首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun RJ  Muller S  Zhuang FY  Stoltz JF  Wang X 《Biorheology》2003,40(1-3):31-39
Caveolin-1 is a principal component of caveolae and is involved in signaling transduction in a number of cells. A hypothesis was proposed in this work that mechanical forces due to flow induce caveolin-1 translocation. So the changes of caveolin-1 expression and distribution in cultured endothelial cells (HUVECs) exposed to a steady laminar flow were studied. For comparing with the influence of cytokine, caveolin-1 in the cells stimulated by TNF-alpha was also investigated. Indirect immunofluorescence and double fluorescence labeling showed that in control cells, caveolin-1 was primarily localized on the cell surface, which corresponded to the peripheral distribution of F-actin, and presented some local concentrations. In the cells exposed to a laminar flow (1.0 Pa), caveolin-1 distribution showed a time-dependent variation. After 24 h of shear, the local concentration of caveolin-1 was found, in the most cells, at upstream side of cell body. Also more caveolin-1 molecules were observed in the cells. In contrast, TNF-alpha induced a decrease of caveolin-1 in cells. The redistribution of caveolin-1 seems to be correlated to F-actin organization.  相似文献   

2.
The luminal surface of rat lung microvascular endothelial cells in situ is sensitive to changing hemodynamic parameters. Acute mechanosignaling events initiated in response to flow changes in perfused lung microvessels are localized within specialized invaginated microdomains called caveolae. Here we report that chronic exposure to shear stress alters caveolin expression and distribution, increases caveolae density, and leads to enhanced mechanosensitivity to subsequent changes in hemodynamic forces within cultured endothelial cells. Flow-preconditioned cells expressed a fivefold increase in caveolin (and other caveolar-residing proteins) at the luminal surface compared with no-flow controls. The density of morphologically identifiable caveolae was enhanced sixfold at the luminal cell surface of flow-conditioned cells. Laminar shear stress applied to static endothelial cultures (flow step of 5 dyn/cm2), enhanced the tyrosine phosphorylation of luminal surface proteins by 1.7-fold, including caveolin-1 by 1.3-fold, increased Ser1179 phosphorylation of endothelial nitric oxide synthase (eNOS) by 2.6-fold, and induced a 1.4-fold activation of mitogen-activated protein kinases (ERK1/2) over no-flow controls. The same shear step applied to endothelial cells preconditioned under 10 dyn/cm2 of laminar shear stress for 6 h and induced a sevenfold increase of total phosphotyrosine signal at the luminal endothelial cell surface enhanced caveolin-1 tyrosine phosphorylation 5.8-fold and eNOS phosphorylation by 3.3-fold over static control values. In addition, phosphorylated caveolin-1 and eNOS proteins were preferentially localized to caveolar microdomains. In contrast, ERK1/2 activation was not detected in conditioned cells after acute shear challenge. These data suggest that cultured endothelial cells respond to a sustained flow environment by directing caveolae to the cell surface where they serve to mediate, at least in part, mechanotransduction responses.  相似文献   

3.
Complement activation may predispose to vascular injury and atherogenesis. The atheroprotective actions of unidirectional laminar shear stress led us to explore its influence on endothelial cell expression of complement inhibitory proteins CD59 and decay-accelerating factor. Human umbilical vein and aortic endothelial cells were exposed to laminar shear stress (12 dynes/cm(2)) or disturbed flow (+/- 5 dynes/cm(2) at 1Hz) in a parallel plate flow chamber. Laminar shear induced a flow rate-dependent increase in steady-state CD59 mRNA, reaching 4-fold at 12 dynes/cm(2). Following 24-48 h of laminar shear stress, cell surface expression of CD59 was up-regulated by 100%, whereas decay-accelerating factor expression was unchanged. The increase in CD59 following laminar shear was functionally significant, reducing C9 deposition and complement-mediated lysis of flow-conditioned endothelial cells by 50%. Although CD59 induction was independent of PI3-K, ERK1/2 and nitric oxide, an RNA interference approach demonstrated dependence upon an ERK5/KLF2 signaling pathway. In contrast to laminar shear stress, disturbed flow failed to induce endothelial cell CD59 protein expression. Likewise, CD59 expression on vascular endothelium was significantly higher in atheroresistant regions of the murine aorta exposed to unidirectional laminar shear stress, when compared with atheroprone areas exposed to disturbed flow. We propose that up-regulation of CD59 via ERK5/KLF2 activation leads to endothelial resistance to complement-mediated injury and protects from atherogenesis in regions of laminar shear stress.  相似文献   

