首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian homologue of the yeast cdc2 gene encodes a 34-kilodalton serine/threonine kinase that is a subunit of M phase-promoting factor. Recent studies have shown that p34cdc2 is also a major tyrosine-phosphorylated protein in HeLa cells and that its phosphotyrosine content is cell cycle regulated and related to its kinase activity. Here, we show that cdc2 is physically associated with and phosphorylated in vitro by a highly specific tyrosine kinase. Tyrosine phosphorylation of cdc2 in vitro occurs at tyrosine 15, the same site that is phosphorylated in vivo. The association between the two kinases takes place in the cytosolic compartment and involves cyclin B-associated cdc2. Evidence is presented that a substantial fraction of cytosolic cdc2 is hypophosphorylated, whereas nuclear cdc2 is hyperphosphorylated. Finally, we show that the tyrosine kinase associated with cdc2 may be a 67-kilodalton protein and is distinct from src, abl, fms, and other previously reported tyrosine kinases.  相似文献   

2.
We investigated the possible interactions between pp39mos and p34cdc2 kinase in NIH 3T3 cells transformed by c-mosxe. pp39mos is coprecipitated with p34cdc2 when using either anti-PSTAIR antibody or p13suc1-Sepharose beads. Likewise, p34cdc2 is coprecipitated with pp39mos when using anti-mos antibody. However, pp39mos was not present in histone H1 kinase-active p34cdc2 complexes precipitated with anti-p34cdc2 C-terminal peptide antibody even during metaphase of the cell cycle. The molar ratio of p34 to pp39mos in the p13suc1 complex is approximately 2:1. Consistent with the tight association between pp39mos and tubulin, tubulin was also present in equivalent amounts with pp39mos and p34 in the p13suc1 complex. This pp39mos-p34cdc2-tubulin complex may be important in transformation by the mos oncogene.  相似文献   

3.
4.
We previously demonstrated (Ookata et al., 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule- associated proteins (MAPs) might be responsible for this interaction. In this study, we have investigated the mechanism by which p34cdc2 kinase associates with the microtubule cytoskeleton in primate tissue culture cells whose major MAP is known to be MAP4. Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. Detergent extraction before fixation removed cyclin B as well as MAP4 from the microtubules. Depolymerization of some of the cellular microtubules with nocodazole preferentially retained the microtubule localization of both cyclin B and MAP4. The association of p34cdc2/cyclin B kinase with microtubules was also shown biochemically to be mediated by MAP4. Cosedimentation of purified p34cdc2/cyclin B with purified microtubule proteins containing MAP4, but not with MAP-free microtubules, as well as binding of MAP4 to GST-cyclin B fusion proteins, demonstrated an interaction between cyclin B and MAP4. Using recombinant MAP4 fragments, we demonstrated that the Pro-rich C-terminal region of MAP4 is sufficient to mediate the cyclin B-MAP4 interaction. Since p34cdc2/cyclin B physically associated with MAP4, we examined the ability of the kinase complex to phosphorylate MAP4. Incubation of a ternary complex of p34cdc2, cyclin B, and the COOH-terminal domain of MAP4, PA4, with ATP resulted in intracomplex phosphorylation of PA4. Finally, we tested the effects of MAP4 phosphorylation on microtubule dynamics. Phosphorylation of MAP4 by p34cdc2 kinase did not prevent its binding to microtubules, but abolished its microtubule stabilizing activity. Thus, the cyclin B/MAP4 interaction we have described may be important in targeting the mitotic kinase to appropriate cytoskeletal substrates, for the regulation of spindle assembly and dynamics.  相似文献   

5.
We previously demonstrated that nontransformed cells arrest in the G1 phase of the cell cycle when treated with low concentrations (21 nM) of staurosporine (1). Both normal and transformed cells are blocked in the G2 phase of the cell cycle when treated with higher concentrations (160 nM) of staurosporine (1,2). In the present study, we show that staurosporine inhibits the activity of fractionated p34cdc2 and p34cdc2-like kinases with IC50 values of 4-5 nM. We propose that the G2 phase arrest in the cell cycle caused by staurosporine is due, at least in part, to the inhibition of the p34cdc2 kinases.  相似文献   

