首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Brain-derived neurotrophic factor (BDNF) has been reported to exert an acute potentiation of synaptic activity. Here we examined the action of BDNF on synchronous spontaneous Ca(2+) oscillations in cultured cerebral cortical neurons prepared from postnatal 2-3-day-old rats. The synchronous spontaneous Ca(2+) oscillations began at approximately DIV 5. It was revealed that voltage-dependent Ca(2+) channels and ionotropic glutamate receptors were involved in the synchronous spontaneous oscillatory activity. BDNF potentiated the frequency of these oscillations. The BDNF-potentiated activity reached 207 +/- 20.1% of basal oscillatory activity. NT-3 and NT-4/5 also induced the potentiation. However, nerve growth factor did not. We examined the correlation between BDNF-induced glutamate release and the BDNF-potentiated oscillatory activity. Both up-regulation of phospholipase C-gamma (PLC-gamma) expression and the BDNF-induced glutamate release occurred at approximately DIV 5 when the BDNF-potentiated oscillations appeared. We confirmed that the BDNF-induced glutamate release occurred through a glutamate transporter that was dependent on the PLC-gamma/IP(3)/Ca(2+) pathway. Transporter inhibitors blocked the BDNF-potentiated oscillations, demonstrating that BDNF enhanced the glutamatergic transmissions in the developing cortical network by inducing glutamate release via a glutamate transporter.  相似文献   

2.
Hayashi T  Su TP 《Cell》2007,131(3):596-610
Communication between the endoplasmic reticulum (ER) and mitochondrion is important for bioenergetics and cellular survival. The ER supplies Ca(2+) directly to mitochondria via inositol 1,4,5-trisphosphate receptors (IP3Rs) at close contacts between the two organelles referred to as mitochondrion-associated ER membrane (MAM). We found here that the ER protein sigma-1 receptor (Sig-1R), which is implicated in neuroprotection, carcinogenesis, and neuroplasticity, is a Ca(2+)-sensitive and ligand-operated receptor chaperone at MAM. Normally, Sig-1Rs form a complex at MAM with another chaperone, BiP. Upon ER Ca(2+) depletion or via ligand stimulation, Sig-1Rs dissociate from BiP, leading to a prolonged Ca(2+) signaling into mitochondria via IP3Rs. Sig-1Rs can translocate under chronic ER stress. Increasing Sig-1Rs in cells counteracts ER stress response, whereas decreasing them enhances apoptosis. These results reveal that the orchestrated ER chaperone machinery at MAM, by sensing ER Ca(2+) concentrations, regulates ER-mitochondrial interorganellar Ca(2+) signaling and cell survival.  相似文献   

3.
Fas receptor is a member of the tumor necrosis factor-alpha family of death receptors that mediate physiologic apoptotic signaling. To investigate the molecular mechanisms regulating calcium mobilization during Fas-mediated apoptosis, we have analyzed the sequential steps leading to altered calcium homeostasis and cell death in response to activation of the Fas receptor. We show that Fas-mediated apoptosis requires endoplasmic reticulum-mediated calcium release in a mechanism dependent on phospholipase C-gamma1 (PLC-gamma1) activation and Ca2+ release from inositol 1,4,5-trisphosphate receptor (IP3R) channels. The kinetics of Ca2+ release were biphasic, demonstrating a rapid elevation caused by PLC-gamma1 activation and a delayed and sustained increase caused by cytochrome c binding to IP3R. Blocking either phase of Ca2+ mobilization was cytoprotective, highlighting PLC-gamma1 and IP3R as possible therapeutic targets for disorders associated with Fas signaling.  相似文献   