4.
Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.  相似文献   

5.
Abrupt cessation of flow representing the acute loss of shear stress (simulated ischemia) to flow-adapted pulmonary microvascular endothelial cells (PMVEC) leads to reactive oxygen species (ROS) generation that signals for EC proliferation. We evaluated the role of caveolin-1 on this cellular response with mouse PMVEC that were preconditioned for 72 h to laminar flow at 5 dyn/cm(2) followed by stop of flow ("ischemia"). Preconditioning resulted in a 2.7-fold increase in cellular expression of K(ATP) (K(IR) 6.2) channels but no change in expression level of caveolin-1, gp91(phox), or MAP kinases. The initial response to ischemia in wild type cells was cell membrane depolarization that was abolished by gene targeting of K(IR) 6.2. The subsequent response was increased ROS production associated with activation of NADPH oxidase (NOX2) and then phosphorylation of MAP kinases (Erk, JNK). After 24 h of ischemia in wild type cells, the cell proliferation index increased 2.5 fold and the % of cells in S+G(2)/M phases increased 6-fold. This signaling cascade (cell membrane depolarization, ROS production, MAP kinase activation and cell proliferation) was abrogated in caveolin-1 null PMVEC or by treatment of wild type cells with filipin. These studies indicate that caveolin-1 functions as a shear sensor in flow-adapted EC resulting in ROS-mediated cell signaling and endothelial cell proliferation following the abrupt reduction in flow.  相似文献   

6.
7.
To identify the role of caveolin-1 in integrin mechanotransduction, we exposed bovine aortic endothelial cells to 10 dyn/cm2 of laminar shear stress. Caveolin-1 was acutely and transiently phosphorylated with shear, occurring downstream of beta1-integrin activation as the beta1-integrin blocking antibody JB1A was inhibitory. In manipulating Src family kinase (SFK) activity with knockdown of Csk or type 1 protein phosphatase (PP1) treatment, we observed coordinate increase and decrease in shear-induced caveolin-1 phosphorylation, respectively. Hence, shear-stimulated caveolin-1 phosphorylation is regulated by SFKs. Shear-induced recruitment and phosphorylation of caveolin-1 occurred at beta1-integrin sites in a beta1-integrin- and SFK-dependent manner. Csk, described to interact with pY14-caveolin-1 and integrins, bound to an increased pool of phosphorylated caveolin-1 after shear corresponding with elevated Csk at beta1-integrin sites. Like caveolin-1, treatment with JB1A and PP1 attenuated shear-induced Csk association with beta1-integrins. Csk function was assayed with transfection of a caveolin-1 phosphorylation domain peptide. The peptide attenuated shear-induced association of Csk at beta1-integrin sites, as well as colocalization of Csk with paxillin and phosphorylated caveolin-1. Because integrin and Csk activity regulate cytoskeletal reorganization, we evaluated the role of this mechanism in shear-induced myosin light chain (MLC) phosphorylation. Knockdown of Csk expression was sufficient to reduce MLC diphosphorylation due to shear. Disruption of Csk-integrin association by peptide treatment was also inhibitory of the MLC diphosphorylation response. Together these data indicate that integrin activation with shear stress results in SFK-regulated caveolin-1 phosphorylation that, in turn, mediates Csk association at integrin sites, where it plays a role in downstream, shear-stimulated MLC diphosphorylation.  相似文献   

8.
Caveolin-1 expression enhances endothelial capillary tubule formation.   总被引:21,自引:0,他引:21  
The level of caveolin-1 expression closely correlates with the oncogenic transformation of NIH 3T3 cells, the proliferation of human cancer cells, and the differentiation of adipocytes and muscle cells. However, the role of caveolin-1 in endothelial cell proliferation and differentiation remains unknown. Here, we have shown that angiogenic growth factors that stimulate endothelial cell proliferation lead to dramatic reductions in caveolin-1 expression. In addition, using an in vitro Matrigel assay system, we studied the potential role of caveolin-1 in capillary-like tubule formation (i.e. endothelial cell differentiation) using human microvascular endothelial cells (HMEC-1). We showed that the level of endogenous caveolin-1 expression increased in a time-dependent manner when endothelial cells underwent differentiation and that the maximum level of caveolin-1 expression occurred just prior to the formation of capillary-like tubules. Interestingly, overexpression of caveolin-1, via an adenoviral gene delivery system, clearly accelerated endothelial cell differentiation/tubule formation and led to a dramatic approximately 3-fold increase in the number of capillary-like tubular structures. Conversely, down-regulation of caveolin-1 expression, via an antisense adenoviral approach, reduced the number of capillary-like tubules formed by >10-fold. Consistent with the unique function of caveolin-1 in interacting with key signaling molecules, delivery of the caveolin-1 scaffolding domain into the cytoplasm of living endothelial cells was also sufficient to enhance capillary-like tubule formation. Taken together, these results clearly demonstrate that caveolin-1 and the caveolin-1 scaffolding domain play an important positive role in the regulation of endothelial cell differentiation, a prerequisite step in the process of angiogenesis.  相似文献   

