首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Towards a generalized biogeography of the Southern Ocean benthos   总被引:1,自引:0,他引:1  
Aim To investigate whether the biogeographical regions proposed by J. W. Hedgpeth and widely adopted by other authors hold true, are an oversimplification or with further data might show a unified Antarctic province. Location Southern Hemisphere. Methods The distributions of 1318 species of bivalves, 4656 species of gastropods, 1465 species of cheilostome and 167 species of cyclostome bryozoans were analysed for 29 regions in the Southern Hemisphere, including South American, South African, Tasmanian, New Zealand, sub‐Antarctic and Antarctic regions. We present data on species richness, rates of endemism, patterns of radiation, faunal similarities and multivariate biogeographical analyses. Results The most striking pattern to emerge from our data set of species counts per region was a strong east–west hemispheric asymmetry, with high species numbers in New Zealand, Tasmania and South Africa and low numbers in South America. In contrast, no difference was found in richness between the east and west parts of the Southern Ocean. We compared findings in our model taxa with published data on ascidians, cephalopods and pycnogonids. Further evidence of strong faunal links between the Antarctic and South America is reported in this study, although we found little evidence for a biogeographical relationship between the Antarctic or South America and New Zealand/Tasmania. Strong evidence exists for a long‐term influence of the Antarctic Circumpolar Current upon the distribution of Southern Ocean benthos. This is demonstrated by the reduced prevalence of South American species in the Antarctic and sub‐Antarctic with increasing distance from South America in the direction of the current. Three of our four study taxa (bivalves, cheilostomes and cyclostomes) show the Southern Ocean as a ‘single functional unit’ with no evidence for a biogeographical split between east and west. Main conclusions Unlike the biogeographical schemes previously proposed, we show that biogeographical regions in the Southern Ocean differ depending upon the class of animals being considered. Despite this we suggest that some general rules are viable, including species endemism rates of around 50%, a single Antarctic province and a definite distinction between the sub‐Antarctic islands influenced by South America and those of New Zealand.  相似文献   

2.
Atlantic reef fish biogeography and evolution   总被引:3,自引:0,他引:3  
Aim To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. Location Atlantic Ocean. Methods The distributions of 2605 species of reef fishes were compiled for 25 areas of the Atlantic and southern Africa. Maximum‐parsimony and distance analyses were employed to investigate biogeographical relationships among those areas. A collection of 26 phylogenies of various Atlantic reef fish taxa was used to assess patterns of origin and diversification relative to evolutionary scenarios based on spatio‐temporal sequences of species splitting produced by geological and palaeoceanographic events. We present data on faunal (species and genera) richness, endemism patterns, diversity buildup (i.e. speciation processes), and evaluate the operation of the main biogeographical barriers and/or filters. Results Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non‐terrestrial) inter‐regional barriers (mid‐Atlantic, Amazon, and Benguela) clearly act as ‘filters’ by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism for much of the recent diversification of reef fishes in the Atlantic. Main conclusions Our data set indicates that both historical events (e.g. Tethys closure) and relatively recent dispersal (with or without further speciation) have had a strong influence on Atlantic tropical marine biodiversity and have contributed to the biogeographical patterns we observe today; however, examples of the latter process outnumber those of the former.  相似文献   

3.
Aim Ongoing biological invasions will enhance the impacts of humans on biodiversity. Nonetheless, the effects of exotic species on diversity are idiosyncratic. Increases in diversity might be a consequence of similar responses by species to available energy, or because of positive relationships between human density, energy and propagule pressure. Here we use data from the Southern Ocean island plants and insects to investigate these issues. Location The Southern Ocean Islands ranging from Tristan da Cunha to Heard Island and South Georgia. Methods Generalized linear models are used to explore the relationships between indigenous and exotic species richness for plants and insects on two different islands. Similar models are used to examine interactions between indigenous and exotic species richness, energy availability and propagule pressure at the regional scale. Results Positive relationships were found between indigenous and exotic species richness at local scales, although for plants, the relationship was partially triangular. Across the Southern Ocean Islands, there was strong positive covariation between indigenous and exotic plant species richness and insect species richness, even taking spatial autocorrelation into account. Both exotic and indigenous plant and insect species richness covaried with energy availability, as did human visitor frequency. When two islands with almost identical numbers of human visits were contrasted, it was clear that energy availability, or perhaps differences in climate‐matching, were responsible for differences in the extent of invasion. Conclusion In plants and insects, there are positive relationships between indigenous and exotic diversity at local and regional scales across the Southern Ocean islands. These relationships are apparently a consequence of similar responses by both groups and by human occupants to available energy. When visitor frequency is held constant, energy availability is the major correlate of exotic species richness, though the exact mechanistic cause of this relationship requires clarification.  相似文献   

