首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary: Rab GTPases are essential for vesicular transport. Rab GDP dissociation inhibitor (GDI) binds to GDP‐bound rabs, removes rabs from acceptor membranes and delivers rabs to donor membranes. We isolated lethal GDI mutations in Drosophila and analyzed their developmental phenotypes. To learn how these mutations affect GDI structure, the crystal structure of Drosophila GDI was determined by molecular replacement to a resolution of 3.0 Å. Two hypomorphic, missense mutations are located in domain II of GDI at highly conserved positions, but not in previously identified sequence conserved regions. The mutant GDIs were tested for ability to extract rabs from membranes and showed wild‐type levels of rab membrane extraction. The two missense alleles showed intragenic complementation, indicating that domain II of GDI may have two separable functions. This study indicates that GDI function is essential for development of a complex, multicellular organism and that puparium formation and pole cell formation are especially dependent on GDI function. genesis 31:17–29, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
The rab GDP-dissociation inhibitor (rab GDI) proteins are involved in the regulation of vesicle-mediated cellular transport. We isolated the amphioxus rab GDI gene, analyzed its expression during amphioxus development, and performed a phylogenetic analysis of the rab GDI family. In contrast to the two major rab GDI forms in mammals, the alpha and beta forms, there is only one rab GDI isoform in amphioxus. Our analysis indicates that the occurrence of the alpha and beta forms of rab GDI preceded the divergence of lineages leading to birds and mammals, and that the amphioxus rab GDI may have evolved directly from the common ancestor of both forms. While the mammalian rab GDI beta-genes are ubiquitously expressed, the rab GDI alpha genes are predominantly expressed in neural tissues. The expression analysis of the amphioxus rab GDI gene shows predominantly neural expression similar to that of the mammalian rab GDI alpha form, suggesting that the ancestral expression pattern of chordate rab GDI was neural. In addition, the chicken rab GDI beta-like gene also shows neural-specific expression, which indicates that the neural expression was retained in both early postduplication alpha and beta isoforms and that a novel function associated with ubiquitous expression may have evolved uniquely in mammals. These results reveal a likely scenario of functional divergence of the rab GDI genes after duplication of the ancestral gene. A similar pattern of evolution, in which one of the duplicated genes retained a role similar to that of the ancestral one while other genes were recruited into novel roles, was also observed in the analysis of chordate Otx and hedgehog genes. In the rab GDI, hedgehog, and Otx gene families, the gene retaining the ancestral role shows a lower rate of sequence evolution than its counterpart, which was recruited for a novel function.  相似文献   

3.
One of the major activities of developing neurons is the transport of new membrane to the growing axon. Candidates for playing a key role in the regulation of this intense traffic are the small GTP-binding proteins of the rab family. We have used hippocampal neurons in culture and analyzed membrane traffic activity after suppressing the expression of the small GTP-binding protein rab8. Inhibition of protein expression was accomplished by using sequence-specific antisense oligonucleotides. While rab8 depletion resulted in the blockage of morphological maturation in 95% of the neurons, suppression of expression of another rab protein, rab3a, had no effect, and all neurons developed normal axons and dendrites. The impairment of neuronal maturation by rab8 antisense treatment was due to inhibition of membrane traffic. Thus, by using video-enhanced differential interference contrast microscopy, we observed in the rab8-depleted cells a dramatic reduction in the number of vesicles undergoing anterograde transport. Moreover, by incubating antisense-treated neurons with Bodipy-labeled ceramide, a fluorescent marker for newly formed exocytic vesicles, we observed fluorescence labeling restricted to the Golgi apparatus, whereas in control cells labeling was found also in the neurites. These results show the role of the small GTPase rab8 in membrane traffic during neuronal process outgrowth.  相似文献   

4.
Manipulation of rab GTPase function by intracellular bacterial pathogens.   总被引:1,自引:0,他引:1  
Intracellular bacterial pathogens have evolved highly specialized mechanisms to enter and survive within their eukaryotic hosts. In order to do this, bacterial pathogens need to avoid host cell degradation and obtain nutrients and biosynthetic precursors, as well as evade detection by the host immune system. To create an intracellular niche that is favorable for replication, some intracellular pathogens inhibit the maturation of the phagosome or exit the endocytic pathway by modifying the identity of their phagosome through the exploitation of host cell trafficking pathways. In eukaryotic cells, organelle identity is determined, in part, by the composition of active Rab GTPases on the membranes of each organelle. This review describes our current understanding of how selected bacterial pathogens regulate host trafficking pathways by the selective inclusion or retention of Rab GTPases on membranes of the vacuoles that they occupy in host cells during infection.  相似文献   