6.
Mitotic arrest and subsequent apoptosis has been observed in many types of cells treated with anti-microtubule agents. However, the molecular mechanisms underlying the two events as well as their relationship are not well understood; on the contrary, there has been increasing evidence indicating that anti-microtubule agents might induce apoptosis via signaling pathways independent of mitosis. In this study, we found that apoptosis induced by noscapine, an anti-microtubule drug previously shown to cause both mitotic arrest and apoptotic cell death, was blocked by inhibiting p34(cdc2) activity with olomoucine in FM3A murine mammary carcinoma cells or by reducing the level and activity of p34(cdc2) in a mutant cell line FT210 derived from FM3A. Furthermore, transfection of the mutant FT210 cells with wild-type p34(cdc2) restored their ability to undergo mitotic arrest and then apoptosis in response to noscapine. Thus, we conclude that sustained activation of the p34(cdc2) kinase during mitotic arrest is required for subsequent apoptosis induced by noscapine, establishing a link between the two events.  相似文献   

7.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

8.
We have investigated the mechanism by which fission yeast p80cdc25 induces mitosis. The in vivo active domain was localized to the C-terminal 23 kDa of p80cdc25. This domain produced as a bacterial fusion protein (GST-cdc25) caused tyrosyl dephosphorylation and activation of immunoprecipitated p34cdc2. Furthermore, GST-cdc25 dephosphorylated both para-nitrophenyl-phosphate (pNPP) and casein phosphorylated on serine in vitro. Reaction requirements and inhibitor sensitivities were the same as those of phosphotyrosine phosphatases (PTPases). Analysis of cdc25 C-terminal domains from a variety of species revealed a conserved motif having critical residues present at the active site of PTPases. Mutation of the cdc25 Cys480 codon, corresponding to an essential cysteine in the active site of PTPases, abolished the phosphatase activity of GST-cdc25. These data indicate that cdc25 proteins define a novel subclass of eukaryotic PTPases, and strongly argue that cdc25 proteins directly dephosphorylate and activate p34cdc2 kinase to induce M-phase.  相似文献   

9.
Nonmuscle caldesmon from bovine brain bound to microtubules with a stoichiometry of five tubulin dimers to one molecule of caldesmon with values of Ka 4.5 x 10(5) M-1. The binding of caldesmon to microtubules was inhibited in the presence of Ca2+ and calmodulin. The phosphorylation of caldesmon by cdc2 kinase also eliminated the microtubule-binding activity. These results suggest that caldesmon may play a physiological role in the functions of microtubules.  相似文献   

10.
The carboxyl-terminal regions of neurofilament high (NF-H) and middle (NF-M) molecular weight proteins have been suggested to be phosphorylated in vivo by a p34cdc2-like protein kinase, on the basis of the in vivo phosphorylation site motif and in vitro phosphorylation of the proteins by p34cdc2 kinase (Hisanaga, S.I., Kusubata, M., Okumura, E. and Kishimoto, T. (1991) J. Biol. Chem. 266, 21798-21803). A novel proline-directed protein kinase previously identified and purified from bovine brain has been found in this study to phosphorylate NF-H and NF-M at sites identical to those phosphorylated by HeLa cell p34cdc2 kinase. The proline-directed kinase is composed of a 33-kDa and a 25-kDa subunit. The 33-kDa kinase subunit was partially sequenced, and degenerate oligonucleotide primers corresponding to the amino acid sequence information were used to clone the subunit by polymerase chain reaction (PCR). Two overlapping PCR products comprised a complete open reading frame of 292 amino acids. The sequence contains all features of a protein kinase, suggesting that the 33-kDa peptide represents the catalytic subunit of the kinase. The 33-kDa subunit shows high and approximately equal homology to human p34cdc2 and human cdk2, with about 58 and 59% amino acid identity, respectively. These results suggest that the brain kinase represents a new category of the cdc2 family, and that some members of the cdc2 kinase family may have major functions unrelated to cell cycle control.  相似文献   

11.
p34cdc2 kinase is localized to distinct domains within the mitotic apparatus   总被引:14,自引:0,他引:14  
Antibodies to both the C-terminal and the N-terminal regions of the 34 kd serine-threonine specific protein kinase, p34cdc2, were used to study the distribution of this protein in dividing cells and isolated chromosomes of the Indian muntjac. p34cdc2 was found to be present throughout the cytoplasm of dividing cells. In addition, a portion of cellular p34cdc2 was localized to the centrosome, kinetochore, and intercellular bridge and along kinetochore-to-pole microtubules during cell division. Tubulin-denuded metaphase kinetochores retained their association with p34cdc2. The detection of p34cdc2 within a variety of domains of the mitotic apparatus, in addition to the previous reported association with the centrosome [Bailly et al., EMBO J. 8:3985-3995, 1989; Raibowol et al., Cell 57:393-401, 1989] suggests that p34cdc2 may play a role in events associated with anaphases A and B as well as with the transition between interphase and mitosis.  相似文献   

