首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystals of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli have been grown out of ammonium sulfate by the hanging drop method of vapor diffusion. The crystals belong to the hexagonal space group P6122 or P6522, with a = 124 A? and c = 381 A?, and diffract to 3.8 Å resolution.  相似文献   

2.
A glyphosate (N-[phosphonomethyl]glycine)-insensitive 5-enolpyruvylshikimic acid-3-phosphate (EPSP) synthase has been purified from a strain of Klebsiella pneumoniae which is resistant to this herbicide [(1984) Arch. Microbiol. 137, 121-123] and its properties compared with those of the glyphosate-sensitive EPSP synthase of the parent strain. The apparent Km values of the insensitive enzyme for phosphoenolpyruvate (PEP) and shikimate 3-phosphate (S-3-P) were increased 15.6- and 4.3-fold, respectively, as compared to those of the sensitive enzyme, and significant differences were found for the optimal pH and temperature, as well as the isoelectric points of the two enzymes. While PEP protected both enzymes against inactivation by N-ethylmaleimide, 3-bromopyruvate, and phenylglyoxal, glyphosate protected only the sensitive enzyme.  相似文献   

3.
4.
Abstract The potent inhibition of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase by the broad-spectrum herbicide glyphosate ( N -[phosphonomethyl]glycine) was confirmed for the enzymes extracted from various bacteria, a green alga and higher plants. However, 5 out of 6 species belonging to the genus Pseudomonas were found to have EPSP synthases with a 50- to 100-fold decreased sensitivity to the inhibitor. Correspondingly, growth of these 5 species was not inhibited by 5 mM glyphosate, and the organisms did not excrete shikimate-3-phosphate in the presence of the herbicide.  相似文献   

5.
The structure of amplified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) DNA of carrot suspension-cultured cell lines selected for glyphosate resistance was analyzed to determine the mechanism of gene amplification in this plant system. Southern hybridization of the amplified DNA digested with several restriction enzymes probed with a petunia EPSPS cDNA clone showed that there were differences in fragment sizes in the amplified DNA from one highly resistant cell line in comparison with the parental line. Cloning of the EPSPS gene and 5 flanking sequences was carried out and two different DNA structures were revealed. A 13 kb clone contained only one copy of the EPSPS gene while a 16 kb clone contained an inverted duplication of the gene. Southern blot analysis with a carrot DNA probe showed that only the uninverted repeated DNA structure was present in all of the cell lines during the selection process and the inverted repeat (IR) was present only in highly amplified DNA. The two structures were present in about equal amounts in the highly amplified line, TC 35G, where the EPSPS gene was amplified about 25-fold. The presence of the inverted repeat (IR) was further verified by resistance to S1 nuclease hydrolysis after denaturation and rapid renaturation, showing foldback DNA with the IR length being 9.5 kb. The junction was also sequenced. Mapping of the clones showed that the size of the amplified carrot EPSPS gene itself is about 3.5 kb. This is the first report of an IR in amplified DNA of a target enzyme gene in selected plant cells.  相似文献   

6.
Two distinct cDNAs for 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) were obtained from a glyphosate-tolerant tobacco cell line. The cDNAs were 89% identical and the predicted sequences of the mature proteins were greater than 83% identical with EPSPS proteins from other plants. Tobacco EPSPS proteins were more similar to those from tomato and petunia than Arabidopsis. One cDNA clone, EPSPS-1, represented a gene that was amplified in glyphosate-tolerant cells, while the gene for EPSPS-2 was unaltered in these cells. Consequently, EPSPS-1 mRNA was more abundant in tolerant than unselected cells, whereas EPSPS-2 mRNA was at relatively constant levels in these cell lines. Exposure of unselected cells and tobacco leaves to glyphosate produced a transient increase in EPSPS mRNA. However, glyphosate-tolerant cells containing amplified copies of EPSPS genes did not show a similar response following exposure to glyphosate. A significant proportion of the EPSPS gene amplification was maintained when tolerant cells were grown in the absence of glyphosate for eight months. Plants regenerated from these cells also contained amplified EPSPS genes.  相似文献   