4.
We have shown that the caveolar Na/K-ATPase transmits ouabain signals via multiple signalplexes. To obtain the information on the composition of such complexes, we separated the Na/K-ATPase from the outer medulla of rat kidney into two different fractions by detergent treatment and density gradient centrifugation. Analysis of the light fraction indicated that both PLC-gamma1 and IP3 receptors (isoforms 2 and 3, IP3R2 and IP3R3) were coenriched with the Na/K-ATPase, caveolin-1 and Src. GST pulldown assays revealed that the central loop of the Na/K-ATPase alpha1 subunit interacts with PLC-gamma1, whereas the N-terminus binds IP3R2 and IP3R3, suggesting that the signaling Na/K-ATPase may tether PLC-gamma1 and IP3 receptors together to form a Ca(2+)-regulatory complex. This notion is supported by the following findings. First, both PLC-gamma1 and IP3R2 coimmunoprecipitated with the Na/K-ATPase and ouabain increased this interaction in a dose- and time-dependent manner in LLC-PK1 cells. Depletion of cholesterol abolished the effects of ouabain on this interaction. Second, ouabain induced phosphorylation of PLC-gamma1 at Tyr(783) and activated PLC-gamma1 in a Src-dependent manner, resulting in increased hydrolysis of PIP2. It also stimulated Src-dependent tyrosine phosphorylation of the IP3R2. Finally, ouabain induced Ca(2+) release from the intracellular stores via the activation of IP3 receptors in LLC-PK1 cells. This effect required the ouabain-induced activation of PLC-gamma1. Inhibition of Src or depletion of cholesterol also abolished the effect of ouabain on intracellular Ca(2+).  相似文献   

5.
Brain-derived neurotrophic factor (BDNF) has been reported to play an important role in neuronal plasticity. In this study, we examined the effect of BDNF on an activity-dependent synaptic function in an acute phase. First, we found that short-term treatment (10 min) with BDNF enhanced depolarization-evoked glutamate release in cultured cortical neurons. The enhancement diminished gradually according to the length of BDNF treatment. The BDNF-enhanced release did not require the synthesis of protein and mRNA. Both tetanus toxin and bafilomycin abolished the depolarization-evoked glutamate release with or without BDNF, indicating that BDNF acted via an exocytotic pathway. Next, we investigated the effect of BDNF on intracellular Ca(2+). BDNF potentiated the increase in intracellular Ca(2+) induced by depolarization. The Ca(2+) was derived from intracellular stores, because thapsigargin completely inhibited the potentiation. Furthermore, both thapsigargin and xestospongin C inhibited the effect of BDNF. These results suggested that the release of Ca(2+) from intracellular stores mediated by the IP(3) receptor was involved in the BDNF-enhanced glutamate release. Last, it was revealed that the enhancement of glutamate release by BDNF was dependent on the TrkB-PLC-gamma pathway. These results clearly demonstrate that short-term treatment with BDNF enhances an exocytotic pathway by potentiating the accumulation of intracellular Ca(2+) through intracellular stores.  相似文献   

6.
Neurotrophic factors (NTFs) can protect against or sensitize neurons to excitotoxicity. We studied the role played by various NTFs in the excitotoxic death of purified embryonic rat motor neurons. Motor neurons cultured in brain-derived neurotrophic factor, but not neurotrophin 3, glial-derived neurotrophic factor, or cardiotrophin 1, were sensitive to excitotoxic insult. BDNF also induces excitotoxic sensitivity (ES) in motor neurons when BDNF is combined with these other NTFs. The effect of BDNF depends on de novo protein and mRNA synthesis. Reagents that either activate or inhibit the 75-kDa NTF receptor p75NTR do not affect BDNF-induced ES. The low EC50 for BDNF-induced survival and ES suggests that TrkB mediates both of these biological activities. BDNF does not alter glutamate-evoked rises of intracellular Ca2+, suggesting BDNF acts downstream. Both wortmannin and LY294002, which specifically block the phosphatidylinositol 3-kinase (PI3K) intracellular signaling pathway in motor neurons, inhibit BDNF-induced ES. We confirm this finding using a herpes simplex virus (HSV) that expresses the dominant negative p85 subunit of PI3K. Infecting motor neurons with this HSV, but not a control HSV, blocks activation of the PI3K pathway and BDNF-induced ES. Through the activation of TrkB and the PI3K signaling pathway, BDNF renders developing motor neurons susceptible to glutamate receptor-mediated cell death.  相似文献   