12.
13.
As a major component of mammalian cell plasma membranes, cholesterol is essential for cell growth. Accordingly, the restriction of cholesterol provision has been shown to result in cell proliferation inhibition. We explored the potential regulatory role of cholesterol on cell cycle progression. MOLT-4 and HL-60 cell lines were cultured in a cholesterol-deficient medium and simultaneously exposed to SKF 104976, which is a specific inhibitor of lanosterol 14-alpha demethylase. Through HPLC analyses with on-line radioactivity detection, we found that SKF 104976 efficiently blocked the [(14)C]-acetate incorporation into cholesterol, resulting in an accumulation of lanosterol and dihydrolanosterol, without affecting the synthesis of mevalonic acid. The inhibitor also produced a rapid and intense inhibition of cell proliferation (IC(50) = 0.1 microM), as assessed by both [(3)H]-thymidine incorporation into DNA and cell counting. Flow cytometry and morphological examination showed that treatment with SKF 104976 for 48 h or longer resulted in the accumulation of cells specifically at G2 phase, whereas both the G1 traversal and the transition through S were unaffected. The G2 arrest was accompanied by an increase in the hyperphosphorylated form of p34(cdc2) and a reduction of its activity, as determined by assaying the H1 histone phosphorylating activity of p34(cdc2) immunoprecipitates. The persistent deficiency of cholesterol induced apoptosis. However, supplementing the medium with cholesterol, either in the form of LDL or free cholesterol dissolved in ethanol, completely abolished these effects, whereas mevalonate was ineffective. Caffeine, which abrogates the G2 checkpoint by preventing p34(cdc2) phosphorylation, reduced the accumulation in G2 when added to cultures containing cells on transit to G2, but was ineffective in cells arrested at G2 by sustained cholesterol starvation. Cells arrested in G2, however, were still viable and responded to cholesterol provision by activating p34(cdc2) and resuming the cell cycle. We conclude that in both lymphoblastoid and promyelocytic cells, cholesterol availability governs the G2 traversal, probably by affecting p34(cdc2) activity.  相似文献   

14.
15.
The hexameric ATPase p97/yeast Cdc48p has been implicated in a number of cellular events that are regulated during mitosis, including homotypic membrane fusion, spindle pole body function, and ubiquitin-dependent protein degradation. p97/Cdc48p contains two conserved consensus p34cdc2 kinase phosphorylation sites within its second ATP binding domain. This domain is likely to play a role in stabilising the hexameric form of the protein. We therefore investigated whether p97 could be phosphorylated by p34cdc2 kinase in vitro, and whether phosphorylation might influence the oligomeric status of p97. Monomeric, but not hexameric, p97 was phosphorylated by p34cdc2 kinase, as was the p97-associated protein p47. However, phosphorylation by p34cdc2 kinase did not impair subsequent re-hexamerisation of p97, implying that the phosphorylated residue(s) are not critical for interaction between p97 monomers. Moreover, p97 within both interphase and mitotic cytosols was almost exclusively hexameric, suggesting that the activity of p97 is not regulated during mitosis by influencing the extent of oligomerisation.  相似文献   

16.
The Arabidopsis functional homolog of the p34cdc2 protein kinase.   总被引:19,自引:9,他引:19       下载免费PDF全文
The p34cdc2 protein kinase is a key component of the eukaryotic cell cycle, which is required for G1 to S-phase transition and for entry into mitosis. Using a 380-base pair DNA fragment obtained by polymerase chain reaction amplification from an Arabidopsis thaliana flower cDNA library as a probe, we isolated and sequenced a cdc2-homologous cDNA from Arabidopsis. The encoded polypeptide has extensive homology with cdc2-like kinases. Furthermore, when expressed in a CDC28ts Saccharomyces strain, it partially restores the capacity to grow at 36 degrees C, indicating that the plant cDNA is a functional homolog of the p34cdc2 kinase. Genomic hybridization demonstrated that there is one copy of the cdc2 gene per Arabidopsis haploid genome. Using RNA gel blot analysis, we found that cdc2 mRNA is present in all plant organs.  相似文献   

