首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress analysis of the cement fixation of orthopaedic implants to bone is frequently carried out using finite element analysis. However the stress distribution in the cement layer is usually intricate, and it is difficult to report it in a way that facilitates comparison of implants for pre-clinical testing. To study this problem, and make recommendations for stress reporting, a finite element analysis of a hip prosthesis implanted into a synthetic composite femur is developed. Three cases are analyzed: a fully bonded implant, a debonded implant, and a debonded implant where the cement is removed distal to the stem tip. In addition to peak stresses, and contour and vector plots, a stressed volume and probability-of-failure analysis is reported. It is predicted that the peak stress is highest for the debonded stem, and that removal of the distal cement more than halves this peak stress. This would suggest that omission of the distal cement is good for polished prostheses (as practiced for the Exeter design). However, if the percentage of cement stressed above a certain threshold (say 3 MPa) is considered, then the removal of distal cement is shown to be disadvantageous because a higher volume of cement is stressed to above the threshold. Vector plots clearly demonstrate the different load transfer for bonded and debonded prostheses: A bonded stem generates maximum tensile stresses in the longitudinal direction, whereas a debonded stem generates most tensile stresses in the hoop direction, except near the tip where tensile longitudinal stresses occur due to subsidence of the stem. Removal of the cement distal to the tip allows greater subsidence but alleviates these large stresses at the tip, albeit at the expense of increased hoop stresses throughout the mantle. It is concluded that a thorough analysis of cemented implants should not report peak stress, which can be misleading, but rather stressed volume, and that vector plots should be reported if a precise analysis of the load transfer mechanism is required.  相似文献   

2.
The clinical success of polished tapered stems has been widely reported in numerous long term studies. The mechanical environment that exists for polished tapered stems, however, is not fully understood. In this investigation, a collarless, tapered femoral total hip stem with an unsupported distal tip was evaluated using a 'physiological' three-dimensional (3D) finite element analysis. It was hypothesized that stem-cement interface friction, which alters the magnitude and orientation of the cement mantle stress, would subsequently influence stem 'taper-lock' and viscoelastic relaxation of bone cement stresses. The hypothesis that creep-induced subsidence would result in increases to stem-cement normal (radial) interface stresses was also examined. Utilizing a viscoelastic material model for the bone cement in the analysis, three different stem-cement interface conditions were considered: debonded stem with zero friction coefficient (mu=0) (frictionless), debonded stem with stem-cement interface friction (mu=0.22) ('smooth' or polished) and a completely bonded stem ('rough'). Stem roughness had a profound influence on cement mantle stress, stem subsidence and cement mantle stress relaxation over the 24-h test period. The frictionless and smooth tapered stems generated compressive normal stress at the stem-cement interface creating a mechanical environment indicative of 'taper-lock'. The normal stress increased with decreasing stem-cement interface friction but decreased proximally with time and stem subsidence. Stem subsidence also increased with decreasing stem-cement interface friction. We conclude that polished stems have a greater potential to develop 'taper-lock' fixation than do rough stems. However, subsidence is not an important determinant of the maintenance of 'taper-lock'. Rather subsidence is a function of stem-cement interface friction and bone cement creep.  相似文献   

3.
A three-dimensional non-linear finite element analysis of a cemented femoral component in which the component was partially debonded from the cement mantle was used to assess the effects of debonding on stresses in the cement. Three cases of partial cement-metal debonding were modelled with debonding of the proximal portion of the implant down to a horizontal plane which was 35, 62.5, or 82.5 mm below the prosthesis collar. Each situation was studied under loads simulating both gait and stairclimbing. Also, complete debonding between the implant and the surrounding cement mantle was modeled for loads simulating gait. Under stair climbing loads with partial cement-mental debonding, hoop stresses of 13-18 MPa were observed in the cement at the cement-metal interface at the proximal postero-medial corner of the implant. Similarly, in stair climbing, the maximum principal stresses in the cement were also adjacent to the proximal postero-medial region of the implant. These stresses were compressive and increased from 15 MPa with fully bonded interfaces to 48 MPa with debonding down to 82.5 mm below the prosthesis collar. Under gait loads, complete debonding caused high compressive stresses up to 34.9 MPa in the cement distal to the prosthesis tip. Thus, cement failure subsequent to prosthesis debonding is likely in the proximal region in a partially debonded implant due to stair climbing loads and is likely below the prosthesis tip in a fully debonded implant due to gait loading.  相似文献   