7.
We recently demonstrated that endoplasmic reticulum (ER) stress induces sigma-1 receptor (Sig-1R) expression through the PERK pathway, which is one of the cell''s responses to ER stress. In addition, it has been demonstrated that induction of Sig-1R can repress cell death signaling. Fluvoxamine (Flv) is a selective serotonin reuptake inhibitor (SSRI) with a high affinity for Sig-1R. In the present study, we show that treatment of neuroblastoma cells with Flv induces Sig-1R expression by increasing ATF4 translation directly, through its own activation, without involvement of the PERK pathway. The Flv-mediated induction of Sig-1R prevents neuronal cell death resulting from ER stress. Moreover, Flv-induced ER stress resistance reduces the infarct area in mice after focal cerebral ischemia. Thus, Flv, which is used frequently in clinical practice, can alleviate ER stress. This suggests that Flv could be a feasible therapy for cerebral diseases caused by ER stress.Sigma-1 receptor (Sig-1R) is expressed on endoplasmic reticulum (ER) membranes. Several functions have been attributed to Sig-1R, including regulation of ion channels such as Ca2+ and K+ channels, inhibition of Ca2+ influx through the N-methyl-D-aspartate (NMDA) receptor, modulation of the release of neurotransmitters such as dopamine, regulation of lipid distribution, cell differentiation, and behavioral sensitization to cocaine and other stimulants.1 Recently, Sig-1R was shown to have neuroprotective activity, and several studies have demonstrated that it acts as a molecular chaperone.2, 3, 4 Under normal conditions, Sig-1R forms a complex with another molecular chaperone, GRP78/BiP, on the ER membrane. Under ER stress, Sig-1R dissociates from BiP, interacts with IP3 receptors, and stabilizes IP3 receptor structure.4Numerous studies have examined the role of Sig-1R in the pathogenesis of psychiatric diseases. Postmortem analysis has shown that Sig-1R expression is reduced in the brains of schizophrenia patients.5 Additionally, Sig-1R knockout mice exhibit symptoms of depression.6 Given these observations, it is possible that reduction of Sig-1R is a pathogenic factor in disorders such as schizophrenia and depression. Therefore, numerous synthetic compounds that bind to Sig-1R, including antidepressants and antipsychotic drugs, have been examined as therapeutic targets for these disorders.7 However, the results of clinical testing have not been satisfactory.8 One possible reason is that the effects of compounds that bind to Sig-1R cannot fully manifest because Sig-1R expression is reduced in the brains of patients with psychiatric diseases. This led us to examine whether compounds capable of inducing Sig-1R expression might be therapeutic in these diseases.When cells encounter ER stress, Sig-1R expression increases in response to activation of the PERK pathway, which is one of the cellular responses to ER stress.9 In addition, the induction of Sig-1R expression can repress cell death signals that accompany ER stress.9Fluvoxamine (Flv) is a selective serotonin reuptake inhibitor (SSRI) that is widely used in clinical practice as an antidepressant. Because Flv is a potent Sig-1R agonist that exhibits a stronger affinity for Sig-1R than for other SSRIs,10 we investigated its effect on Sig-1R expression and on the cellular ER stress responses.  相似文献   

8.
Phospholipase C-gamma is required for agonist-induced Ca2+ entry   总被引:2,自引:0,他引:2  
We report here that PLC-gamma isoforms are required for agonist-induced Ca2+ entry (ACE). Overexpressed wild-type PLC-gamma1 or a lipase-inactive mutant PLC-gamma1 each augmented ACE in PC12 cells, while a deletion mutant lacking the region containing the SH3 domain of PLC-gamma1 was ineffective. RNA interference to deplete either PLC-gamma1 or PLC-gamma2 in PC12 and A7r5 cells inhibited ACE. In DT40 B lymphocytes expressing only PLC-gamma2, overexpressed muscarinic M5 receptors (M5R) activated ACE. Using DT40 PLC-gamma2 knockout cells, M5R stimulation of ER Ca2+ store release was unaffected, but ACE was abolished. Normal ACE was restored by transient expression of PLC-gamma2 or a lipase-inactive PLC-gamma2 mutant. The results indicate a lipase-independent role of PLC-gamma in the physiological agonist-induced activation of Ca2+ entry.  相似文献   