5.
The passage of leukocytes out of the blood circulation and into tissues is necessary for the normal inflammatory response, but it also occurs inappropriately in many pathological situations. This process is limited by the barrier presented by the junctions between adjacent endothelial cells that line blood vessels. Here we show that activation of the Rap1 GTPase in endothelial cells accelerated de novo assembly of endothelial cell-cell junctions and increased the barrier function of endothelial monolayers. In contrast, depressing Rap1 activity by expressing Rap1GAP led to disassembly of these junctions and increased their permeability. We also demonstrate that endogenous Rap1 was rapidly activated at early stages of junctional assembly, confirming the involvement of Rap1 during junctional assembly. Intriguingly, elevating Rap1 activity selectively within endothelial cells decreased leukocyte transendothelial migration, whereas inhibiting Rap1 activity by expression of Rap1GAP increased leukocyte transendothelial migration, providing physiological relevance to our hypothesis that Rap1 augments barrier function of inter-endothelial cell junctions. Furthermore, these results suggest that Rap1 may be a novel therapeutic target for clinical conditions in which an inappropriate inflammatory response leads to disease.  相似文献   

6.
To detect specific partners of the small Golgi-localized GTPase rab1b we generated rab1b mutants and used them as bait proteins in yeast two-hybrid screens. We isolated several specifically interacting clones. Two of them encode large protein fragments highly homologous to rat GM130 and to human Golgin95. The full-length human GM130 cDNA was cloned and its interaction with rab1b was characterized in detail by yeast two-hybrid and in vitro binding assays. Here we report for the first time that the rab1b protein interacts specificially with GM130 in a GTP-dependent manner and therefore needs the hypervariable regions of the N- and C-termini. We mapped the rab1b binding site of GM130 and provide evidence that it is different to the previously described p115 and Grasp65 binding sites of the GM130 protein.  相似文献   

7.
Recently, the bacterial elongation factor LepA was identified as critical for the accuracy of in vitro translation reactions. Extremely well conserved homologues of LepA are present throughout bacteria and eukaryotes, but the physiological relevance of these proteins is unclear. Here we show that the yeast counterpart of LepA, Guf1, is located in the mitochondrial matrix and tightly associated with the inner membrane. It binds to mitochondrial ribosomes in a GTP-dependent manner. Mutants lacking Guf1 show cold- and heat-sensitive growth defects on non-fermentable carbon sources that are especially pronounced under nutrient-limiting conditions. The cold sensitivity is explained by diminished rates of protein synthesis at low temperatures. At elevated temperatures, Guf1-deficient mutants exhibit defects in the assembly of cytochrome oxidase, suggesting that the polypeptides produced are not functional. Moreover, Guf1 mutants exhibit synthetic growth defects with mutations of the protein insertase Oxa1. These observations show a critical role for Guf1 in vivo. The observed defects in Guf1-deficient mitochondria are consistent with a function of Guf1 as a fidelity factor of mitochondrial protein synthesis.  相似文献   

8.
Small GTPases of the rab family control distinct steps of intracellular transport. The function of their GTPase activity is not completely understood. To investigate the role of the nucleotide state of rab5 in the early endocytic pathway, the effects of two mutants with opposing biochemical properties were tested. The Q79L mutant of rab5, analogous with the activating Q61L mutant of p21-ras, was found to have a strongly decreased intrinsic GTPase activity and was, unlike wild-type rab5, found mainly in the GTP-bound form in vivo. Expression of this protein in BHK and HeLa cells led to a dramatic change in cell morphology, with the appearance of unusually large early endocytic structures, considerably larger than those formed upon overexpression of wild-type rab5. An increased rate of transferrin internalization was observed in these cells, whereas recycling was inhibited. Cytosol containing rab5 Q79L stimulated homotypic early endosome fusion in vitro, even though it contained only a small amount of the isoprenylated protein. A different mutant, rab5 S34N, was found, like the inhibitory p21-ras S17N mutant, to have a preferential affinity for GDP. Overexpression of rab5 S34N induced the accumulation of very small endocytic profile and inhibited transferrin endocytosis. This protein inhibited fusion between early endosomes in vitro. The opposite effects of the rab5 Q79L and S34N mutants suggest that rab5:GTP is required prior to membrane fusion, whereas GTP hydrolysis by rab5 occurs after membrane fusion and functions to inactivate the protein.  相似文献   