9.
Biomechanical stress modulates vascular tone, vascular remodelling and the spatial localisation of atherosclerotic plaques. Inflammatory cytokines, such as TNF-α, regulate expression of genes that impair the function of endothelial cells. This study investigates the combinatory effect of different biomechanical stresses and TNF-α on the expression of endothelial anti- and prothrombotic genes. Human umbilical vein endothelial cells were exposed to TNF-α and different levels of static/pulsatile tensile stress or shear stress. The response in endothelial cells to TNF-α was not modulated by tensile stress. However, shear stress was a more potent stimulus. Shear stress counteracted the cytokine-induced expression of VCAM-1, and the cytokine-suppressed expression of thrombomodulin and eNOS. Shear stress and TNF-α additively induced PAI-1, whereas shear stress blocked the cytokine effect on t-PA and u-PA. A flow profile characterized by high laminar shear stress seems to render the endothelial cell more resistant to inflammatory stress.  相似文献   

10.
Wang G  Cai S  Deng X  Ouyang K  Xie G  Guidoin R 《Biorheology》2000,37(4):291-299
The shear-induced secretory response of endothelin-1 (ET-1) by human microvascular endothelial cells was studied using paired human glomerular microvascular endothelial cell (HGMEC) cultured monolayers exposed to steady-state laminar shear stress for up to 10 hours. The first cell monolayer was subjected to a shear stress of 0.65 N m-2 and the second, 1.3 N m-2. ET-1 secretion was determined by radioimmunoassay. Over 10 hours of shear, the total cumulative secretion of ET-1 was 237.4 pg/cm2 for the monolayer exposed to 1.3 N m-2 and 143.6 pg/cm2 for the monolayer exposed to 0.65 N m-2. The average ET-1 secretion rate was 20.90 +/- 2.15 and 12.45 +/- 1.05 pg/cm2.h at 0.65 N m-2 and 1.3 N m-2, respectively. The results showed that ET-1 secretion varied with the time of shear in a nonlinear fashion. Although the level of shear stress affected the absolute value of ET-1 cumulative secretion and secretion rate, the major secretion period for both monolayers occurred between 2.0 and 8.0 hours, with the peak secretion rate occurring at approximately 5 hours. Thus, the response of cultured human microvascular endothelial cells to shear stress differed from that of large vessel endothelial cell cultures in terms of ET-1 secretion. In addition to the level of shear stress, the time of shear was also an important determinant of ET-1 secretion. Consequently, the heterogeneity of vascular endothelial cells and the time of shear should both be considered in future research on the secretion of vascular endothelial cell cultures.  相似文献   

11.
Endothelial cells are subjected to hemodynamic shear stress, which regulates multiple vascular functions partially by the caveolin-1-dependent mechanisms. Caveolin-1 is a principal protein in the plasma membrane microdomains called caveolae and interacts with various signaling molecules. Recently, caveolin-1 was elucidated to be phosphorylated on tyrosine 14. However, it is not known how phosphorylation of caveolin-1 is controlled in endothelium. In this study, we found that caveolin-1 is phosphorylated by p38 mitogen-activated protein kinase (MAPK) under a static condition. When endothelial cells were exposed to shear stress, caveolin-1 was transiently dephosphorylated. Since the activity of p38 MAPK was not affected by shear stress, the shear-dependent dephosphorylation of caveolin-1 was not mediated by p38 MAPK. Of interest, sodium orthovanadate, an inhibitor for phosphatases, blocked the shear-dependent dephosphorylation of caveolin-1. We also observed that protein tyrosine phosphatase mu was transiently activated by shear stress, suggesting its role in the dephosphorylation of caveolin-1.  相似文献   

12.
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. ECs are constantly subjected to shear stress resulting from blood flow and are able to convert mechanical stimuli into intracellular signals that affect cellular behaviors and functions. The aim of this study is to elucidate the effects of Rac1, which is the member of small G protein family, on EC migration under different laminar shear stress (5.56, 10.02, and 15.27 dyn/cm2). The cell migration distance under laminar shear stress increased significantly than that under the static culture condition. Especially, under relative high shear stress (15.27 dyn/cm2) there was a higher difference at 8 h (P < 0.01) and 2 h (P < 0.05) compared with static controls. RT-PCR results further showed increasing mRNA expression of Rac1 in ECs exposed to laminar shear stress than that exposed to static culture. Using plasmids encoding the wild-type (WT), an activated mutant (Q61L), and a dominant-negative mutant (T17N), plasmids encoding Rac1 were transfected into EA.hy 926 cells. The average net migration distance of Rac1Q61L group increased significantly, while Rac1T17N group decreased significantly in comparison with the static controls. These results indicated that Rac1 mediated shear stress-induced EC migration. Our findings conduce to elucidate the molecular mechanisms of EC migration induced by shear stress, which is expected to understand the pathophysiological basis of wound healing in health and diseases.  相似文献   