9.
The inositol 1,4,5-trisphosphate receptor (IP3R) plays an essential role in Ca2+ signaling during lymphocyte activation. Engagement of the T cell or B cell receptor by antigen initiates a signal transduction cascade that leads to tyrosine phosphorylation of IP3R by Src family nonreceptor protein tyrosine kinases, including Fyn. However, the effect of tyrosine phosphorylation on the IP3R and subsequent Ca2+ release is poorly understood. We have identified tyrosine 353 (Tyr353) in the IP3-binding domain of type 1 IP3R (IP3R1) as a phosphorylation site for Fyn both in vitro and in vivo. We have developed a phosphoepitope-specific antibody and shown that IP3R1-Y353 becomes phosphorylated during T cell and B cell activation. Furthermore, tyrosine phosphorylation of IP3R1 increased IP3 binding at low IP3 concentrations (<10 nm). Using wild-type IP3R1 or an IP3R1-Y353F mutant that cannot be tyrosine phosphorylated at Tyr353 or expressed in IP3R-deficient DT40 B cells, we demonstrated that tyrosine phosphorylation of Tyr353 permits prolonged intracellular Ca2+ release during B cell activation. Taken together, these data suggest that one function of tyrosine phosphorylation of IP3R1-Y353 is to enhance Ca2+ signaling in lymphocytes by increasing the sensitivity of IP3R1 to activation by low levels of IP3.  相似文献   

10.
Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. By analyzing the metabolic incorporation of azidohomoalanine, a methionine analogue, in newly synthesized proteins, we find that glutamate treatments up-regulate protein translation not only in intact rat cortical neurons in culture but also in the axons emitting from cortical neurons before making synapses with target cells. The process by which glutamate stimulates local translation in axons begins with the binding of glutamate to the ionotropic AMPA receptors and metabotropic glutamate receptor 1 and members of group 2 metabotropic glutamate receptors on the plasma membrane. Subsequently, the activated mammalian target of rapamycin (mTOR) signaling pathway and the rise in Ca2+, resulting from Ca2+ influxes through calcium-permeable AMPA receptors, voltage-gated Ca2+ channels, and transient receptor potential canonical channels, in axons stimulate the local translation machinery. For comparison, the enhancement effects of brain-derived neurotrophic factor (BDNF) on the local protein synthesis in cortical axons were also studied. The results indicate that Ca2+ influxes via transient receptor potential canonical channels and activated the mTOR pathway in axons also mediate BDNF stimulation to local protein synthesis. However, glutamate- and BDNF-induced enhancements of translation in axons exhibit different kinetics. Moreover, Ca2+ and mTOR signaling appear to play roles carrying different weights, respectively, in transducing glutamate- and BDNF-induced enhancements of axonal translation. Thus, our results indicate that exposure to transient increases of glutamate and more lasting increases of BDNF would stimulate local protein synthesis in migrating axons en route to their targets in the developing brain.  相似文献   