9.
We have shown recently that one of the survival strategies used by Leishmania donovani promastigotes during the establishment of infection in macrophages consists in inhibiting phagosome–endosome fusion. This inhibition requires the expression of lipophosphoglycan (LPG), the predominant surface glycoconjugate of promastigotes, as parasites expressing truncated forms of LPG reside in phagosomes that fuse extensively with endocytic organelles. In the present study, we developed a single-organelle fluorescence analysis approach to study and analyse the intracellular trafficking of 'fusogenic' and 'low-fusogenic' phagosomes induced by an LPG repeating unit-defective mutant ( lpg2 KO) or by wild-type L. donovani promastigotes respectively. The results obtained indicate that phagosomes containing mutant parasites fuse extensively with endocytic organelles and transform into phagolysosomes by losing the early endosome markers EEA1 and transferrin receptor, and acquiring the late endocytic and lysosomal markers rab7 and LAMP1. In contrast, a majority of 'low-fusogenic' phagosomes containing wild-type L. donovani promastigotes do not acquire rab7, wheres they acquire LAMP1 with slower kinetics. These results suggest that L. donovani parasites use LPG to restrict phagosome–endosome fusion at the onset of infection in order to prevent phagosome maturation. This is likely to permit the transformation of hydrolase-sensitive promastigotes into hydrolase-resistant amastigotes within a hospitable vacuole not displaying the harsh environment of phagolysosomes.  相似文献   

10.
The rab3A gene product is a 25-kilodalton guanine nucleotide-binding protein, expressed at high levels in neural tissue, which has about 30% homology to ras. Recombinant rab3A protein and p25rab3A purified from bovine brain membranes have been used as substrates to look for factors that regulate its biochemical activity. A detergent-soluble factor associated with rat brain membranes exists that accelerates the GTPase activity of both mammalian and recombinant p25rab3A. The activity was thermolabile, sensitive to trypsin, and behaved like an integral membrane protein. GTPase-activating protein (GAP) activity toward p25rab3A was also detected in the cytosolic fraction. This activity was observed in all other tissues examined, in addition to brain. Based upon dose-response data, the rab3A-GAP activity from rat brain was approximately equally distributed between cytosolic and membrane fractions; no activity was found in the nuclear fraction. Recombinant ras-specific GAP had no effect upon the GTPase activity of p25rab3A. By gel filtration chromatography, the factor in rat brain cytosol has a molecular size of 400,000 daltons.  相似文献   

11.
Following entry into non-phagocytic HeLa cells, the facultative pathogen Salmonella typhimurium survives and replicates within a membrane-bound vacuole. Preceding the initiation of intracellular replication there is a lag phase, during which the bacteria modulate their environment. This phase is characterized by the rapid recycling of early endosomal proteins present on the nascent vacuole followed by the acquisition of a subset of lysosomal proteins. To gain a better understanding of the mechanism of intracellular survival, we have followed the biogenesis of the S. typhimurium-containing vacuole (SCV) in HeLa cells expressing different mutant forms of the small GTPase rab7. We demonstrate that the SCV recruits pre-existing lysosomal glycoproteins (Lgps) in a rab7-dependent manner, without directly interacting with lysosomes. We also show the transient accumulation, in the vicinity of the SCV, of novel rab7- and Lgp-containing vesicles containing very low amounts of cathepsin D. The size of these vesicles is dependent on rab7 activity, suggesting a role for rab7 in their homotypic fusion. Taken together, these results indicate that rab7 regulates SCV biogenesis during the phase characterized by the rapid acquisition of lysosomal proteins. We propose that SCV maturation involves its interaction with rab7/Lgp-containing vesicles which are possible intermediate cargo components of the late endocytic pathway.  相似文献   