4.
Despite considerable criticism in recent years, the use of local (SL) and regional species richness (SR) plots has a long tradition to test for community saturation. The traditional approach has been to compare linear and polynomial regression models of untransformed measures of SL and SR with a statistically significant linear or polynomial model indicating unsaturated and saturated communities, respectively. This approach has been the target of much controversy owing to statistical issues, the confounding effects of the arbitrary choice for the size of the local and regional area, and the difficulty in attributing ecological processes to the underlying SL SR pattern. The statistical issues and effects of scale stem from the lack of statistical independence and induced correlation between SL SR arising from the mathematical constraint, SL<SR. However, by removing this mathematical constraint by means of a logratio transformation, SL SR relationships can be calculated using ordinary linear regression and with a logical and definitive null‐hypothesis based solely on the presence of a statistically significant slope, which provides a quantitative measure of curvature. Simulations of SL SR relationships with varying curvature and SL:SR ratio demonstrate that the logratio model can accurately measure curvature independent of the SL:SR ratio. Therefore, the tendency for studies with high local:regional area ratio to result in linear SL SR trends when analysed by traditional regression methods may be mitigated by reanalysis by the logratio model. By alleviating the effects of scale, the logratio model offers a more statistically sound assessment of the SL SR relationship, which in turn can serve as an effective tool to complement emerging process‐based models.  相似文献   

5.
Aim The Arctic Ocean is one of the last near‐pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean‐wide patterns of benthic biodiversity and to explore factors related to the large‐scale species diversity patterns. Location Arctic Ocean. Methods We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging. Results Well‐known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep‐sea ostracodes and deep‐sea foraminifera. Main conclusions On the basis of these Arctic Ocean‐wide comprehensive datasets, we document large‐scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large‐scale diversity patterns, but their relative importance may depend on the ecological preferences of taxa and the oceanographic context of regions. These results suggest that a multiplicity of variables appear to be related to community structure in this system.  相似文献   

6.
Aim To use patterns of nestedness in the indigenous and non‐indigenous biotas of the Southern Ocean islands to determine the influence of dispersal ability on biogeographical patterns, and the importance of accounting for variation in dispersal ability in their subsequent interpretation, especially in the context of the Insulantarctic and multi‐regional hypotheses proposed to explain the biogeography of these islands. Location Southern Ocean islands. Methods Nestedness was determined using a new metric, d1 (a modification of discrepancy), for the indigenous and introduced seabirds, land birds, insects and vascular plants of 26 Southern Ocean islands. To assess the possible confounding effects of spatial autocorrelation on the results, islands were assigned to 11 major island groups and each group was treated as a single island in a following analysis. In addition, nestedness of the six Southern Ocean islands comprising the South Pacific Province (New Zealand islands) was analysed. All analyses were conducted for species and genera, for each of the taxa on its own, and for the complete data sets. Results Statistically significant nestedness was found in all of the taxa examined, with nestedness declining in the order seabirds > land birds > vascular plants > insects for the indigenous species. Vagility had a marked influence on nestedness and the biogeographical patterns shown by the indigenous species. This influence was borne out by additional analyses of marine taxa and small‐sized terrestrial species, both of which were more nested than the most nested group examined here, the seabirds. Assemblages of non‐indigenous species also showed nestedness, and nestedness was generally more pronounced than in the indigenous species. Surprisingly, vagility had a significant effect on nestedness in these assemblages too. Main conclusions Nestedness analyses provide a quantitative means of comparing biogeographical patterns for groups differing in vagility. These comparisons revealed that vagility has a considerable influence on biogeographical patterns and should be taken into account in analyses. Here, investigations of more vagile taxa support hypotheses for a single origin of the Southern Ocean island biota (the Insulantarctica scenario), whilst those of less mobile taxa support the more commonly held, multi‐regional hypothesis. All biogeographical analyses across the Southern Ocean (and elsewhere) will be influenced by the effects of dispersal ability, with composite analyses dominated by sedentary groups likely to favour multi‐regional scenarios, and those dominated by mobile groups favouring single origins. Mechanisms underlying nestedness in the region range from nested physiological tolerances in more mobile groups to colonization ability and patterns of speciation in less vagile taxa. Considerable nestedness in the non‐indigenous assemblages is largely a consequence of the fact that many of these species are European weedy species.  相似文献   