11.
Intestinal mucosal restitution occurs by epithelial cell migration, rather than by proliferation, to reseal superficial wounds after injury. Polyamines are essential for the stimulation of intestinal epithelial cell (IEC) migration during restitution in association with their ability to regulate Ca2+ homeostasis, but the exact mechanism by which polyamines induce cytosolic free Ca2+ concentration ([Ca2+]cyt) remains unclear. Phospholipase C (PLC)-gamma1 catalyzes the formation of inositol (1,4,5)-trisphosphate (IP3), which is implicated in the regulation of [Ca2+]cyt by modulating Ca2+ store mobilization and Ca2+ influx. The present study tested the hypothesis that polyamines are involved in PLC-gamma1 activity, regulating [Ca2+]cyt and cell migration after wounding. Depletion of cellular polyamines by alpha-difluoromethylornithine inhibited PLC-gamma1 expression in differentiated IECs (stable Cdx2-transfected IEC-6 cells), as indicated by substantial decreases in levels of PLC-gamma1 mRNA and protein and its enzyme product IP3. Polyamine-deficient cells also displayed decreased [Ca2+]cyt and inhibited cell migration. Decreased levels of PLC-gamma1 by treatment with U-73122 or transfection with short interfering RNA specifically targeting PLC-gamma1 also decreased IP3, reduced resting [Ca2+]cyt and Ca2+ influx after store depletion, and suppressed cell migration in control cells. In contrast, stimulation of PLC-gamma1 by 2,4,6-trimethyl-N-(meta-3-trifluoromethylphenyl)-benzenesulfonamide induced IP3, increased [Ca2+]cyt, and promoted cell migration in polyamine-deficient cells. These results indicate that polyamines are absolutely required for PLC-gamma1 expression in IECs and that polyamine-mediated PLC-gamma1 signaling stimulates cell migration during restitution as a result of increased [Ca2+]cyt.  相似文献   

12.
Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve-muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), which requires Ca(2+) influx for its acute effect, NT3 rapidly enhances spontaneous transmitter release at the developing NMJ even when Ca(2+) influx is completely blocked, suggesting that the NT3 effect is independent of extracellular Ca(2+). Depletion of intracellular Ca(2+) stores, or blockade of inositol 1, 4, 5-trisphosphate (IP3) or ryanodine receptors, prevents the NT3-induced synaptic potentiation. Blockade of IP3 receptors can not prevent BDNF-induced potentiation, suggesting that BDNF and NT3 use different mechanisms to potentiate transmitter release. Inhibition of Ca(2+)/calmodulin-dependent kinase II (CaMKII) completely blocks the acute effect of NT3. Furthermore, the NT3-induced potentiation requires a continuous activation of CaMKII, because application of the CaMKII inhibitor KN62 reverses the previously established NT3 effect. Thus, NT3 potentiates neurotransmitter secretion by stimulating Ca(2+) release from intracellular stores through IP3 and/or ryanodine receptors, leading to an activation of CaMKII.  相似文献   

13.
Repetitive hormone-induced changes in concentration of free cytoplasmic Ca2+ in hepatocytes require Ca2+ entry through receptor-activated Ca2+ channels and SOCs (store-operated Ca2+ channels). SOCs are activated by a decrease in Ca2+ concentration in the intracellular Ca2+ stores, but the molecular components and mechanisms are not well understood. Some studies with other cell types suggest that PLC-gamma (phospholipase C-gamma) is involved in the activation of receptor-activated Ca2+ channels and/or SOCs, independently of PLC-gamma-mediated generation of IP3 (inositol 1,4,5-trisphosphate). The nature of the Ca2+ channels regulated by PLC-gamma has not been defined clearly. The aim of the present study was to determine if PLC-gamma is required for the activation of SOCs in liver cells. Transfection of H4IIE cells derived from rat hepatocytes with siRNA (short interfering RNA) targeted to PLC-gamma1 caused a reduction (by approx. 70%) in the PLC-gamma1 protein expression, with maximal effect at 72-96 h. This was associated with a decrease (by approx. 60%) in the amplitude of the I(SOC) (store-operated Ca2+ current) developed in response to intracellular perfusion with either IP(3) or thapsigargin. Knockdown of STIM1 (stromal interaction molecule type 1) by siRNA also resulted in a significant reduction (approx. 80% at 72 h post-transfection) of the I(SOC) amplitude. Immunoprecipitation of PLC-gamma1 and STIM1, however, suggested that under the experimental conditions these proteins do not interact with each other. It is concluded that the PLC-gamma1 protein, independently of IP3 generation and STIM1, is required to couple endoplasmic reticulum Ca2+ release to the activation of SOCs in the plasma membrane of H4IIE liver cells.  相似文献   

