首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In normal subjects beta-adrenergic responsiveness in the cardiovascular system has been shown to be impaired with increasing age. In order to correlate reduced hormonal responsiveness to an age-related defect at the receptor level, high affinity beta-adrenergic receptors in homogenates of human mononuclear leucocytes have been studied with a (?)-3H-dihydroalprenolol (3H-DHA) binding assay. The binding sites have been characterized by rapid kinetics, saturability, structural and sterospecificity. Binding equilibrium was obtained within 16 minutes at 37° and was reversed by 50% within 10.6 minutes. In 22 healthy subjects a binding capacity of 60 ± 8 fmol/mg protein and an equilibrium dissociation constant (KD) of 0.6 ± 0.05 nM was found. Beta-adrenergic agonists displaced 3H-DHA binding with a potency order of isoproterenol > adrenaline > noradrenaline. The (?) isomers of beta-adrenergic agonists and antagonists were one to two orders of magnitude more potent as inhibitors of 3H-DHA binding than their corresponding (+) isomers. The binding capacity and affinity of the beta-adrenergic receptors did not differ in old, as compared to young normal subjects. Leucocytes from 14 individuals 18–40 years old had an average density of 53 ± 4 fmol/mg protein, while the average density in leucocytes from 8 individuals aged 53–65 years was 67 ± 8 fmol/mg protein. The KD was 0.6 ± 0.05 nM in both groups. In conclusion, an age-related decrease of beta-adrenergic receptor-mediated cardiovascular functions does not seem to be reflected in the properties of beta-adrenergic receptors of mononuclear leucocytes.  相似文献   

2.
Receptors for luteinizing hormone/human chorionic gonadotropin (LH/hCG) have been identified in porcine, rabbit, rat, and human myometrium. To determine the estrous cycle and pregnancy related changes in the receptor capacity and affinity, radioreceptor assays were performed with membrane homogenates of porcine uterine tissues. Cycling gilts were divided into four experimental groups: I (n=6), day 1–2; II (n=5), day 6–7; III (n=5), day 11–12; and IV (n=6), day 18–20 of the estrous cycle. Pregnant pigs were divided into three experimental groups: I (n=5), day 35–40; II (n=5), day 65–70; and III (n=4), day 95–105 of pregnancy. The concentrations [femtomoles/mg protein (fmol/mg protein)] and affinities of unoccupied LH/hCG binding sites were characterized in all samples of myometrium. Receptor concentrations were highest (P<0.01) in groups II and III (19.3±2.5 and 35.8±2.1 fmol/mg protein, respectively), and was lowest in groups I and IV (5.3±1.4 and 7.5±0.7 fmol/mg protein, respectively). Receptor affinity constants (Ka) were consistent (P>0.05) throughout the estrous cycle [I, (5.1±1.5)×109; II, (3.0±0.8)×109; III, (3.2±0.9)×109; IV, 5.5±0.7×109 lm−1]. Plasma hormone concentrations of progesterone, estrogen and LH were typical of values noted at these times. During pregnancy, receptor concentrations were greatest (P<0.05) in group II (85.4±18.5 fmol/mg protein). In groups I and III receptor numbers were 10.8±2.3 and 26.7±6.6 fmol/mg protein, respectively. The Ka in group I was 10 times greater (P<0.05) than Ka in groups II and III, (I, 3.1±0.9×1010 lm−1; II, 3.4±0.3×109 lm−1; III, 3.3±1.1×109 lm−1). Plasma hormone concentrations typically found during pregnancy were noted. The function of these LH/hCG binding sites remains unknown; however, changes in receptor capacity during the estrous cycle and pregnancy support a role for modulation of the receptor by hormonal factors.  相似文献   