7.
Much recent research explaining plant community diversity has focused on comparing the relative impacts of regional and local processes. We employed a novel analysis to quantify the effects of multiple regional and local processes on species richness, and to make quantitative comparisons of those effects across two sites that differ in plot-level species richness, productivity and environmental conditions. While abiotic stress and competition limited richness within the communities at both sites, only differences in the overall pool of species at the site, likely resulting from long-distance dispersal and climate fluctuations, explained the differences in plot-level richness between sites. Patterns in local richness may be driven by a temporal storage effect, with greater richness in the site with greater climatic variability. By identifying both the factors that impact diversity within communities and those that vary systematically across communities, our integrated approach provides a better understanding of regional diversity patterns.  相似文献   

8.
Aim One of the most recognized ecological paradigms on earth is the increase in species richness from the poles towards the equator. Here we undertake a comprehensive survey of the latitudinal gradients of species richness (LGSR) of coastal cephalopod fauna in the western (WA) and eastern margins (EA) of the Atlantic Ocean, and test climate and non‐climate theories to explain the variation in diversity. Location The coastal Atlantic Ocean. Methods The diversity and geographical ranges of coastal cephalopods were investigated by means of an exhaustive survey of the primary literature, reports and on‐line data bases. In order to test the productivity, ambient energy and area hypotheses, we investigated the relationship between diversity and net primary production (NPP), sea surface temperature (SST; measure of solar energy input) and continental shelf area, respectively. Results LGSR of cephalopod molluscs are present at both Atlantic coasts, but are quite distinct from each other. Historical processes (rise of the Central American Isthmus, formation of ‘Mare Lago’ and glaciations) explained much of the shape and the zenith of LGSR. Contemporary climate and non‐climate variables also each explained over 83% and 50% of the richness variation in WA and EA, respectively, and the best fitted models accounted for > 92% of the variance. By combining latitude with depth a strong Rapoport effect was observed in WA but not in EA. Main conclusions Besides the evolutionary history, we demonstrate that the contemporary environmental gradients (SST and NPP), shelf area and extent of coral habitat can predict many of the diversity patterns. The longitudinal difference in Rapoport's bathymetric rule is attributed to western fauna specialization to shallow coral reef habitats and greater ecological tolerance of eastern fauna to upwelling ecosystem dynamics. A combined approach of historical biogeography and species–area–energy theories was essential to fully understand broad‐scale variation in cephalopod biodiversity.  相似文献   

9.
Abstract. We associated patterns of plant diversity with possible causal factors by considering 93 local regions in the Iberian Peninsula and Balearic Islands with respect to biogeography, environmental favourability, and environmental heterogeneity, and their relationship with measured species diversity at four different scales: mean local species richness standardized at a grain of 100 m2, total species richness in a community type within a region (regional community richness), mean compositional similarity, and mosaic diversity. Local regions in biogeographic transition zones to the North African and Atlantic floras had higher regional community richness and greater mosaic diversity than did non‐transitional regions, whereas no differences existed in mean local species richness or mean compositional similarity. Mean local species richness was positively related to environmental favourability as measured by actual evapotranspiration, but negatively related to total precipitation and temporal heterogeneity in precipitation. Mean local species richness was greatest in annual grassland and dwarf shrubland communities, and on calcareous bedrock types. Regional community richness was similarly related to actual evapotranspiration and total precipitation, but in addition was positively related to spatial heterogeneity in topography and soil water holding capacity. Mean compositional similarity decreased with increasing spatial heterogeneity and temperature seasonality. Mosaic diversity, a measure of complexity, increased with increasing local and regional richness. We hypothesize that these relationships can be explained by four ecological and evolutionary classes of causal factors: numbers of individuals, intermediate environments, limits to adaptation, and niche variation. These factors operate at various scales and manifest themselves in various ways. For example, at the site level, apparently processes that increase the number of individuals increase mean local species richness, but at the level of the entire region no such effects were found.  相似文献   

10.
So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity–ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m−2 and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m−2. One year after seed addition, local plant species richness had increased on average by six species m−2 (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m−2 (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump‐shaped model appears to be the limiting outline of the natural diversity–productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.  相似文献   