4.
The initial fixation of a cemented hip implant relies on the strength of the interface between the stem, bone cement and adjacent bone. Bone cement is used as grouting material to fix the prosthesis to the bone. The curing process of bone cement is an exothermic reaction where bone cement undergoes volumetric changes that will generate transient stresses resulting in residual stresses once polymerization is completed. However, the precise magnitude of these stresses is still not well documented in the literature. The objective of this study is to develop an experiment for the direct measurement of the transient and residual radial stresses at the stem-cement interface generated during cement polymerization. The idealized femoral-cemented implant consists of a stem placed inside a hollow cylindrical bone filled with bone cement. A sub-miniature load cell is inserted inside the stem to make a direct measurement of the radial compressive forces at the stem-cement interface, which are then converted to radial stresses. A thermocouple measures the temperature evolution during the polymerization process. The results show the evolution of stress generation corresponding to volumetric changes in the cement. The effect of initial temperature of the stem and bone as well as the cement-bone interface condition (adhesion or no adhesion) on residual radial stresses is investigated. A maximum peak temperature of 70 degrees C corresponds to a peak in transient stress during cement curing. Maximum radial residual stresses of 0.6MPa in compression are measured for the preheated stem.  相似文献   

5.
Stress shielding of the femur is known to be a principal factor in aseptic loosening of hip replacements. This paper considers the use of a hollow stemmed hip implant for reducing the effects of stress shielding, while maintaining acceptably low levels of stress in the cement. Using finite element modelling, the stresses in the proximal femur using different shapes of hollow stem were compared with those produced using comparable sizes of solid stem with different values of elastic modulus. A reduction in stress shielding could be achieved with a hollow stem. A cylindrical hollow stem design was then optimised in order to control the maximum allowable stress in the cement, the minimum allowable stresses in the bone, and a combination of the two. The resulting stems achieved an increase in proximal bone stress of about 15% for the first case and 32% for a model using high strength cement, compared with solid stems of the same nominal outside diameter. The gains of these theoretically optimised designs dropped off rapidly further down the stem. Linearly tapered hollow stems reached a 22% gain, which could be a good compromise between acceptable cement stresses and ease of manufacture.  相似文献   

6.
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered.  相似文献   

7.
Experimental models can be used for pre-clinical testing of cemented and other type of hip replacements. Total hip replacement (THR) failure scenarios include, among others, cement damage accumulation and the assessment of accurate stress and strain magnitudes at the cement mantle interfaces (stem-cement and cement-bone) can be used to predict mechanical failure. The aseptic loosening scenario in cemented hip replacements is currently not fully understood, and methods of evaluating medical devices must be developed to improve clinical performance. Different results and conclusions concerning the cement micro-cracking mechanism have been reported.The aim of this study was to verify the in vitro behavior of two cemented femoral stems with respect to fatigue crack formation. Fatigue crack damage was assessed at the medial, lateral, anterior and posterior sides of the Lubinus SPII and Charnley stems. All stems were loaded and tested in stair climbing fatigue loading during one million cycles at 2 Hz. After the experiments each implanted synthetic femur was sectioned and analyzed. We observed more damage (cracks per area) for the Lubinus SPII stem, mainly on the proximal part of the cement mantle. The micro-cracking formation initiated in the stem–cement interface and grew towards the direction of cortical bone of the femur.Overall, the cement–bone interface seems to be crucial for the success of the hip replacement. The Charnley stem provoked more damage on the cement–bone interface. A failure index (maximum length of crack/maximum thickness of cement) considered was higher for the cement–stem interface of the Lubinus SPII stem. For a cement mantle thickness higher than 5 mm, cracking initiated at the cement–bone interface and depended on the opening canal process (reaming procedure and instrumentation). The analysis also showed that fatigue-induced damage on the cement mantle, increasing proximally, and depended on the axial position of the stem. The cement thickness is an important factor for the success of THR and this study evidenced that cement thickness higher than 2 mm apparently does not affect the mechanical behavior of the cement mantel and induce more crack formation on the cement–bone interface.  相似文献   