12.
We recently identified a novel rat cDNA: rab1B, closely related to the rab1A cDNA and to the yeast YPT1 gene. The rab1B cDNA encodes a 202 amino acid protein (22.1 kDa) that was produced in Escherichia coli under the control of the phi 10 promoter for the T7 RNA polymerase. The rab1B protein was purified in large amounts to near homogeneity in a simplified procedure. We studied the biochemical properties of rab1B and rab1A proteins. They both bind specifically GTP and GDP and possess intrinsic GTPase activities. The rab1B Lys21----Met mutant protein does not bind GTP, whereas the Ala65----Thr mutant has a reduced GTPase activity and is competent for autophosphorylation in the presence of GTP.  相似文献   

13.
We have previously identified prenylated Rab acceptor 1 (PRA1) as a novel cellular interacting partner for Epstein-Barr virus-encoded oncoprotein, latent membrane protein 1 (LMP1). The intracellular trafficking and full signaling of LMP1 requires its interaction with PRA1. To further explore the role of PRA1 in Epstein-Barr virus-associated nasopharyngeal carcinoma (NPC) cells, we generated several PRA1-knockdown cell clones, which exhibited altered cell morphology and increased cell motility. We identified proteins differentially expressed in the knockdown clones by means of isobaric mass tags labeling coupled with multidimensional liquid chromatography-mass spectrometry. We validated a panel of proteins, which showed consistent up-regulation in PRA1-knockdown clones and participated in regulating lipid homeostasis and cell migration. Immunofluorescence staining further revealed altered localization of these proteins and accumulation of intracellular cholesterol in PRA1-knockdown clones. These effects were phenocopied by treatment with a cholesterol transport inhibitor, U18666A. Moreover, overexpressed PRA1 was able to alleviate the dysregulation of these affected proteins either from PRA1 knockdown or U18666A treatment, implying a role for PRA1 in regulating the levels of these affected proteins in response to altered cholesterol homeostasis. We further demonstrated that LMP1 expression caused PRA1 sequestration in NPC cells, leading to a consequence reminiscent of PRA1 knockdown. Finally, the immunohistochemistry showed a physiological relevance of the PRA1-associated proteome-wide changes in NPC biopsy tissues. In sum, our findings delineated novel roles of PRA1 in lipid transport and cell migration, and provided additional insights into the molecular basis of NPC morphogenesis, namely a consequence of LMP1-PRA1 interaction.Prenylated Rab acceptor 1 (PRA1)1, which is a transmembrane protein of 21 kDa, is ubiquitously expressed in human tissues and localizes at the Golgi apparatus, post-Golgi vesicles, endosomes, and the plasma membrane (1, 2). As revealed by its name, PRA1 interacts with numerous Rab GTPases (2, 3), the latter of which function in a wide variety of biological processes such as endocytosis and exocytosis and have emerging roles in diseases (46). The PRA1-Rab interactions may assist in the packaging of Rabs into vesicles for transport to the destined compartments (2). Moreover, PRA1 also acts as a dual receptor for vesicle-associated membrane protein 2 (VAMP2) and GDP dissociation inhibitor 1 (GDI1) (7, 8). As a GDI displacement factor, PRA1 is able to catalytically dissociate endosomal Rabs (Rab9 and Rab5) from GDI-bound complexes and thereby escorts the liberated Rabs onto membranes (9). Given this relative lack of Rab specificity, PRA1-mediated regulation of Rab proteins is probably restricted by the cellular localization of PRA1, i.e. PRA1 regulates the Rabs present in the organelles with which PRA1 associates.Although its precise physical role remains to be better elucidated, PRA1 seems to function in the regulation of docking and fusion of transport vesicles both in the Golgi apparatus and at the plasma membrane, or alternately function as a sorting protein in the Golgi apparatus (10). PRA1 can form a complex with Rab3a and VAMP2, and the interaction of this complex can result in VAMP2 activation (7). Once activated, VAMP2 interacts with syntaxin, followed by the docking and fusion of transport vesicles with target membrane (11). Since syntaxin and VAMP2 are enriched in Golgi-derived lipid rafts (12), PRA1 is thought to associate with lipid rafts (13).As a platform for lipid-lipid and lipid-protein interactions, lipid rafts play critical roles in protein transport, sorting, targeting, signaling as well as membrane trafficking, and are essential for enveloped virus budding and assembly (14). In agreement with this notion, several viral proteins have been shown to interact with PRA1 to benefit the survival of viruses. For instance, the spike protein VP4 encoded by rotavirus and the envelope transmembrane protein gp41 encoded by retrovirus can interact with PRA1, and their interaction with PRA1 may in turn enhance the assembly of rotavirus and retrovirus particles, respectively (13, 15). In this regard, it is conceivable to speculate a role for PRA1 in promoting or stabilizing protein association with lipid rafts.In the previous study, we have identified PRA1 as a novel binding partner for the Epstein-Barr virus (EBV)-encoded oncoprotein, latent membrane protein 1 (LMP1) (16). EBV is closely associated with human diseases including nasopharyngeal carcinoma (NPC) (17), which is one of the common cancers in Taiwan and southern China, and LMP1 is shown to mainly contribute to these EBV-associated malignancies (18). By mimicking members of tumor necrosis factor receptor (TNFR) family, LMP1 can induce several signaling pathways in a constitutively-activated manner to exert its oncogenic potency (1921). Importantly, the intracellular trafficking of LMP1 requires its interaction with PRA1, and this requirement is critical for full activation of LMP1-meditaed signaling (16). Accordingly, delineating the propensity of PRA would shed light on the nature of PRA1-LMP1 interaction and yield additional insights into the tumorigenesis of NPC.To further assess the role of PRA1 in NPC cells, in this study we generated several PRA1-knockdown NPC cell clones, which displayed altered cell morphology, and used these clones to analyze the effect of PRA1 on cell morphology and relevant biological processes. We discovered a panel of dysregulated proteins in PRA1-knockdown clones, which participate in lipid metabolism and transport and cell adhesion and migration, by using isobaric mass tags (iTRAQ) labeling approaches combined with multidimensional liquid chromatography-mass spectrometry (LC-MS/MS). To determine the physiological relevancy of our findings, we investigated the functional consequence of PRA1 sequestration in LMP1-expressing cells. We confirmed the phenotype of LMP1-expressing cells, namely intracellular cholesterol accumulation, elevated expression levels of those PRA1-affected proteins, and increased cell motility, consistent with the effect of PRA1 knockdown. We also validated the PRA1-associated dysregulation of selected proteins in NPC tissues using immunohistochemistry.Taken together, our findings revealed a PRA1-involved modulation in lipid homeostasis and cell migration, and implied an unexpected association of the LMP1-PRA1 interaction with NPC morphogenesis.  相似文献   