14.
In hepatocytes, as in other cell types, Ca2+ signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP3R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca2+ signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP3 receptors (InsP3R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP3R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP3-induced Ca2+ release in hepatocytes. This can be explained by the rather low expression level expression of InsP3R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca2+ signaling via an inhibitory effect on InsP3 synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP3 synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.  相似文献   

15.
At fertilization, eggs undergo a cytoplasmic free Ca2+ rise, which is necessary for stimulating embryogenesis. In starfish eggs, studies using inhibitors designed against vertebrate proteins have shown that this Ca2+ rise requires an egg Src family kinase (SFK) that directly or indirectly activates phospholipase C-gamma (PLC-gamma) to produce IP3, which triggers Ca2+ release from the egg's endoplasmic reticulum (ER) [reviewed in Semin. Cell Dev. Biol. 12 (2001) 45]. To examine in more detail the endogenous factors in starfish eggs that are required for Ca2+ release at fertilization, an oocyte cDNA encoding PLC-gamma was isolated from the starfish Asterina miniata. This cDNA, designated AmPLC-gamma, encodes a protein with 49% identity to mammalian PLC-gamma1. A 58-kDa Src family kinase interacted with recombinant AmPLC-gamma Src homology 2 (SH2) domains in a specific, fertilization-responsive manner. Immunoprecipitations of sea urchin egg PLC-gamma using an affinity-purified antibody directed against AmPLC-gamma revealed fertilization-dependent phosphorylation of PLC-gamma. Injecting starfish eggs with the tandem SH2 domains of AmPLC-gamma (which inhibits PLC-gamma activation) specifically inhibited Ca2+ release at fertilization. These results indicate that an endogenous starfish egg PLC-gamma interacts with an egg SFK and mediates Ca2+ release at fertilization via a PLC-gamma SH2 domain-mediated mechanism.  相似文献   

16.
Nakata H  Nakamura S 《FEBS letters》2007,581(10):2047-2054
The change in the number of post-synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamatergic receptors (AMPARs) by neuronal activity is recognized as a molecular basis of synaptic plasticity. Here, we show that Ca(2+) transients evoked by brain-derived neurotrophic factor (BDNF) induce translocation of a subunit of AMPAR, GluR1, but not NMDAR, to the post-synaptic membrane in cultured cortical pyramidal neurons. Among BDNF-induced Ca(2+) transients, that dependent on IP3R was fully required, while store-operated calcium influx through the non-selective cation channel TRPC (transient receptor potential canonical) was partially required for the GluR1 up-regulation, suggesting that spatial and temporal calcium signaling regulate translocation of GluR1 to the polarized membrane domain.  相似文献   

17.
Zhong X  Liu J  Lu F  Wang Y  Zhao Y  Dong S  Leng X  Jia J  Ren H  Xu C  Zhang W 《Cell biology international》2012,36(10):937-943
Nuclear Ca2+ plays a pivotal role in the regulation of gene expression. IP3 (inositol-1,4,5-trisphosphate) is an important regulator of nuclear Ca2+. We hypothesized that the CaR (calcium sensing receptor) stimulates nuclear Ca2+ release through IICR (IP3-induced calcium release) from perinuclear stores. Spontaneous Ca2+ oscillations and the spark frequency of nuclear Ca2+ were measured simultaneously in NRVMs (neonatal rat ventricular myocytes) using confocal imaging. CaR-induced nuclear Ca2+ release through IICR was abolished by inhibition of CaR and IP3Rs (IP3 receptors). However, no effect on the inhibition of RyRs (ryanodine receptors) was detected. The results suggest that CaR specifically modulates nuclear Ca2+ signalling through the IP3R pathway. Interestingly, nuclear Ca2+ was released from perinuclear stores by CaR activator-induced cardiomyocyte hypertrophy through the Ca2+-dependent phosphatase CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) pathway. We have also demonstrated that the activation of the CaR increased the NRVM protein content, enlarged cell size and stimulated CaN expression and NFAT nuclear translocation in NRVMs. Thus, CaR enhances the nuclear Ca2+ transient in NRVMs by increasing fractional Ca2+ release from perinuclear stores, which is involved in cardiac hypertrophy through the CaN/NFAT pathway.  相似文献   