11.
12.
The aim of this study was to use data for gastropod and bivalve molluscs to determine whether the fauna of the Southern Ocean is sufficiently well known to establish robust biogeographical and macroecological patterns. We chose molluscs for this work because they have been collected by almost every biological expedition to Antarctica, and are relatively well known taxonomically. Sampling of the continental shelf fauna is reasonably full and extensive, although new species are still being described and there are significant gaps in sampling off Wilkes Land and in the Bellingshausen and Amundsen Seas. Species richness was highest in those areas that have been subject to the most intense research activity and this pattern remained even after correction for sampling intensity. The low species richness of the Southern Ocean molluscan fauna compared with many tropical sites is confirmed, and is related principally to the absence of the large number of rare taxa that characterize some tropical assemblages. There is as yet no convincing evidence for a latitudinal cline in molluscan diversity within the Southern Ocean. Multivariate analyses defined biogeographical provinces very similar to those established previously, though they also identified a number of finer-scale sub-provinces including a small area of high diversity off Enderby Land. Most Southern Ocean gastropods and bivalves are rare, with limited distributions; relatively few taxa have circumpolar distributions.  相似文献   

13.
Disentangling the relative effects of local and regional processes on local species richness (LSR) is critical for understanding the mechanisms underlying large‐scale biodiversity patterns. In this study we used 1098 forest plots from 41 mountains across China, together with regional flora data, to examine the relative influence of local climate vs regional species richness (RSR) on LSR patterns. Both RSR and LSR for woody species and all species combined decreased with increasing latitude, while richness of herbaceous species exhibited a hump‐shaped pattern. The major climatic orrelates of species richness differed across spatial scales. At the regional scale, winter coldness was the best predictor of RSR patterns for both woody and herbaceous species. At the local scale, however, productivity‐related climatic indices were the best predictors of LSR patterns. Local climate and RSR together explained 48, 54 and 23% of the variation in LSR, for overall, woody and herbaceous species, respectively. Both local climate and RSR independently influenced LSR in addition to their joint effects, suggesting that LSR patterns were shaped by local and regional processes together. Local climate and RSR affected LSR of woody species mainly through their joint effects, while there were few shared effects of climate and RSR on the LSR of herbaceous species. Our findings suggest that while geographic RSR patterns are mainly determined by winter coldness, the ecological processes driven by productivity may be critical to the filtering of regional flora into local communities. We also demonstrate that biogeographic region is not a good surrogate for regional richness, at least for our dataset. Consequently, whether biogeographic region can effectively reflect regional effects needs further examination.  相似文献   

14.
Aim Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness–productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location We analysed 231 plots ranging from 34.0° to 48.3° N latitude and from 75.0° to 124.2° W longitude in the United States. Methods We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light‐blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species richness is under multivariate control.  相似文献   

15.
Aim In contrast to non‐forest vegetation, the species richness–productivity (SR‐P) relationship in forests still remains insufficiently explored. Several studies have focused on the diversity of the tree layer, but the species richness of temperate deciduous forests is mainly determined by their species‐rich herb layer. The factors controlling herb‐layer productivity may differ from those affecting tree layers or open herbaceous vegetation, and thus the SR‐P relationship and its underlying processes may differ. However, the few relevant studies have reported controversial results. Here we explore the SR‐P relationship in the forest herb layer across different areas from oceanic to continental Europe, and put the effect of habitat productivity on species richness into context with other key factors, namely soil pH and light availability. Location North‐western Germany, Czech Republic, Slovakia and southern Urals (Russia). Methods We measured herb‐layer species richness and biomass, soil pH and tree‐layer cover in 156 vegetation plots of 100 m2 in deciduous forests. We analysed the SR‐P relationship and the relative importance of environmental variables using regression models for particular areas and separate forest types. Results We found a consistent monotonic increase in the herb‐layer species richness with productivity across all study areas and all forest types. Soil pH and light availability also affected species richness, but their relative importance differed among areas. Main conclusions We suggest that the monotonically increasing SR‐P relationship in the forest herb layer results from the fact that herb‐layer productivity is limited by canopy shading; competition within the herb layer is therefore not strong enough to exclude many species. This differs fundamentally from open herbaceous vegetation, which is not subject to such productivity limits and consequently exhibits a unimodal SR‐P relationship. We present a conceptual model that might explain the differences in the SR‐P relationship between the forest herb layer and open herbaceous vegetation.  相似文献   

16.
Transient ‘hot spots’ of phytoplankton productivity occur in the generally oligotrophic Southern Pacific Ocean and we hypothesized that the population structure of tintinnid ciliates, planktonic grazers, would differ from that of a typical oligotrophic sites. Samples were collected over a 1‐wk period at each of two sites between Fiji and Tahiti: one of elevated chlorophyll a concentrations and primary productivity with an abundance of N‐fixing cyanobacteria Trichodesmium, and a distant oligotrophic site. Tintinnid abundance differed between the sites by a factor of 2. A single species (Favella sp.), absent from the oligotrophic site, highly dominated the ‘hot spot’ site. However, total species richness was identical (71 spp.) as well as short‐term temporal variability (2–4 d). At both sites, species abundance distributions most closely fit a log‐series or log‐normal distribution and the abundance distributions of ecological types, forms of distinct lorica oral diameter, were the typical geometric. Morphological diversity was only slightly lower at the high productivity site. We found that communities of these plankton grazers in ‘hot spots’ of phytoplankton productivity in oligotrophic systems, although harboring different species, differ little from surrounding oligotrophic areas in community structure.  相似文献   

