anion/proton exchangers. Serine 168 has an important function in determining anionic specificity of the exchange mechanism.  相似文献   

11.
The binding of dUMP, dTMP, UMP, and 5-fluoro-2′-deoxyuridylate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) was examined by direct thermal titration. The binding of each ligand was examined in two different buffers, so that proton interactions could be observed. In agreement with an earlier study (N. V. Beaudette, N. Langerman, R. L. Kisliuk, and Y. Gaumont, 1977, Arch. Biochem. Biophys.179, 272–278), dUMP binding is driven predominantly by enthalpy changes at pH 7.4, with 0.77 ± 0.07 mol of protons binding along with the substrate. When the pH is decreased to 5.8, binding affinity increases, and a substantial increase in the entropic contribution to the binding is observed. In contrast to the binding of protons with substrate at pH 7.4, protons are released at pH 5.8. The proton effects suggest a model in which binding occurs through an electrostatic interaction between dianionic nucleotide and protonated enzyme residues. Binding of FdUMP at pH 7.4 involves the uptake of protons, and is also predominantly driven by changes in enthalpy. A good fit to the thermal data is obtained using the single-site binding constant, K = 9.5 × 104m?1. Our earlier interpretation (Arch. Biochem. Biophys., 1977, 179, 272–278) of the thermal data indicating two sites is in error. Preliminary date are presented which suggest that two-site binding of FdUMP occurs on prolonged incubation during equilibrium dialysis. Binding of the product dTMP shows different behavior. The reaction is entropically driven, suggesting that a significant hydrophobic interaction occurs between the protein and the 5-methyl group of the nucleotide. Only 0.48 ± 0.08 mol of protons are absorbed at pH 7.4. Binding of the nucleotide UMP could not be detected at pH 7.4.  相似文献   

12.
Summary The central problem for organisms which grow optimally, and in some cases obligately, at pH values of 10 to 11, is the maintenance of a relatively acidified cytoplasm. A key component of the pH homeostatic mechanism is an electrogenic Na+/H+ antiporter which—by virtue of kinetic properties and/or its concentration in the membrane—catalyzes net proton uptake while the organisms extrude protons during respiration. The antiporter is also capable of maintaining a constant pHin during profound elevations in pHout as long as Na+ entry is facilitated by the presence of solutes which are taken up with Na+. Secondary to the problem of acidifying the interior is the adverse effect of the large pH gradient, acid in, on the total pmf of alkalophile cells. For the purposes of solute uptake and motility, the organisms appear to largely bypass the problem of a low pmf by utilizing a sodium motive force for energization. However, ATP synthesis appears not to resolve the energetics problem by using Na+ or by incorporating the proton-translocating ATPase into intracellular organelles. The current data suggest that effective proton pumping carried out by the alkalophile respiratory chain at high pH may deliver at least some portion of the protons to the proton-utilizing catalysts, i. e., theF 1 F 0-ATPase and the Na+/H+ antiporter, by some localized pathway.  相似文献   

13.
The effects of external pH on the efflux of protons from illuminated spinach chloroplasts have been studied by monitoring the rates of proton-pumping electron transport under a variety of steady-state conditions. Phosphorylation-coupled proton efflux through the ATP synthase (CF0-CF1), determined from the rates of ATP formation and that portion of the total electron transport attributable to phosphorylation, is strongly dependent upon pH over the range 6–9, with little activity below pH 7 and half-maximal activity at pH ≈ 7.6. Noncoupled proton efflux through the ATP synthase, determined in the absence of ADP and phosphate, was also strongly pH sensitive, with little activity below pH 7.5 and half-maximal activity at pH ~- 7.9. When proton efflux via CF0 was prevented by triphenyltin, the rate of passive proton leakage across the membrane was very low and practically insensitive to external pH indicating that the major pH-sensitive pathway(s) for proton efflux in the light involves CF0 · CF1. Modification of CF1 sulfhydryls by Ag+ resulted in an apparent increase in proton efflux via the normally coupled CF0 · CF1 pathway (half-maximal activity = pH 7.6), whereas modification by Hg2+ resulted in an apparent increase in proton efflux via the noncoupled CF0 · CF1 pathway (half-maximal activity = pH 7.9).  相似文献   

14.
The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H+-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H+-ATPases. In the crystal structure of the plant plasma membrane H+-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.  相似文献   

15.
An investigation was made of the role of calcium ions in the reversible stage of fibrin polymerization, using a direct and relatively simple approach. Purified fibrin monomer in solution (7.5 mg/ml) in 1.0 m NaBr (pH 5.3) was polymerized by raising the pH to 5.7–7.7 by the addition of aliquots of standard NaOH solution and the rate and total extent of proton release during polymerization were measured potentiometrically. In the presence of added CaCl2 (10−5-10−2m) the rate of proton release was increased and the clotting time was decreased. The profile of equilibrium proton release vs pH of polymerization was also shifted, the maximum being increased and occurring at a lower pH. Sedimentation velocity studies in the intermediate pH range (5.7–6.0) showed that the altered profile of equilibrium proton release was due to a broadening of the pH range of polymerization, and that polymerization remained reversible in the presence of CaCl2. At pH 5.3, where fibrin is essentially monomeric, addition of CaCl2 resulted in the release of protons and small increases in sedimentation coefficient and reduced viscosity. Under the same conditions, a similar release of protons was observed from fibrinogen, but there was no effect on its sedimentation coefficient. It was concluded that the proton release at pH 5.3 was due mainly to binding of calcium ions to fibrinogen and fibrin monomer. The effect of CaCl2 on the sedimentation coefficient of fibrin at pH 5.3 was found to decrease with decreasing protein concentration, indicating that it was the result of a small extent of polymerization, rather than a conformational change. Added MgCl2 had no effect on fibrin monomer at pH 5.3 and no significant effect on the rate or extent of proton release during polymerization at higher pH, indicating that there are specific binding sites for calcium ions in fibrinogen and fibrin. The observed effects of bound calcium ions on reversible fibrin polymerization are explained most simply in electrostatic terms.  相似文献   