17.
Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates.   总被引:50,自引:19,他引:50       下载免费PDF全文
C Norbury  J Blow    P Nurse 《The EMBO journal》1991,10(11):3321-3329
The p34cdc2 protein kinase is a conserved regulator of the eukaryotic cell cycle. Here we show that residues Thr14 and Tyr15 of mouse p34cdc2 become phosphorylated as mouse fibroblasts proceed through the cell cycle. We have mutated these residues and measured protein kinase activity of the p34cdc2 variants in a Xenopus egg extract. Phosphorylation of residues 14 and 15, which lie within the presumptive ATP-binding region of p34cdc2, normally restrains the protein kinase until it is specifically dephosphorylated and activated at the G2/M transition. Regulation by dephosphorylation of Tyr15 is conserved from fission yeast to mammals, while an extra level of regulation of mammalian p34cdc2 involves Thr14 dephosphorylation. In the absence of phosphorylation on these two residues, the kinase still requires cyclin B protein for its activation. Inhibition of DNA synthesis inhibits activation of wild-type p34cdc2 in the Xenopus system, but a mutant which cannot be phosphorylated at residues 14 and 15 escapes this inhibition, suggesting that these phosphorylation events form part of the pathway linking completion of DNA replication to initiation of mitosis.  相似文献   

18.
Microinjection of a bacterially expressed stable delta 90 sea urchin cyclin B into Xenopus prophase oocytes, in absence or presence of cycloheximide, provokes the activation of histone H1 kinase and the tyrosine dephosphorylation of p34cdc2. Unexpectedly, when prophase oocytes are submitted to a treatment known to elevate the intracellular cAMP level (3-isobutyl-1-methylxanthine and cholera toxin), delta 90 cyclin has no effect and the oocytes remain blocked in prophase. This inhibition is reverted by the microinjection of the inhibitor of cAMP-dependent protein kinase. When delta 90 cyclin is microinjected into oocytes depleted of endogenous cyclins (cycloheximide-treated metaphase I) and in the presence of a high intracellular concentration of cAMP, p34cdc2 kinase is tyrosine rephosphorylated. Altogether, our results indicate that in Xenopus oocyte, cAMP-dependent protein kinase (A-kinase) controls the formation of the cyclin B/p34cdc2 complex which remains inactive and tyrosine phosphorylated.  相似文献   

19.
The Cdc2L locus encoding the PITSLRE protein kinases maps to chromosome band 1p36 and consists of two duplicated and tandemly linked genes. The purpose of the present study was to determine whether diminution of PITSLRE kinases leads to deregulation of apoptosis. The human melanoma cell lines A375 (Cdc2L wild-type alleles) and UACC 1227 (mutant Cdc2L alleles) were tested with agonist anti-Fas monoclonal antibody. We found that exposure of these cells to anti-Fas for 24, 48, or 72 h resulted in differential sensitivity to Fas-induced apoptosis. In A375, cell death started at 24-48 h post-treatment, and it was maximal by 72 h. Conversely, UACC 1227 cells were resistant to Fas-mediated apoptosis. Induction of PITSLRE histone H1 kinase activity was observed in A375 anti-Fas treated but not in UACC 1227 cells. Also, the PITSLRE protein kinase activity in A375 anti-Fas-treated cells preceded maximal levels of apoptosis. Finally, fluorescence confocal microscopy revealed a nuclear localization of PITSLRE proteins in normal melanocytes and A375 cells but a cytoplasmic localization in UACC 1227 cells. The differences in PITSLRE protein and cellular localization between A375 and UACC 1227 cells appear to account for the differences in sensitivity of the two cells lines to anti-Fas and staurosporine. These observations suggest that alterations in PITSLRE gene expression and protein localization may result in the loss of apoptotic signaling.  相似文献   

20.
Cellular differentiation of neoplastic cells after exposure to 1, 25-dihydroxyvitamin D(3) (1,25 D(3)) is accompanied by altered cell cycle regulation. In previous studies, blocks in both G(1)/S and G(2)/M checkpoints have been observed in 1,25D(3)-treated HL60 cells, but the mechanism of the 1,25D(3)-induced G(2)/M block has not been previously reported. In this study, we show by cell cycle analysis, using bromodeoxyuridine pulse-chase labeling, that the G(2)/M block in 1,25D(3)-treated HL60 cells is incomplete. We also demonstrate that although the 1,25D(3)-treated cells exhibit elevated levels of cyclin B1, Cdc25C, and Cdk7, which are positive regulators of the G(2)/M traverse, these cells have decreased protein levels of p34(cdc2) and decreased p34(cdc2) kinase activity. This provides potential mechanisms for the observed accumulation of cells in the G(2) cell cycle compartment and occasional polyploidization following treatment of HL60 cells with 1,25D(3). The data also suggest that the ability of some cells to traverse this block may be the result of cellular compensatory mechanisms responding to decreased p34(cdc2) activity by increasing the levels of other regulators of the G(2) traverse, such as cyclin B1, Cdc25C, and Cdk7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号