3.
The influence of β-adrenoceptor activation and inhibition by isoprenaline and propranolol on the specific binding of nonselective α1- and α2-adrenoceptor antagonists [3H]prazosin and [3H]RX821002 in rat cerebral cortex subcellular membrane fractions was studied. It was established that for the α1- and α2-adrenoceptors the ligand–receptor interaction corresponds to the model of one affinity pool of receptors and binding of two ligand molecules by one dimer receptor. The parameters of [3H]prazosin binding to α1-adrenoceptors were: K d = 1.85 ± 0.16 nM, B max = 31.14 ± 0.35 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.57 ± 0.27 nM, B max = 7.2 ± 1.6 fmol/mg protein, n = 2. When β-adrenoceptors were activated by isoprenaline, the binding of radiolabelled ligands with α1- and α2-adrenoceptors occurred according to the same model. The affinity to [3H]prazosin and the concentration of active α1-adrenoceptors increased by 27% (K d = 1.36 ± 0.03 nM) and 84% (B max = 57.37 ± 0.28 fmol/mg protein), respectively. The affinity of α2-adrenoceptors to [3H]RX821002 decreased by 56% (K d = 3.55 ± 0.02 nM), and the concentration of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg protein). Propranolol alters the binding character of both ligands. For [3H]prazosin and [3H]RX821002, two pools of receptors were detected with the following parameters: K d1 = 1.13 ± 0.09, K d2 = 6.07 ± 1.06 nM, B m1 = 11.36 ± 1.77, Bm2 = 51.09 ± 0.41 fmol/mg protein, n = 2 and K d1 = 0.61 ± 0.02, K d2 = 3.41 ± 0.13 nM, B m1 = 1.88 ± 0.028, B m2 = 9.27 ± 0.08 fmol/mg protein, n = 2, respectively. The concentration of active receptors (B max) increased twofold for both ligands. It was suggested that α1- and α2-adrenoceptors in rat cerebral cortex subcellular membrane fractions exist as dimers. A modulating influence of isoprenaline and propranolol on the specific binding of the antagonists to α1- and α2- adrenoceptors was revealed, which was manifested in the activating effect on the [3H]prazosin binding parameters, in the inhibitory effect on the [3H]RX821002 binding parameters, and in a change of the general character of binding for both ligands.  相似文献   

4.
Abstract: Neuroleptics, which are potent dopamine receptor antagonists, are used to treat psychosis. In the striatum, dopamine subtype-2 (D2) receptors interact with high-affinity adenosine subtype-2 (A2a) receptors. To examine the effect of various neuroleptics on the major subtypes of striatal dopamine and adenosine receptors, rats received 28 daily intraperitoneal injections of these drugs. Haloperidol (1.5 mg/kg/day) increased the density of striatal D2 receptors by 24% without changing their affinity for [3H]sulpiride. Haloperidol increased the density of striatal A2a receptors by 33% (control, 522.4 ± 20.7 fmol/mg of protein; haloperidol, 694.6 ± 23.6 fmol/mg of protein; p < 0.001) without changing their affinity for [3H]CGS-21680 (control, 19.2 ± 2.2 nM; haloperidol, 21.4 ± 2.3 nM). In contrast, haloperidol had no such effect on striatal dopamine subtype-1 (D1) and adenosine subtype-1 (A1) receptors. Binding characteristics and the pharmacological displacement profile of the increased [3H]CGS-21680 binding sites confirmed them as A2a receptors. Comparing different classes of neuroleptics showed that the typical neuroleptics haloperidol and fluphenazine (1.5 mg/kg/day) increased D2 receptor densities, whereas the atypical neuroleptics sulpiride (100 mg/kg/day) and clozapine (20 mg/kg/day) did not (control, 290.3 ± 8.7 fmol/mg of protein; haloperidol, 358.1 ± 6.9 fmol/mg of protein; fluphenazine, 381.3 ± 13.6 fmol/mg of protein; sulpiride, 319.8 ± 18.9 fmol/mg of protein; clozapine, 309.2 ± 13.7 fmol/mg of protein). Similarly, the typical neuroleptics increased A2a receptor densities, whereas the atypical neuroleptics did not (control, 536.9 ± 8.7 fmol/mg of protein; haloperidol, 687.9 ± 28.0 fmol/mg of protein; fluphenazine, 701.1 ± 31.6 fmol/mg of protein; sulpiride, 563.3 ± 27.2 fmol/mg of protein; clozapine, 550.9 ± 40.9 fmol/mg of protein). There were no differences in affinities for [3H]CGS-21680 or [3H]sulpiride among the various treatment groups. This study demonstrates that typical neuroleptics induce comparable up-regulation in both striatal D2 and A2a receptors. Thus, A2a receptors might be a pharmacologic target for the development of novel therapeutic strategies to minimize the adverse effects of antipsychotic treatment.  相似文献   