8.
The aim of this study is to define stem design related factors causing both gaps in the metal-bone cement interface and cracks within the cement mantle. Six different stem designs (Exeter; Lubinus SP II; Ceraver Osteal; Mueller-straight stem; Centega; Spectron EF) (n=15 of each design) were cemented into artificial femur bones. Ten stems of each design were loaded, while five stems served as an unloaded control. Physiologically adapted cyclical loading (DIN ISO 7206-4) was performed with a hip simulator. After loading both interfaces and the bone cement itself were analysed regarding gaps and cracks in the cement mantle. Significant differences between the stem designs concerning gaps in the metal-bone cement interface and cracks in the cement mantle became apparent. Additionally, a high correlation between gaps in the metal-bone cement interface and cracks within the cement mantle could be proven. Gaps in the metal-bone cement interface but no cracks within the cement mantle were seen in the unloaded specimens. Differences between the unloaded control groups and the cyclical loaded stems regarding the longitudinal extension and width of gaps in the metal-bone cement interface were obvious. The designs of cemented femoral stems have an influence on both the quality of the metal-bone cement contact and the failure rate of the cement mantle. Less interface gaps and less cement defects were found with anatomically formed, collared, well-rounded stem designs without undercuttings.  相似文献   

9.
Peak stress levels predicted in finite element analysis (FEA) usually depend on mesh density, due to singular points in the model. In an earlier study, an FEA algorithm was developed to simulate the damage accumulation process in the cement mantle around total hip replacement (THR) implants. It allows cement crack formation to be predicted, as a function of the local cement stress levels. As the simulation is driven by mesh-dependent peak stresses, predicted crack formation rates are also likely to be mesh dependent. The aim of this study was to evaluate the mesh dependence of the predicted crack formation process, and to present a method to reduce the mesh dependence. Crack-propagation experiments were simulated. Experimental specimens, representing transverse slices of cemented THR reconstructions, were subjected to cyclic torsional loading. Crack development around the corners of the stem was monitored. The experiments were simulated using three meshes with increasing levels of mesh refinement. Crack locations and orientations were accurately predicted, and were virtually independent of the level of mesh refinement. However, the experimental crack propagation rates were overestimated considerably, increasing with mesh refinement. To eliminate the effect of stress singularities around the corners of the stem, a stress averaging algorithm was applied in the simulation. This algorithm redistributed the stresses by weighted spatial averaging. When damage accumulation was computed based on averaged stresses, the crack propagation rates predicted were independent of the level of mesh refinement. The critical distance, a parameter governing the effect of the averaging algorithm, was optimized such that the predicted crack propagation rates accurately corresponded to the experimental ones. These results are important for the validity and standardization of pre-clinical testing methods for orthopaedic implants.  相似文献   

10.
Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy; cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and pre-load cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature; in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers.  相似文献   

11.
An investigation was performed to determine the effects of the presence of two lengths of proximal Müller prosthesis on predicted failure loads, as compared to those for an intact femur. Three-dimensional stresses in a bone/cement/prosthesis system were determined using finite element methods, with both isotropic and transversely isotropic material properties used for the diaphyseal cortex. Significant increases in prosthesis stem stresses were found when the transversely isotropic material properties were employed in the diaphyseal cortex. This leads to the conclusion that accurate anisotropic material properties for bone are essential for precise stress determination and optimum design in prosthetic implants. Failure loads were also predicted for vertical compression and axial torque, similar to available experimental conditions, and were within the range of the experimental failure data found in the literature. The technique developed herein can be used to systematically assess existing as well as future implant designs, taking into account the complex three-dimensional interaction effects of the overall bone/cement/prosthesis system.  相似文献   

12.
Y S Yoon  G H Jang  Y Y Kim 《Journal of biomechanics》1989,22(11-12):1279-1284
An optimal shape of the metal stem of a cemented total hip prosthesis minimizing stress concentration in the cement layer was searched for. A gradient projection method of numerical optimization and a finite element method of stress analysis were employed. A two-dimensional model of the femoral part of a total hip prosthesis was derived equivalent to a simplified three-dimensional axisymmetric model. The result of the stress analysis of the two-dimensional model compared favorably with that of the three-dimensional axisymmetric model. Using this two-dimensional model, an optimal shape of the stem, minimizing stress concentration in the cement layer, was obtained by a gradient projection method and the shape was checked again by the three-dimensional finite element analysis. The resulting optimal shape of the stem profile was in good agreement with conventional ones, except in the proximal region where a significant amount of stress reduction in the cement layer was achieved by tapering the stem to the limit that the stem still could withstand the increased stem stress.  相似文献   