7.
核盘菌5-烯醇丙酮酰莽草酸-3-磷酸合酶的酶学性质   总被引:1,自引:0,他引:1  
核盘菌5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSP合酶)是AROM多功能酶的活性之一.该酶催化莽草酸磷酸(S3P)和磷酸烯醇式丙酮酸(PEP)产生5-烯醇丙酮酰莽草酸-3-磷酸和无机磷酸的可逆反应,受除草剂草甘膦(N-(膦羧甲基)甘氨酸)抑制.纯化了核盘菌AROM蛋白并对EPSP合酶进行了酶学特征研究.结果显示,该酶反应的最适pH值为7.2,最适温度为30℃.热失活反应活化能是69.62 kJ/mol.底物S3P和PEP浓度分别高于1 mmol/L和2 mmol/L时,对EPSP合酶反应产生抑制作用.用双底物反应恒态动力学Dalziel方程求得的Km(PEP)为140.98 μmol/L,K m(S3P)为139.58 μmol/L.酶动力学模型遵循顺序反应机制.草甘膦是该酶反应底物PEP的竞争性抑制剂(Ki为0.32 μmol/L)和S3P的非竞争性抑制剂.正向反应受K+激活.当[K+]增加时,K m(PEP)随之降低,Km(S3P)不规律变化,而K i(PEP)随[K+]增加而提高.  相似文献   

8.
The shikimate pathway enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSPs) is the target of nonselective herbicide glyphosate. A partial rice epsps cDNA was generated by RT-PCR with primers designed according to EST sequence in GenBank and used as probe for rice genomic library screening. In a screen of approximately 8.0 ×104 clones from the rice genomic library, sixteen positive clones were obtained, which strongly hybridized to the probe. One clone, E11, was selected for further analysis and the full-length 3661 bp rice epsps genomic sequence was obtained. Sequence analysis and homologous comparison revealed that epsps gene is composed of 8 exons and 7 introns. Analysis by restriction fragment length polymorphism with the probe of rice epsps cDNA fragment confirmed that rice epsps is located on chromosome 6 with an indicajaponica (ZYQ8-JX17) double-haploid (DH) population. This is the first report on the EPSP synthase from monocotyledons.  相似文献   

9.
The Escherichia coli aroA gene which codes for the enzyme 5-enolpyruvylshikimate 3-phosphate synthase (EPSP synthase) has been cloned from the lambda-transducing bacteriophage lambda pserC. The gene has been located on a 4.7 kilobase pair PstI DNA fragment which has been inserted into the multiple copy plasmid pAT153. E. coli cells transformed with this recombinant plasmid overproduce EPSP synthase 100-fold. A simple method for the purification of homogeneous enzyme in milligram quantities has been devised. The resulting enzyme is indistinguishable from enzyme isolated from untransformed E. coli.  相似文献   

10.
11.
12.
The 46-kD enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the condensation of shikimate-3-phosphate (S3P) and phosphoenolpyruvate to form EPSP. The reaction is inhibited by N-(phosphonomethyl)-glycine (Glp), which, in the presence of S3P, binds to EPSP synthase to form a stable ternary complex. We have used solid-state NMR and molecular modeling to characterize the EPSP synthase-S3P-Glp ternary complex. Modeling began with the crystal coordinates of the unliganded protein, published distance restraints, and information from the chemical modification and mutagenesis literature on EPSP synthase. New inter-ligand and ligand-protein distances were obtained. These measurements utilized the native (31)P in S3P and Glp, biosynthetically (13)C-labeled S3P, specifically (13)C and (15)N labeled Glp, and a variety of protein-(15)N labels. Several models were investigated and tested for accuracy using the results of both new and previously published rotational-echo double resonance (REDOR) NMR experiments. The REDOR model is compared with the recently published X-ray crystal structure of the ternary complex, PDB code 1G6S. There is general agreement between the REDOR model and the crystal structure with respect to the global folding of the two domains of EPSP synthase and the relative positioning of S3P and Glp in the binding pocket. However, some of the REDOR data are in disagreement with predictions based on the coordinates of 1G6S, particularly those of the five arginines lining the binding site. We attribute these discrepancies to substantive differences in sample preparation for REDOR and X-ray crystallography. We applied the REDOR restraints to the 1G6S coordinates and created a REDOR-refined xray structure that agrees with the NMR results.  相似文献   