5.
The effects of activation and inhibition of serotonin receptors by serotonin (5-HT) and mianserin on the specific nonselective α1-antagonist [3H]prazosine binding in rat cerebral cortex membranes was studied. It was shown that the ligand-receptor interaction of α1-adrenoceptors corresponded to the model suggesting the presence of one pool of receptors and the binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were as follows: K d =1.85 ± 0.16 nM, B max = 31.1 ± 0.3 fmol/mg protein, n = 2. In case of activation of 5HT-receptors by serotonin, the character of ligand binding was different: two pools of receptors were detected with the parameters K d1 = 0.61 ± 0.04, K d2 = 3.82 ± 0.15 nM, B m1 = 6.6 ± 0.7, B m2 = 25.6 ± 0.4 fmol/mg protein, n = 2. The sensitivity of the high-affinity pool increased threefold and the sensitivity of the low-affinity pool decreased twofold as compared to the control. The value of maximal reaction (B max) did not change. In the case of inhibition of 5HT-receptors by mianserin, radioactive ligand is bound to α1-adrenoceptors according to the same model as in the control conditions. The affinity of α1-adrenoceptors to [3H]prazosine decreases twofold and the concentration increases (K d = 3.97 ± 0.12 nM, B max = 40.0 ± 0.5 fmol/mg protein). The data suggest that α1-adrenoceptors in rat cerebral cortex exist as a dimer. The modulatory effects of serotonin and mianserin on the specific binding of [3H]prazosine to α1-adrenoceptors was detected, manifesting itself as changes in the binding parameters and in the general character of ligand-receptor interactions.  相似文献   

6.
The binding of specific nonselective α1- and α2-adrenoceptor antagonists [3H]prazosine and [3H]RX821002 has been studied on rat cerebral cortex synaptosomal membranes. It is shown that for α1-adrenoceptors the ligand-receptor interaction corresponds to the model assuming the presence of one pool of receptors and binding of two ligand molecules to the receptor. The parameters of [3H]prazosine binding to α1-adrenoceptors were: K d= 1.56 ± 0.17 nM, B max = 30.25 ± 1.78 fmol/mg protein, n = 2. The parameters of [3H]RX821002 binding to α2-adrenoceptors were: K d = 1.94 ± 0.08 nM, B max = 12.77 ± 3.17 fmol/mg protein, n = 2. For α2 -adrenoceptors the ligand-receptor interaction corresponded to the same model. For α1 - and α2-adrenoceptor antagonists the dissociation constants (K d) are approximately equal (1.56 ± 0.17 and 1.94 ± 0.08 nM, respectively), but the concentration of α2-adrenoceptors is two times lower than that of α1-adrenoceptors ( 12.77 ± 3.17 and 30.25 ± 1.78 fmol/mg protein, respectively). The efficiency (E = B max/2K d) of the ligand binding to α1-adrenoceptors is 2.3 times higher than that to α2-adrenoceptors (7.46 ± 1.32 and 3.29 ± 0.68 fmol/mg protein/nM, respectively. The data suggest that α1- and α2 -adrenoceptors in rat cerebral cortex exist as dimers.  相似文献   

7.
The binding of nonselective α1- and β-adrenoreceptor antagonists [3H]prazosin and [3H]dihydroalprenolol ([3H]DHA) to rat cerebral cortex synaptosomal membranes has been studied. It is found that ligand-receptor interactions of α1-adrenoreceptors fit into a single receptor pool model, which assumes the binding of two ligand molecules to one receptor molecule. The parameters of [3H]prazosin binding to α1-adrenoreceptors are as follows: K d = 2.58 ± 0.20 nM; B m = 2.95 ± 1.12 fmol/mg protein; Hill coefficient, n = 2. For β-adrenoreceptors, ligand-receptor interactions fit into a model assuming the presence of two receptor pools in the same effector system and binding of two ligand molecules to one receptor molecule. The corresponding parameters of the [3H]DHA binding to β-adrenoreceptors are as follows: K d1 = 0.74 ± 0.09 nM; K d2 = 7.63 ± 0.70 nM; B m1 = 25 ± 2 fmol/mg, B m2 = 48 ± 2 fmol/mg, n 1 = 2; n 2 = 2. We suggest that in rat cerebral cortex membranes α-and β-adrenoreceptors exist as dimers.  相似文献   