13.
Periprosthetic bone resorption after tibial prosthesis implantation remains a concern for long-term fixation performance. The fixation techniques may inherently aggravate the "stress-shielding" effect of the implant, leading to weakened bone foundation. In this study, two cemented tibial fixation cases (fully cemented and hybrid cementing with cement applied under the tibial tray leaving the stem uncemented) and three cementless cases relying on bony ingrowth (no, partial and fully ingrown) were modelled using the finite element method with a strain-adaptive remodelling theory incorporated to predict the change in the bone apparent density after prosthesis implantation. When the models were loaded with physiological knee joint loads, the predicted patterns of bone resorption correlated well with reported densitometry results. The modelling results showed that the firm anchorage fixation formed between the prosthesis and the bone for the fully cemented and fully ingrown cases greatly increased the amount of proximal bone resorption. Bone resorption in tibial fixations with a less secure anchorage (hybrid cementing, partial and no ingrowth) occurred at almost half the rate of the changes around the fixations with a firm anchorage. The results suggested that the hybrid cementing fixation or the cementless fixation with partial bony ingrowth (into the porous-coated prosthesis surface) is preferred for preserving proximal tibial bone stock, which should help to maintain post-operative fixation stability. Specifically, the hybrid cementing fixation induced the least amount of bone resorption.  相似文献   

14.
Mathematical shape optimization of hip prosthesis design   总被引:2,自引:0,他引:2  
The long-term success of artificial-joint replacement depends partly on the chances for acrylic cement failure and interface disruption. These chances can be diminished by an optimal load-transfer mechanism, whereby stress concentrations are avoided. The present paper introduces a method for numerical shape optimization, whereby the finite element method is used iteratively to determine optimal prosthetic designs, which minimize interface stresses. The method is first applied in a simplified one-dimensional model of a cemented femoral stem fixation, using acrylic cement. The results show that 30-70% cement and interface stress reductions can be obtained in principle with an optimized design. Although the actual optimal shape is susceptible to the characteristics of the joint load, the stem length, stem modulus, cement modulus and bone properties, its general geometrical characteristics are consistent, featuring proximal and distal tapers, and a belly-shaped middle region. These general characteristics are confirmed in a more realistic two-dimensional FEM model. It is concluded that this method of shape optimization can provide a meaningful basis for prosthetic design and analysis activities in general.  相似文献   

15.
The long-term clinical success of cemented hip stems is influenced both by the implant design, and by the surgical procedure. A methodology is proposed for discriminating between implant designs with different clinical outcomes. The protocol was designed with industrial pre-clinical validation in mind.Two cemented stem types were tested, one (Lubinus SPII) having good and the other (Müller Curved) having poor clinical outcomes. Three implants for each type were subjected to a mechanical in vitro test of one million loading cycles. Each cycle reproduced the load components of stair climbing. Interface shear micromotion was measured during the test in the direction of rotation and along the stem axis. The stem roughness before and after the test was compared. After the test, the cement mantles were retrieved and inspected through dye penetrants to detect evidences of micro-damage. For each specimen, the events of the loosening process were examined, based on the in vitro data available, so as to analyze the whole failure mechanism.The protocol developed was sensitive to the implant design, with significantly different results being found for the two stem types, both in terms of stem-cement micromotions, surface roughness alteration, and cement mantle damage. The information yielded by the three different investigation techniques was consistent for each of the two groups of specimens tested, allowing a better understanding of the failure process. In vitro inducible micromotion and permanent migration measurements, together with cement-stem interface fretting damage and cement fatigue damage, can help predicting the clinical performance of cemented stems.  相似文献   

16.
The long-term fixation of cemented femoral components may be jeopardised by the presence of a fibrous tissue layer at the bone-cement interface. This study used both experimental and finite element (FE) methods to investigate the load transfer characteristics of two types of cemented hip replacements (Lubinus SPII and Müller-Curved) with a fibrous tissue layer.The experimental part investigated six stems of each type, where these were implanted in composite femurs with a specially selected silicone elastomer modelling the soft interfacial layer. Two fibrous tissue conditions were examined: a layer covering the full cement mantle, representing a revision condition; and a layer covering the proximal portion of the cement mantle, representing a non-revised implant with partial debonding and fibrous tissue formation. The FE method was used to model the full fibrous tissue layer condition, for both implants. The layer was modelled as a homogeneous, linearly isotropic material. A cross-comparison was performed of the experimental and FE findings.Agreement between experimental and FE models was verified to be within 15%. Varying the stiffness parameter of the FE soft tissue layer had little influence on the cortical bone strains, though had considerable effect on the cement strains. Stress shielding occurred for both stems under both fibrous tissue conditions, with the greatest reduction around the calcar. However, the cortical bone strains were generally larger than those for the equivalent well-fixed stems. The fibrous tissue layer was not found to increase the general strain pattern of the cement mantle, though localised regions of high stress were detected.  相似文献   