13.
Summary CAR and C1, two carrot (Daucus carota L.) suspension cultures of different genotypes, were subjected to stepwise selection for tolerance to the herbicide glyphosate [(N-phosphonomethyl)glycine]. The specific activity of the target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), as well as the mRNA level and copy number of the structural gene increased with each glyphosate selection step. Therefore, the tolerance to glyphosate is due to stepwise amplification of the EPSPS genes. During the amplification process, DNA rearrangement did not occur within the EPSPS gene of the CAR cell line but did occur during the selection step from 28 to 35 mM glyphosate for the C1 cell line, as determined by Southern hybridization of selected cell DNA following EcoRI restriction endonuclease digestion. Two cell lines derived from a previously selected glyphosate-tolerant cell line (PR), which also had undergone EPSPS gene amplification but have been maintained in glyphosate-free medium for 2 and 5 years, have lost 36 and 100% of the increased EPSPS activity, respectively. Southern blot analysis of these lines confirms that the amplified DNA is relatively stable in the absence of selection. These studies demonstrate that stepwise selection for glyphosate resistance reproducibly produces stepwise amplification of the EPSPS genes. The relative stability of this amplification indicates that the amplified genes are not extrachromosomal.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DTT dithiothreitol - EPSPS 5-enolpyruvylshikimate-3-phosphate synthase - I50 50% inhibitory concentration - Kb Kilobase (pairs) - PEP phosphoenolpyruvate - PMSF phenylmethylsulfonyl fluoride - PVPP polyvinylpolypyrrolidone - S-3-P shikimate-3-phosphate  相似文献   

14.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway, and is the target of the broad-spectrum herbicide glyphosate. Kinetic analysis of the cloned EPSPS from Staphylococcus aureus revealed that this enzyme exerts a high tolerance to glyphosate, while maintaining a high affinity for its substrate phosphoenolpyruvate. Enzymatic activity is markedly influenced by monovalent cations such as potassium or ammonium, which is due to an increase in catalytic turnover. However, insensitivity to glyphosate appears to be independent from the presence of cations. Therefore, we propose that the Staphylococcus aureus EPSPS should be classified as a class II EPSPS. This research illustrates a critical mechanism of glyphosate resistance naturally occurring in certain pathogenic bacteria.  相似文献   

15.
Summary 5-enolpyruvylshikimate-3-phosphate synthase (EPSPs), the target of the herbicide glyphosate, catalyzes an essential step in the shikimate pathway common to aromatic amino acid biosynthesis. We have cloned an EPSP synthase gene from Arabidopsis thaliana by hybridization with a petunia cDNA probe. The Arabidopsis gene is highly homologous to the petunia gene within the mature enzyme but is only 23% homologous in the chloroplast transit peptide portion. The Arabidopsis gene contains seven introns in exactly the same positions as those in the petunia gene. The introns are, however, significantly smaller in the Arabidopsis gene. This reduction accounts for the significantly smaller size of the gene as compared to the petunia gene. We have fused the gene to the cauliflower mosaic virus 35 S promoter and reintroduced the chimeric gene into Arabidopsis. The resultant overproduction of EPSPs leads to glyphosate tolerance in transformed callus and plants.  相似文献   