8.
Specific β1-adrenoreceptors antagonist [3H]CGP 26505 binding was characterized in rat cerebral cortex and heart sinus atrial node. In both tissues [3H]CGP 26505 binding was maximal at 25°C, it was specific, saturable and protein concentration dependent. Scatchard analysis of saturation isotherms of specific [3H]CGP 26505 binding in cerebral cortex showed that [3H]CGP 26505 binds a single class of high affinity sites with a dissociation constant (KD) of 1±0.3 nM and a maximal number of binding sites (Bmax) of 40±2 fmol/mg of protein. In sinus atrial node, [3H]-CGP 26505 binds a single class of high affinity sites (KD=1.9±0.4 nM, Bmax=28±2 fmol/mg of protein).  相似文献   

9.
Activation and inhibition of muscarinic cholinoceptors by atropine and carbachol are shown to exert allosteric effects on the binding of specific nonselective α2-adrenoceptor antagonist [3H]RX821002 in rat brain cortex membranes. The ligand-receptor interaction for α2-adrenoceptors corresponded to the model suggesting the presence of one homogeneous pool of receptors with two specific binding sites. The parameters of the [3H]RX821002 binding were as follows: [3H]RX821002 -K d = 1.94 ± 0.08 nM, B max = 13.4 ± 1.8 fmol/mg protein, n = 2. The inhibition of muscarinic cholinoceptors by atropine induced an increase of affinity (K d = 1.36 ± 0.12 nM) and a decrease of the α2-adrenoceptor density (B max = 10.18 ± 0.48 fmol/mg protein). The muscarinic cholinoceptor agonist carbachol induced an increase of the affinity (K d = 1.56 ± 0.05 nM) and quantity of binding sites (B max = 16.61 ± 0.29 fmol/mg protein). As a result, under the influence of atropine and carbachol, the efficiency of binding (E = B max/2K d) increased from 3.50 ± 0.40 to 5.60 ± 0.79 and 6.86 ± 0.20 fmol/mg protein/nM, respectively. The data suggest that α2-adrenoceptors exist in rat brain cortex as homodimers.  相似文献   

10.
Cytosol from the adrenal gland of male and female rats contains a specific binding protein for oestradiol-17β. This protein has all the characteristics of a cytoplasmic oestrogen receptor. It is excluded by Sephadex G-200 gel filtration, has a sedimentation coefficient of 8–9 S by sucrose density gradient centrifugation in low salt and dissociates into a 4 S form by centrifugation in high salt (0.5 M KCl). The binding protein is heat sensitive and oestradiol-17β binding is eliminated by protease and by sulphydryl blocking reagents (2mM p-chloromercuriphenylsulphonate). The bound oestradiol dissociates very slowly at 0°C. The adrenal oestrogen receptors have a very high affinity for oestradiol-17β, but lower affinity for oestradiol-17α and do not bind testosterone, androstene-3,17-dione or corticosterone. Scatchard analysis of the saturation data for oestradiol revealed one class of high affinity binding sites with an apparent equilibrium constant of dissociation KD at 0°C of 5.8 × 10−10M. The number of binding sites was calculated to be 70 fmol/mg cytosol protein. Cytosol fractions from androgen insensitive (tfm) male rats contain oestrogen receptors in amounts very similar to that of the normal littermates.  相似文献   

11.
Quantitative analyses of LH-RH-like membrane receptors were performed in five tumors from the transplantable Dunning R3372H rat prostatic adenocarcinoma. The binding of D-Trp6-LH-RH, an agonist of LH-RH, was observed in all 5 tumors. The antagonist [Ac-Dp-Cl-Phe1,2,D-Trp3,D-Lys6,D-Ala10]-LH-RH was bound to 4 tumors. The apparent equilibrium dissociation constant (Kd) for D-Trp6-LH-RH receptor was from 2.6–3.9 × 10?10 M. The apparent equilibrium Bmax values (maximum number of binding sites) were from 17.2–86.0 fmol/mg membrane protein for D-Trp6-LH-RH receptor. The Kd for the antagonist was from 2.4–2.7 × 10?10 M and the Bmax values were from 35.5–66.0 fmol/mg membrane protein. Similar binding studies performed in 6 normal rat prostates showed no binding capacities.  相似文献   