16.
Energy-converting hydrogenases (Ech) are ancient, membrane-bound enzymes that use reduced ferredoxin (Fd) as an electron donor to reduce protons to molecular H2. Experiments with whole cells, membranes and vesicle-fractions suggest that proton reduction is coupled to proton translocation across the cytoplasmatic membrane, but this has never been demonstrated with a purified enzyme. To this end, we produced a His-tagged Ech complex in the thermophilic and anaerobic bacterium Thermoanaerobacter kivui. The enzyme could be purified by affinity chromatography from solubilized membranes with full retention of its eight subunits, as well as full retention of physiological activities, i.e., H2-dependent Fd reduction and Fd2--dependent H2 production. We found the purified enzyme contained 34.2 ± 12.2 mol of iron/mol of protein, in accordance with seven predicted [4Fe-4S]-clusters and one [Ni-Fe]-center. The pH and temperature optima were at 7 to 8 and 66 °C, respectively. Notably, we found that the enzymatic activity was inhibited by N,N′-dicyclohexylcarbodiimide, an agent known to bind ion-translocating glutamates or aspartates buried in the cytoplasmic membrane and thereby inhibiting ion transport. To demonstrate the function of the Ech complex in ion transport, we further established a procedure to incorporate the enzyme complex into liposomes in an active state. We show the enzyme did not require Na+ for activity and did not translocate 22Na+ into the proteoliposomal lumen. In contrast, Ech activity led to the generation of a pH gradient and membrane potential across the proteoliposomal membrane, demonstrating that the Ech complex of T. kivui is a H+-translocating, H+-reducing enzyme.  相似文献   

17.
《Experimental mycology》1991,15(4):351-355
The enzyme isolated from protoplasts ofDendryphiella salina is vanadate sensitive and azide and nitrate insensitive. It has a pH optimum of 6.7 and is stimulated threefold by 25 mM KCl. Since the fungus is known from electrophysiological studies to extrude protons and possess a proton symport for glucose, it is argued that the enzyme could be a plasmamembrane H+-ATPase. Some differences from what is known of the enzyme inNeurospora crassa are discussed.  相似文献   

18.
Flash-driven ATP formation by spinach chloroplast thylakoids, using the luciferin luminescence assay to detect ATP formed in single turnover flashes, was studied under conditions where a membrane protein amine buffering pool was either protonated or deprotonated before the beginning of the flash trains. The flash number for the onset of ATP formation was delayed by about 10 flashes (from 15 to about 25) when the amine pool was deprotonated as compared to the protonated state. The delay was substantially reversed again by reprotonating the pool upon application of 20–30 single-turnover flashes and 8 min of dark before addition of ADP, Pi, and the luciferin system. In the case of deprotonation by desaspidin, the uncoupler was removed by binding to BSA before the reprotonating flashes were given. Reprotonation was carried out before addition of ADP and Pi, to avoid a possible interference by the ATP-ase, which can energize the system by pumping protons. The reprotonated state, as indicated by an onset lag of about 15 flashes rather than 25 for the deprotonated state, was stable in the dark over extended dark times. The number of protons released by 10 flashes is approximately 30 nmol H+ (mg chl)–1, an amount similar to the size of the reversibly protonated amine group buffering pool. The data are consistent with the hypothesis that the amine buffering groups must be in the protonated state before any protons proceed to the coupling complex and energize ATP formation. Other work has suggested that the amine buffering pool is sequestered within membrane proteins rather than being exposed directly to the inner aqueous bulk phase. Therefore, it is possible that the sequested amine group array may provide localized association-dissociation sites for proton movement to the coupling complex.  相似文献   

19.
A light-induced proton gradient (ΔpH) increase as exhibited by an increase of 9-aminoacridine fluorescence quenching is demonstrated between the external medium and the interior of the halophytic green alga Dunaliella salina. The formation and maintenance of the ΔpH is sensitive to electron transport inhibitors and to uncouplers. It is inhibited by p-chloromercuribenzenesulfonic acid (50% inhibition at 3 micromolar), which does not affect photosynthetic O2 evolution. It is concluded that the observed ΔpH is located across the plasmalemma or the chloroplast envelope. The formation and maintenance of the light-induced proton gradient requires the presence of Na+. Substitution of NaCl by KCl or glycerol results in inhibition of the ΔpH formation. The proton gradient is also sensitive to ATPase and energy transfer inhibitors. It is suggested that a Na+/H+ pump mechanism may be involved in the formation of the proton gradient in intact Dunaliella cells.  相似文献   

20.
Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H+-PPase consists of 14–16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H+-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H+-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H+-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H+-PPase upon substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号