16.
5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.9) from the glyphosate-tolerant cyanobacterium Anabaena variabilis (ATCC 29413) was purified to homogeneity. The enzyme had a similar relative molecular mass to other EPSP synthases and showed similar kinetic properties except for a greatly elevated K i for the herbicide glyphosate (approximately ten times higher than that of enzymes from other sources). With whole cells, the monoisopropylamine salt of glyphosate was more toxic than the free acid but the effects of the free acid and monoisopropylamine salt on purified EPSP synthase were identical.Abbreviations EPSP 5-enolpyruvylshikimate 3-phosphate - Mr relative molecular mass - PEP phosphoenolpyruvate - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - S3P shikimate 3-phosphate The funding of this work by the Agricultural and Food Research Council and the University of Dundee Research Initiatives Programme is gratefully acknowledged.  相似文献   

17.
The first intron of rice EPSP synthase enhances expression of foreign gene   总被引:5,自引:0,他引:5  
Translatable exon sequences in pre-mRNA often are separated by non-coding introns in eu-karyotic genomes. The removal of non-coding introns from pre-mRNA and the splicing together of translatable exons sequence is an essential requirement of gene expression. DNA size of introns in a gene is 5—10 times larger than that of exon, which can store more information and is helpful for a gene during evolution[1]. In many experiments on gene expression, it is indispensable for a gene to be expresse…  相似文献   

18.
Plastid transformation (transplastomic) technology has several potential advantages for biotechnological applications including the use of unmodified prokaryotic genes for engineering, potential high-level gene expression and gene containment due to maternal inheritance in most crop plants. However, the efficacy of a plastid-encoded trait may change depending on plastid number and tissue type. We report a feasibility study in tobacco plastids to achieve high-level herbicide resistance in both vegetative tissues and reproductive organs. We chose to test glyphosate resistance via over-expression in plastids of tolerant forms of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Immunological, enzymatic and whole-plant assays were used to prove the efficacy of three different prokaryotic (Achromobacter, Agrobacterium and Bacillus) EPSPS genes. Using the Agrobacterium strain CP4 EPSPS as a model we identified translational control sequences that direct a 10,000-fold range of protein accumulation (to >10% total soluble protein in leaves). Plastid-expressed EPSPS could provide very high levels of glyphosate resistance, although levels of resistance in vegetative and reproductive tissues differed depending on EPSPS accumulation levels, and correlated to the plastid abundance in these tissues. Paradoxically, higher levels of plastid-expressed EPSPS protein accumulation were apparently required for efficacy than from a similar nuclear-encoded gene. Nevertheless, the demonstration of high-level glyphosate tolerance in vegetative and reproductive organs using transplastomic technology provides a necessary step for transfer of this technology to other crop species.  相似文献   

19.
5-Enolpyruvylshikimate 3-phosphate synthase (3-phosphoshikimate 1-carboxyvinyltransferase; EC 2.5.1.19) from shoot tissue of pea seedlings was purified to apparent homogeneity by sequential ammonium-sulphate precipitation, ion-exchange and hydrophobic-interaction chromatography and substrate elution from cellulose phosphate. Gel electrophoresis and gel-permeation chromatography showed that the purified enzyme was monomeric with molecular weight 50,000. The herbicide glyphosate was a potent inhibitor of the forward enzyme-catalyzed reaction.Abbreviations DEAE diethylaminoethyl - EPSP 5-enolpyruvylshikimate 3-phosphate  相似文献   

20.
The first intron (EPI) of rice 5-enolpyruvylshikimate 3-phosphate synthase gene was isolated by PCR from one clone with genomic EPSP synthase gene. Sequence analysis showed that the first intron is 704 bp in length with 36.2% G+C content. To investigate its effect on expression of foreign gene, we inserted the first intron between CaMV35S promoter and β-glucuronidase (GUS) gene. The transient expression results showed that GUS could be expressed effectively with EPI. The GUS activity in transgenic tobacco shows that the EPI can greatly enhance the expression level of β-glucuronidase (P < 0.01) compared with transgenic tobacco without the first intron, and 3-to 6-fold increase in GUS activity in some transgenic tobaccos. Northern blot indicated the first intron was spliced from GUS pre-mRNA, and the steady-state mRNA levels of GUS with EPI in transgenic tobaccos were higher than that in transgenic tobacco without EPI, which suggested that the first intron of EPSP was a non-translated intron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号