12.
The influence of activation and inhibition of serotonin receptors by serotonin (5HT) and miancerin on binding of specific nonselective α2-antagonist [3H]RX821002 in rat cerebral cortex membranes was studied. It was shown that the ligand-receptor interaction for α2-adrenoceptors corresponded to the model suggesting the presence of one pool of receptors and binding of two ligand molecules to the receptor. The parameters of the [3H]RX821002 binding to α2-adrenoceptors were as follows: K d = 1.57 ± 0.276 nM, B max = 7.24 ± 1.63 fmol/mg protein, n = 2. In the case of activation of 5HT-receptors by serotonin, the character of ligand binding was different: two pools of receptors were detected with the parameters K d1 = 0.82 ± 0.06; K d2 = 2.65 ± 0.22 nM; B m1 = 1.65 ± 0.23; B m2 = 4.20 ± 0.11 fmol/mg protein; n = 2. The affinity of high-affinity receptors increased twofold and the affininty of low-affinity receptors decreased by 69% as compared to control values. The concentration of high-affinity receptors decreased 4.4-fold, and of low-affinity, 1.7-fold. The value of maximal reaction (B max) decreased by 20%. In the case of miancerin-induced inhibition of 5HT-receptors the character of ligand binding also changed; two pools of receptors were detected with the following parameters: K d1 = 0.48 ± 0.09; K d2 = 3.79 ± 0.71 nM; B 1 = 0.63 ± 0.17; B 2 = 4.75 ± 0.21 fmol/mg protein; n = 2. The affinity of high-affinity receptors pool increased by 70% and that of low-affinity receptors decreased by 76% as compared to control values. The concentration of active high-affinity and low-affinity α2-adrenoceptors decreased by 70% and 141%, respectively. The total amount of the receptors (B max) decreased by 26%. The data suggest that α2-adrenoceptors in rat cerebral cortex exist as dimers. Modulatory effects of serotonin and miancerin on specific antagonist binding to α2-adrenoceptors may be accomplished by altering the character and binding parameters of the nonselective α2-antagonist [3H]RX821002.  相似文献   

13.
At different stages of the annual reproductive cycle ofCatla catla, a major Indian carp, specific binding of gonadotropic hormone to the plasma membrane receptors was demonstrated. Maximum specific binding of [125I]Catla gonadotropic hormone was obtained at 30‡C and pH 7.5 during 2 h of incubation.Catla gonadotropic hormone binding was saturable with high affinity. Competitive inhibition experiment showed that binding site was specifically occupied by piscine gonadotropic hormone,Catla gonadotropic hormone and murrel gonadotropic hormone, human chorionic gonadotropin was a weak competitor while bovine thyroid stimulating hormone, bovine prolactin and ovine follicle stimulating hormone had no effect. Scatchard analysis ofCatla gonadotropic hormone binding to the plasma membrane preparation from the carp oocytes of different reproductive stages showed that the range of dissociation constant(K d ) varied from 0.78 to 0.97 x 10-10 M. However, maximum binding capacity (B-max) varied remarkably between the different stages of reproductive cycle, it was 6.11 ± 0.36 fmol/mg protein in the preparatory stage which increased to about three-fold in prespawning stage of reproductive cycle (17.0 ± 0.29 fmol/mg protein) and spawning (18.7 ± 0.17 fmol/mg protein) and lowest in postspawning stage of reproductive cycle (5.28 ± 0.28 fmol/mg protein). Fluctuation in the number of gonadotropic hormone binding site at different stages of annual reproductive cycle was found to be coincided well with the pattern of ovarian steroidogenesis in response toCatla gonadotropic hormone as determined by the formation of progesterone from pregnenolone.  相似文献   

14.
The influence of isoprenaline- and propranolole-induced activation and inhibition of β-adrenoreceptors on the specific nonselective α2-antagonist [3H]RX821002 binding was studied on rat cerebral cortex subcellular membrane fractions. It was shown that the ligand-receptor interaction for α2-adrenoreceptors corresponded to the model that assumed the presence of one receptor pool and binding of two ligand molecules to a receptor dimer. The following parameters were determined for [3H]RX821002 binding to α2-adrenoreceptors: K d1 = 1.57 ± 0.27 nM, B max = 7.24 ± 1.63 fmol/mg of protein, n = 2. In the case of isoprenaline-induced activation of β-adrenoreceptors the binding of radiolabeled ligand to α2-adrenoreceptors was described by the same model. The affinity of α2-adrenoreceptors for [3H]RX821002 decreased more than twofold (K d = 3.55 ± 0.02 nM) and the quantity of active receptors increased by 69% (B max = 12.24 ± 0.06 fmol/mg of protein). Propranolole changed the model of ligand binding, and two pools of receptors were detected with the following parameters: K d1 = 0.61 ± 0.02 nM, K d2 = 3.41 ± 0.13 nM, B ml = 1.88 ± 0.028 fmol/mg of protein, B m2 = 9.27 ± 0.08 fmol/mg of protein, n = 2. The data suggest that α2-adrenoreceptors in subcellular membrane fractions from rat cerebral cortex exist in dimeric form. Isoprenaline and propranolole exhibit modulating effect on the specific antagonist binding to α2-adrenoreceptors, which results in the inhibition and alteration of [3H]RX821002 binding parameters.  相似文献   