14.
The BAR proteins are a well-conserved family of proteins including Rvsp in yeast, amphiphysins and Bin proteins in mammals. In yeast, as in mammals, BAR proteins are known to be implicated in vesicular traffic. The Gyp5p (Ypl249p) and Ymr192p proteins interact in two-hybrid tests with both Rvs161p and Rvs167p. Gyp5p is a Ypt/Rab-specific GAP and Ymr192p is highly similar to Gyp5p. To specify the interaction between Rvsp and Gyp5p, we used two-hybrid tests to determine the domains necessary for these interactions. The specific SH3 domain of Rvs167p interacted with the N-terminal domain of Gyp5p. Moreover, Gyp5p could form a homodimer. Fus2 protein is a specific partner of Rvs161p in two-hybrid tests. To characterize the functional relationships between these five proteins, we have studied cellular phenotypes in single, double and triple mutant strains for which rvs mutants present defects, such as polarity, cell fusion and meiosis. Phenotypic analysis showed that Gyp5p, Ymr192p and Fus2p were involved in bipolar budding pattern and in meiosis. Specific epistasis or suppressive phenomena were found between the five mutations. Finally, The Gyp5p-GFP fusion protein was localized at the bud tip during apical growth and at the mother-bud neck during cytokinesis. Moreover, Rvs167p and Rvs161p were shown to be essential for the correct localization of Gyp5p. Altogether, these data support the hypothesis that both Rvsp proteins act in vesicular traffic through physical and functional interactions with Ypt/Rab regulators.  相似文献   