18.
《Cell calcium》2016,59(6):549-557
BackgroundThe role of the serotonin receptor 4 (5-HT4R) pathway in cardiac excitation-contraction coupling (ECC) remains unclear. In the brain, induction of the calcium (Ca2+)-binding protein p11 enhances 5-HT4R translocation and signaling and could therefore be considered as a modulator of the 5-HT4R pathway in the myocardium. p11 expression is increased by brain-derived neurotrophic factor (BDNF) or antidepressant drugs (imipramine). Thus, we investigated whether p11 regulates the 5-HT4R pathway in the heart in physiological conditions or under pharmacological induction and the effects on calcium handling.Methods and resultsp11 expression was induced in vivo in healthy Wistar rats by imipramine (10 mg/kg/21 days) and in vitro in left ventricular cardiomyocytes exposed to BDNF (50 ng/ml/8 h). Cell shortening and real-time Ca2+ measurements were processed on field-stimulated intact cardiomyocytes with the selective 5-HT4R agonist, prucalopride (1 μM). Both imipramine and BDNF-induced cardiomyocyte p11 expression unmasked a strong response to prucalopride characterized by an increase of both cell shortening and Ca2+ transient amplitude compared to basal prucalopride associated with a high propensity to trigger diastolic Ca2+ events. Healthy rats treated with BDNF (180 ng/day/14 days) exhibited a sustained elevated heart rate following a single injection of prucalopride (0.1 mg/kg) which was not observed prior to treatment.ConclusionsWe have identified a novel role for p11 in 5-HT4R signaling in healthy rat ventricular cardiomyocytes. Increased p11 expression by BDNF and imipramine unraveled a 5-HT4R-mediated modulation of cardiac Ca2+ handling and ECC associated with deleterious Ca2+ flux disturbances. Such mechanism could partly explain some cardiac adverse effects induced by antidepressant treatments.  相似文献   

19.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.  相似文献   

20.
A sensitive and specific guanine nucleotide regulatory process has recently been shown to rapidly mediate a substantial release of Ca2+ from endoplasmic reticulum within the N1E-115 neuronal cell line (Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W. (1986) Nature 320, 461-464). The relationship between this mechanism and Ca2+ efflux mediated by the intracellular regulator inositol 1,4,5-trisphosphate (IP3) has been investigated. Using saponin-permeabilized N1E-115 cells, studies reveal a number of distinctions between the activation of Ca2+ release mediated by GTP and IP3. Thus, the GTP-mediated Ca2+ release process is specifically activated by polyethylene glycol which increases both GTP sensitivity and the extent of GTP-activated Ca2+ release; in contrast, IP3-dependent Ca2+ release is unaffected by polyethylene glycol. The non-hydrolyzable GTP analogue guanosine 5'-O-(3-thio)triphosphate, which completely inhibits GTP-mediated Ca2+ release, does not alter release mediated by IP3. Decreasing the release temperature from 37 to 4 degrees C decreases IP3-activated Ca2+ release by only 20%, whereas the action of GTP on Ca2+ release is abolished at 4 degrees C. Activation of Ca2+ release by IP3 is completely inhibited by increasing free Ca2+ from 0.1 to 10 microM, whereas the fraction of GTP-dependent Ca2+ release (approximately 50% of ionophore-releasable Ca2+) remains unaltered with increasing free Ca2+. These distinctions between IP3- and GTP-mediated Ca2+ release indicate that the two effectors function via distinct mechanisms to activate Ca2+ release; however, they do not preclude the possibility that coupling between the two mechanisms can occur or that a common Ca2+-translocating pathway activated by both effectors exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号