17.
During the operation of total hip arthroplasty, when the cement polymerizes between the stem implant and the bone, residual stresses are generated in the cement. The purpose of this study was to determine whether including residual stresses at the stem-cement interface of cemented hip implants affected the cement stress distributions due to externally applied loads. An idealized cemented hip implant subjected to bending was numerically investigated for an early post-operative situation. The finite element analysis was three-dimensional and used non-linear contact elements to represent the debonded stem-cement interface. The results showed that the inclusion of the residual stresses at the interface had up to a 4-fold increase in the von Mises cement stresses compared to the case without residual stresses.  相似文献   

18.
Glenoid component loosening is the dominant cause of failure in total shoulder arthroplasty. It is presumed that loosening in the glenoid is caused by high stresses in the cement layer. Several anchorage systems have been designed with the aim of reducing the loosening rate, the two major categories being "keeled" fixation and "pegged" fixation. However, no three-dimensional finite element analysis has been performed to quantify the stresses in the cement or to compare the different glenoid prosthesis anchorage systems. The objective of this study was to determine the stresses in the cement layer and surrounding bone for glenoid replacement components. A three-dimensional model of the scapula was generated using CT data for geometry and material property definition. Keeled and pegged designs were inserted into the glenoid, surrounded by a 1-mm layer of bone cement. A 90 deg arm abduction load with a full muscle and joint load was applied, following van der Helm (1994). Deformations of the prosthesis, stresses in the cement, and stresses in the bone were calculated. Stresses were also calculated for a simulated case of rheumatoid arthritis (RA) in which bone properties were modified to reflect that condition. A maximum principal stress-based failure model was used to predict what quantity of the cement is at risk of failure at the levels of stress computed. The prediction is that 94 percent (pegged prosthesis) and 68 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival in normal bone. In RA bone, however, the situation is reversed where 86 percent (pegged prosthesis) and 99 percent (keeled prosthesis) of the cement has a greater than 95 percent probability of survival. Bone stresses are shown to be not much affected by the prosthesis design, except at the tip of the central peg or keel. It is concluded that a "pegged" anchorage system is superior for normal bone, whereas a "keeled" anchorage system is superior for RA bone.  相似文献   

19.
Theoretical concerns about the use of cemented or press-fit stems in revision total knee arthroplasty (TKA) include stress shielding with adverse effects on prosthesis fixation. Revision TKA components are commonly stemmed to protect the limited autogenous bone stock remaining. Revision procedures with the use of stems can place abnormal stresses through even normal bone by their constrained design, type of materials and fixation method and may contribute for bone loss. Experimental quantification of strain shielding in the proximal synthetic tibia following TKA is the main purpose of the present study. In this study, cortical bone strains were measured experimentally with tri-axial strain gauges in synthetic tibias before and after in vitro knee surgery. Three tibias were implanted with cemented and press-fit stem augments and solely with a tibial tray (short monobloc stem) of the P.F.C. Sigma Modular Knee System. The difference between principal strains of the implanted and the intact tibia was calculated for each strain gauge position. The results demonstrated a pronounced strain-shielding effect in the proximal level, close to tibial tray with the cemented stem augment. The press-fit stem presented a minor effect of strain shielding but was more extensively throughout the stem. An increase of strains closely to the distal tip of the cemented and the press-fit stem augment was observed. This suggests for a physiological condition, a potential effect of bone resorption at the proximal region for the cemented stem augment. The localized increase of strains in stems tip can be related with the clinical finding of the pain, at the end of stem after revision TKA.  相似文献   

20.
In this study, the in vitro fixation of four otherwise identical double-tapered stem-types, varying only in surface finish (polished or matte) and proximal stem geometry (with or without flanges) were compared under two conditions. First, four specimens of each stem type were tested with initially bonded stem–cement interfaces, representing early post-operative conditions. Then, simulating conditions a few weeks to months later, stems were implanted in unused synthetic femurs, with a thin layer coating the stem to prevent stem–cement adhesion. Per-cycle motions were measured at both cement interfaces throughout loading. Overall, surface finish had the smallest relative effect on fixation compared to flanges. Flanges increased axial fixation by 22 μm per-cycle, regardless of surface finish (P=0.01). Further, all stems moved under dynamic load at the stem–cement interface during the first few cycles of loading, even without a thin film. The results indicate that flanges have a greater effect on fixation than surface finish, and therefore adverse findings about matte surfaces should not necessarily apply to all double-tapered stems. Specifically, dorsal flanges enhance the stability of a tapered cemented femoral stem, regardless of surface finish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号