15.
Subhash  M. N.  Jagadeesh  S. 《Neurochemical research》1997,22(9):1095-1099
The effect of chronic administration of Imipramine on [3H]Spiperone binding to 5-HT2 sites and inositoltrisphosphate (IP3) levels in rat cerebral cortex was studied. Our data shows that treatment with imipramine (5 mg/kg body weight, intraperitoneally) for 30 days significantly down regulates 5-HT2 receptors sites (262 ± 29 fmol/mg protein) in cerebral cortex (38%), compared to control rats (425 ± 60 fmol/mg protein., P < 0.001). However there was no significant change in the affinity of [3H]-Spiperone binding (kd) to 5-HT2 sites in cerebral cortex after exposure to imipramine (Kd = 0.84 ± 0.11 nM). It is also observed that imipramine treatment significantly reduces 5-HT stimulated [3H]IP3 formation in cerebral cortex (6,411 ± 708 dpm/mg protein), compared to the saline treated rats (12,238 ± 1,544 dpm/mg protein; P < 0.001), with concomitant decrease in Pdtlns-4–5-P2. This study suggests that the therapeutic action of imipramine in brain might be by reducing hypersensitivity of 5-HT2 receptors by down regulation, which leads to reduced levels of inositolphospholipids. This inturn reduces the levels of IP3. In conclusion, imipramine acts at presynaptic site by blocking the reuptake of serotonin and at post synaptic site it downregulates 5-HT2 sites with decreased IP3 levels after chronic exposure.  相似文献   

16.
An endogenous inhibitor of γ-aminobutyric acid (GABA) receptors was partially purified from bovine brain striatum. It was obtained as a low molecular weight fraction by gel filtration on Biogel P-2 and was adsorbed to Dowex AG 50W-X8, but not to Dowex AG 1-X8. It was ninhydrin-negative, basic, heat-stable substance. It caused dose-dependent inhibition of Na+-independent [3H]GABA bindings. Scatchard plot analysis of the [3H]GABA binding to GABA “B” receptor recognition site showed this inhibitor increased the Kd value (24.1 nM to 3.6 nM) without changing the Bmax. On the other hand, Scatchard plot analysis of the [3H]GABA binding to GABA “A” receptor recognition site showed that the inhibitor decreased number of binding sites (706 fmol/mg protein to 494 fmol/mg protein) without affecting the Kd value. These results suggest that the endogenous inhibitor functions as a modulator for GABAB and GABAA receptors.  相似文献   

17.
The radioiodinated pindolol analogs 125I-labeled cyanopindolol ([125I]CYP) and 125I-labeled hydroxybenzylpindolol ([125I]HBP) have been used to study binding to human platelet β-adrenergic receptors. [125I]CYP binds to a saturable class of binding sites on platelet membranes with a dissociation constant (Kd) of 14±3 pM and maximal binding capacity (Bmax) of 18±4 fmol/mg protein. Binding of [125I]CYP is reversible and is characterized by forward and reverse rate constants of 1.8·107 s?1·M?1 and 3.8·10?4 s?1, respectively. [125I]HBP binds to a saturable class of platelet membrane sites with a Kd of 50±10 pM and Bmax of 32±6 fmol/mg protein. [125I]HBP also binds to a saturable class of sites on intact platelets with a Kd of 58±14 pM and Bmax of 24±4 molecules per platelet. Binding of [125I]CYP and [125I]HBP is stereospecifically inhibited by propranolol and epinephrine; the (?) stereoisomers are at least 50-times more potent than the (+) stereoisomers. Binding of both radioligands is inhibited by adrenergic ligands with a potency order of propranolol ? isoproterenol > epinephrine > practolol > norepinephrine > phenylephrine. These observations indicate that [125I]CYP and [125I]HBP bind to platelet sites which have the pharmacological characteristics of β-adrenergic receptors but which are not typical of either the β1 or β2 sub-type.  相似文献   