13.
A new cell culture system has been developed that reflects the vascular microenvironment. By means of this system the cultured cells are exposed not only to shear stress by the circulating culture medium, but also to an oxygen concentration gradient and certain critical blood components such as low-density lipoprotein (LDL) and monocytes. DNA microarray analysis was performed for human umbilical vein endothelial cells cultured in this system in the absence and presence of laminar flow at a low shear stress, 0.2 dyn/cm(2). In addition to shear stress, either an oxygen concentration gradient, or LDL (1 mg/ml), or both were applied. Many Nrf-2-regulating genes, such as heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, solute carrier family 7 No. 11, and glutamate-cysteine ligase modifier subunit, were induced by laminar flow at very low shear stress regardless of the additional conditions. Certain genes were specifically affected by exposure to the oxygen gradient and/or LDL under shear stress, but the degree was very low. These results suggest that shear stress is the most critical factor affecting gene expression in endothelial cells and that Nrf-2-regulating proteins may contribute to protecting endothelial cells against other vascular stress. This system should provide highly relevant and useful information about both vascular physiology and pathology, in the latter on such urgent matters as the specific steps involved in atherogenesis.  相似文献   

14.
Endothelial cells (ECs) release ATP in response to shear stress, a mechanical force generated by blood flow, and the ATP released modulates EC functions through activation of purinoceptors. The molecular mechanism of the shear stress-induced ATP release, however, has not been fully elucidated. In this study, we have demonstrated that cell surface ATP synthase is involved in shear stress-induced ATP release. Immunofluorescence staining of human pulmonary arterial ECs (HPAECs) showed that cell surface ATP synthase is distributed in lipid rafts and co-localized with caveolin-1, a marker protein of caveolae. Immunoprecipitation indicated that cell surface ATP synthase and caveolin-1 are physically associated. Measurement of the extracellular metabolism of [(3)H]ADP confirmed that cell surface ATP synthase is active in ATP generation. When exposed to shear stress, HPAECs released ATP in a dose-dependent manner, and the ATP release was markedly suppressed by the membrane-impermeable ATP synthase inhibitors angiostatin and piceatannol and by an anti-ATP synthase antibody. Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) disrupted lipid rafts and abolished co-localization of ATP synthase with caveolin-1, which resulted in a marked reduction in shear stress-induced ATP release. Pretreatment of the cells with cholesterol prevented these effects of MbetaCD. Downregulation of caveolin-1 expression by transfection of caveolin-1 siRNA also markedly suppressed ATP-releasing responses to shear stress. Neither MbetaCD, MbetaCD plus cholesterol, nor caveolin-1 siRNA had any effect on the amount of cell surface ATP synthase. These results suggest that the localization and targeting of ATP synthase to caveolae/lipid rafts is critical for shear stress-induced ATP release by HPAECs.  相似文献   

15.
Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.  相似文献   

16.
The ability of a cell to move requires the asymmetrical organization of cellular activities. To investigate polarized cellular activity in moving endothelial cells, human endothelial cells were incubated in a Dunn chamber to allow migration toward vascular endothelial growth factor. Immunofluorescent staining with a specific antibody against caveolin-1 revealed that caveolin-1 was concentrated at the rear of moving cells. Similarly, monolayer scraping to induce random cell walk resulted in relocation of caveolin-1 to the cell rear. These results suggest that posterior polarization of caveolin-1 is a common feature both for chemotaxis and chemokinesis. Dual immunofluorescent labeling showed that, during cell spreading, caveolin-1 was compacted in the cell center and excluded from nascent focal contacts along the circular lamellipodium, as revealed by integrin beta1 and FAK staining. When cells were migrating, integrin beta1 and FAK appeared at polarized lamellipodia, whereas caveolin-1 was found at the posterior of moving cells. Notably, wherever caveolin-1 was polarized, there was a conspicuous absence of lamellipod protrusion. Transmission electron microscopy showed that caveolae, similar to their marker caveolin-1, were located at the cell center during cell spreading or at the cell rear during cell migration. In contrast to its unphosphorylated form, tyrosine-phosphorylated caveolin-1, upon fibronectin stimulation, was associated with the focal complex molecule phosphopaxillin along the lamellipodia of moving cells. Thus, unphosphorylated and phosphorylated caveolin-1 were located at opposite poles during cell migration. Importantly, loss of caveolin-1 polarity by targeted down-regulation of the protein prevented cell polarization and directional movement. Our present results suggest a potential role of caveolin polarity in lamellipod extension and cell migration.  相似文献   

17.
18.
19.
20.
Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号