15.
Rab1 is a small GTPase regulating vesicular traffic between early compartments of the secretory pathway. To explore the role of rab1 we have analyzed the function of a mutant (rab1a[S25N]) containing a substitution which perturbs Mg2+ coordination and reduces the affinity for GTP, resulting in a form which is likely to be restricted to the GDP-bound state. The rab1a(S25N) mutant led to a marked reduction in protein export from the ER in vivo and in vitro, indicating that a guanine nucleotide exchange protein (GEP) is critical for the recruitment of rab1 during vesicle budding. The mutant protein required posttranslational isoprenylation for inhibition and behaved as a competitive inhibitor of wild-type rab1 function. Both rab1a and rab1b (92% identity) were able to antagonize the inhibitory activity of the rab1a(S25N) mutant, suggesting that these two isoforms are functionally interchangeable. The rab1 mutant also inhibited transport between Golgi compartments and resulted in an apparent loss of the Golgi apparatus, suggesting that Golgi integrity is coupled to rab1 function in vesicular traffic.  相似文献   

16.
Rab GDP dissociation inhibitors (GDI)-facilitated extraction of prenylated Rab proteins from membranes plays an important role in vesicular membrane trafficking. The investigated thermodynamic properties of yeast Rab.GDI and Rab.MRS6 complexes demonstrated differences in the Rab binding properties of the closely related Rab GDI and MRS6 proteins, consistent with their functional diversity. The importance of the Rab C terminus and its prenylation for GDI/MRS6 binding was demonstrated using both biochemical and structural data. The presented structures of the apo-form yeast Rab GDI and its two complexes with unprenylated Rab proteins, together with the earlier published structures of the prenylated Ypt1.GDI, provide evidence of allosteric regulation of the GDI lipid binding site opening, which plays a key role in the proposed mechanism of GDI-mediated Rab extraction. We suggest a model for the interaction of GDI with prenylated Rab proteins that incorporates a stepwise increase in affinity as the three different partial interactions are successively formed.  相似文献   

17.
Batoko H  Zheng HQ  Hawes C  Moore I 《The Plant cell》2000,12(11):2201-2218
We describe a green fluorescent protein (GFP)-based assay for investigating membrane traffic on the secretory pathway in plants. Expression of AtRab1b(N121I), predicted to be a dominant inhibitory mutant of the Arabidopsis Rab GTPase AtRab1b, resulted in accumulation of a secreted GFP marker in an intracellular reticulate compartment reminiscent of the endoplasmic reticulum. This accumulation was alleviated by coexpressing wild-type AtRab1b but not AtRab8c. When a Golgi-targeted and N-glycosylated variant of GFP was coexpressed with AtRab1b(N121I), the variant also accumulated in a reticulate network and an endoglycosidase H-sensitive population appeared. Unexpectedly, expression of AtRab1b(N121I), but not of the wild-type AtRab1b, resulted in a reduction or cessation of vectorial Golgi movement, an effect that was reversed by coexpression of the wild type. We conclude that AtRab1b function is required for transport from the endoplasmic reticulum to the Golgi apparatus and suggest that this process may be coupled to the control of Golgi movement.  相似文献   

18.
We have investigated the in vivo functional role of rab5, a small GTPase associated with the plasma membrane and early endosomes. Wild-type rab5 or rab5-ile133, a mutant protein defective in GTP binding, was overexpressed in baby hamster kidney cells. In cells expressing the rab5ile 133 protein, the rate of endocytosis was decreased by 50% compared with normal, while the rate of recycling was not significantly affected. The morphology of early endosomes was also drastically changed by the mutant protein, which induced accumulation of small tubules and vesicles at the periphery of the cell. Surprisingly, overexpression of wild-type rab5 accelerated the uptake of endocytic markers and led to the appearance of atypically large early endosomes. We conclude that rab5 is a rate-limiting component of the machinery regulating the kinetics of membrane traffic in the early endocytic pathway.  相似文献   

19.
Down-regulation of Rac-1 GTPase by Estrogen   总被引:3,自引:0,他引:3  
  相似文献   

20.
Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号