17.
Patterns of genetic variation within a species may be used to infer past events in the evolutionary history of marine species. In the present study we aimed to compare the genetic diversity of the red gorgonian Paramuricea clavata in the Atlantic Ocean and the Mediterranean Sea. For genetic markers we used microsatellites and a mitochondrial gene fragment. Our results revealed a distinct genetic composition and diversity between the Mediterranean and the Atlantic. The Mediterranean samples had higher microsatellite heterozygosity, allelic richness and private allelic richness. The hypotheses that can explain these patterns are the isolation of Atlantic populations and/or a founder effect. Additionally, a clear difference was obtained from the mitochondrial locus, since sequences from Atlantic and Mediterranean samples diverged by 1%, which is high for soft corals.  相似文献   

18.
Sponges assemblages were sampled in four coastal study regions (Malindi, Kenya; Quirimba Archipelago, northern Mozambique; Inhaca Island, Southern Mozambique and Anakao, Madagascar) in the west Indian Ocean. Sponge species were counted in multiple 0.5 m2 quadrats at depths of between 0 and 20 m at a number of sites within localities within each region. Despite the relatively small areas sampled, sponge samples comprised a total of 130 species and 70 genera of the classes Demospongiae and Calcarea. Sponges are clearly a major taxon in these regions in terms of numbers of species, percentage cover or biomass, although their ecology in the west Indian Ocean is virtually unknown. Nearly half of the genera, e.g. Iotrochota, found were species with a so‐called Tethyan distribution. Most of the other genera were cosmopolitan, e.g. Clathria, but some were cold water (Coelosphaera), Indo‐Australian (Ianthella) or circum‐African (Crambe). Many of the species encountered in the present study occurred in at least two study regions, many in more and could occupy large areas of substratum. Some of these, e.g. Xestospongia exigua, are commonly found throughout the Indo‐west Pacific region where they also occupy much space. The endemicity of the shallow water sponge faunas in East Africa (20–25%) seem to be high within the Indo‐Pacific realm but are lower than northern Papua New Guinea. The tropical regions (Kenya and Northern Mozambique) were more speciose than subtropical regions (southern Mozambique and Madagascar) but not significantly more diverse (Shannon H′). Although latitude was not a major influence on sponge community patterns, hard substratum assemblages did form a cline from the tropics to Southern Mozambique, linked by Madagascar. Substratum nature (habitat) was most important in influencing the suite and number of species present. Sponge assemblages of soft substrata were much more dissimilar, both within and between habitats, than those on hard substrata. There was a predictable variability in species richness between hard substratum habitats: coral reefs being speciose and caves being less so. Our findings showed that both patterns and influences on species richness may be decoupled from those influencing diversity. In our data species richness, but not diversity, showed striking regional and bathymetric trends. In addition, sponge species richness mainly split at coral reef vs. non‐reef habitats, whilst diversity divided principally into assemblages on hard and soft substrata. We consider this dichotomy of findings between species richness and diversity values to be important, as these are two principal measures used for the interpretation of biodiversity.  相似文献   

19.
20.
We surveyed freshwater ponds (localities) nested within watersheds (regions) to evaluate the relationship between productivity and animal species richness at different spatial scales. In watersheds where the ponds were relatively distant from one another (likely reducing the level of interpond dispersal of many organisms), we found a scale‐dependent productivity–diversity relationship; at local scales (among ponds), diversity was a hump‐shaped function of productivity, whereas at regional scales (among watersheds), diversity monotonically increased with productivity. Furthermore, this relationship emerged because there was a strong relationship between productivity and pond‐to‐pond species compositional differences. Alternatively, in watersheds where ponds were relatively close together (likely leading to higher rates of dispersal of many organisms), we found no scale‐dependence; diversity was a hump‐shaped function of productivity at both local and regional scales. Here, the relationship between species compositional dissimilarity and productivity was much weaker. We conclude that whether or not scale‐dependence is observed in productivity–diversity relationships will depend, at least in part, on the degree of connectivity among localities within regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号