18.
G. Falkay  L. Kovacs 《Life sciences》1983,32(14):1583-1590
The binding characteristics of beta-adrenergic ligand [3H]-dihydroalprenolol (DHA) were determined in particulate membranes of early human placenta (8 – 12 weeks of gestation). [3H]-DHA binding to crude membrane fractions was rapid, reversible, saturable and linearly correlated with the membrane protein concentration. Scatchard analysis of saturation experiments showed a KD of 2.80 ± 0.9 nM and a density of binding sites of 330.30 ± 93.5 fmol/mg protein. Agonist potency isoproterenol epinephrine norepinephrine indicated that early human placenta contains an adrenergic receptor of beta-2 subtype.  相似文献   

19.
The intent of the present study was to investigate adenosine receptor sites in brain membranes of the saltwater teleost fish, Mullus surmuletus, using the A1 receptor selective agonist, [3H]CHA, and A2a receptor selective agonist [3H]CGS 21680. The A1 selective agonist, [3H]CHA, bound saturably, reversibly and with high affinity to a single-class of binding sites (Kd 1.47 nM; Bmax 100–190 fmol/mg protein, dependent on fish length). The A2a selective agonist, [3H]CGS 21680, also bound saturably, reversibly and with relative high affinity to a single-class of binding sites (Kd 44.2 nM; Bmax 150–300 fmol/mg protein dependent on fish length). In equilibrium competition experiments, adenosine analogous, NECA, CGS 21680, CHA, CPA, S-PIA, R-PIA, CPCA, DPMA, and xanthine antagonists, DPCPX, XAC, and THEO all displaced [3H]CHA and [3H]CGS 21680 specifically bound to brain membranes from Mullus surmuletus. Specific binding of both [3H]CHA and [3H]CGS 21680 was inhibited by GDPβS. For [3H]CHA the IC50 value was 2.5 ± 0.1 μM, while for [3H]CGS 21680 the IC50 value was 7.7 ± 0.3 μM. Our results indicate that the high affinity binding sites for [3H]CHA have some pharmacological characteristics of mammalian A1 adenosine receptors, while the binding sites for [3H]CGS 21680 appear to be virtually identical to the binding sites for [3H]CHA.  相似文献   

20.
Abstract: High-affinity μ-opioid receptors have been solubilized from rat brain membranes. In most experiments, rats were treated for 14 days with naltrexone to increase the density of opioid receptors in brain membranes. Occupancy of the membrane-associated receptors with morphine during solubilization in the detergent 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate appeared to stabilize the μ-opioid receptor. After removal of free morphine by Sephadex G50 chromatography and adjustment of the 3-[(3-cholamidopropyl)dimethyl]-1-propane sulfonate concentration to 3 mM, the solubilized opioid receptor bound [3H][d -Ala2,N-Me-Phe4,Gly-ol5]-enkephalin ([3H]DAMGO), a μ-selective opioid agonist, with high affinity (KD = 1.90 ± 0.93 nM; Bmax = 629 ± 162 fmol/mg of protein). Of the membrane-associated [3H]-DAMGO binding sites, 29 ± 7% were recovered in the solubilized fraction. Specific [3H]DAMGO binding was completely abolished in the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate). The solubilized receptor also bound [3H]diprenorphine, a nonselective opioid antagonist, with high affinity (KD = 1.4 ± 0.39 nM, Bmax = 920 ± 154 fmol/mg of protein). Guanosine 5′-O-(3-thiotriphosphate) did not diminish [3H]diprenorphine binding. DAMGO at concentrations between 1 nM and 1 µM competed with [3H]diprenorphine for the solubilized binding sites; in contrast, [d -Pen2,d -Pen5]-enkephalin, a δ-selective opioid agonist, and U50488H, a κ-selective opioid agonist, failed to compete with [3H]diprenorphine for the solubilized binding sites at concentrations of <1 µM. In the absence of guanine nucleotides, the DAMGO displacement curve for [3H]diprenorphine binding sites better fit a two-site than a one-site model with KDhigh = 2.17 ± 1.5 nM, Bmax = 648 ± 110 fmol/mg of protein and KDlow = 468 ± 63 nM, Bmax = 253 ± 84 fmol/mg of protein. In the presence of 10 µM guanosine 5′-O-(3-thiotriphosphate), the DAMGO displacement curve better fit a one- than a two-site model with KD = 815 ± 33 nM, Bmax = 965 ± 124 fmol/mg of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号