首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The patterns of aminoglycoside inactivating enzymes were determined by AGRP in 31 clinical isolated of Serratia marcescens. The results were compared with the data on identification of the aminoglycoside resistance genes by the specific DNA probes. It was shown that all the isolates of Serratia marcescens contained the AAC(6')-Ic gene which was not expressed in some isolates. The other detected aminoglycoside inactivating enzymes were the following: AAC(3)-V in 17 isolates, ANT(2') in 7 isolates, AAC(3)-I in 4 isolates and APH(3')-I in 13 isolates. Reliability of the methods of AGRP and DNA-DNA hybridization was estimated in the assay of the aminoglycoside resistant clinical strains of Serratia marcescens.  相似文献   

2.
Aminoglycoside resistance patterns of 56 strains isolated from man, cattle and environment were determined. 34 out of 42 gentamicin-resistant strains were shown to produce AAC(3)-II and 7 strains produced ANT(2"). All the 48 kanamycin resistant strains produced APH(3')-I. Spot hybridization of the 42 gentamicin resistant strains with the inner fragment of the aacC2 gene revealed positive signals for all the strains. Hybridization of the 48 kanamycin-resistant strains with the aphA1 gene probe provided positive results in all the strains. The AAC(3)-IV encoding gene was not detected by DNA-DNA hybridization in the strains studied.  相似文献   

3.
The investigation was focused on 60 strains of Gr- microorganisms isolated from urocultures and resistant to gentamicin and/or amikacin. Resistance evaluation by the method of Bauer--Kirby with respect to 7 aminoglycoside aminocyclitols (streptomycin, spectinomycin, kanamycin, gentamicin, tobramycin, sisomicin, netilmicin and amikacin) as well as determination of minimal inhibitory concentrations revealed that the most frequently occurring resistance phenotype was streptomycin kanamycin gentamicin sisomicin tobramycin (91.66% tested microorganisms). Approximately 50% of all tested organisms were found to be susceptible to netilmicin. Assays for aminoglycoside-modifying enzymes using 32P ATP and 14C ATP confirmed APH(3')(5")--I and AAD(2") as resistance determinants regarding 4,6-substituted deoxystreptamines. Acetyltransferase determination by the method of Shannon and Phillips and that by van de Klundert et al. most frequently assumes for the formation of AAC(3)-II and AAC(3)-I. Assays utilizing radioactive labels in amikacin-resistant strains determine the enzymes APH(3') and AAD(2")-II.  相似文献   

4.
The sequence of seven aac(6')-I genes encoding aminoglycoside 6'-N-acetyltransferases from proteolytic Acinetobacter strains including genomic species 14, 15, 16, and 17 and from ungrouped proteolytic strains 631, 640, and BM2722 was determined. Pulsed-field gel electrophoresis of genomic DNA of these strains and of Acinetobacter sp. 6 CIP A165 digested with SfiI followed by hybridization with rRNA and aac(6')-I specific probes indicated that these genes were located in the chromosome. Phylogenetic analysis of the genes indicated that aac(6')-I of A. baumannii, Acinetobacter ungrouped strain 631, and Acinetobacter sp. 16 formed a cluster (91.5 to 92.3% identity) whereas aac(6')-I of Acinetobacter sp. 15, sp. 17, and Acinetobacter ungrouped strain BM2722 formed another cluster (90.7 to 94.6% identity). A third cluster was constituted by A. haemolyticus and Acinetobacter sp. 6 (83.6% identity). The phylogeny drawn from aac(6')-I sequences was consistent with that based on DNA-DNA hybridization and phenotype comparison. The aac(6')-I genes were all species specific except for aac(6')-Ih located in a 13.7-kb non conjugative plasmid from A. baumannii BM2686. We conclude that aac(6')-I genes may be suitable for identification at the species level and for analysis of the phylogenetic relationships of Acinetobacter.  相似文献   

5.
Aminoglycoside resistance genes were cloned from transconjugates of aminoglycoside resistant clinical strains of gramnegative bacteria. The resistance determinant cloned from the strains of E. coli transferred kanamycin, monomycin and neomycin resistance to laboratory strains. It was shown that the cloned resistance gene encoded the type I 3'-aminoglycoside phosphotransferase. The results of spot and blot hybridization of the gramnegative bacteria clinical strains with the Bam HI-Pst I fragment of the cloned resistance determinant were indicative of wide-spread distribution of the APH 3' (I) and closely related genes in clinical microbial populations.  相似文献   

6.
We examined the aminoglycoside inactivation enzymes in Pseudomonas aeruginosa strains, seven clinical isolates and seven laboratory strains without plasmids. All strains were found to possess the enzyme aminoglycoside 3'-phosphotransferase II [APH(3')-II]. We isolated an APH(3')-II-deficient mutant from a PAO strain by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. By plasmid (FP5 or R68.45)-mediated conjugation, we determined the locus of the gene specifying the APH(3')-II between trp-6 and pro-82 on the PAO chromosome and designated this gene aphA. It was concluded that the intrinsic resistance of P. aeruginosa to kanamycins, neomycins, paromomycins, ribostamycin, and butirosins was due to this newly determined gene.  相似文献   

7.
The study of the mechanisms of aminoglycoside resistance in gramnegative pathogens of nosocomial infections in 14 hospitals of Russia showed that the basic mechanism was production of aminoglycoside modifying enzymes, mainly adenylyl transferase ANT(2"), acetyl transferases AAC(3)-V and ACC(6)-I, and phosphotransferases APH(3')-I and APH(3')-VI. In all the hospitals enzymes modifying gentamicin and tobramycin were wide spread while the resistance phenotypes to aminoglycosides were different in separate hospitals. Isepamycin proved to be the most active aminoglycoside. Recommendations for the use of antibiotics in hospital formulas and empiric therapy should be developed on the basis of the local specific features of the resistance in nosocomial pathogens to aminoglycosides.  相似文献   

8.
N el Solh  N Moreau  S D Ehrlich 《Plasmid》1986,15(2):104-118
Most of the aminoglycoside resistant Staphylococcus aureus strains isolated in France are resistant to all the antibiotics belonging to this family. Two aminoglycoside-modifying enzymes were detected in the wild-type strains studied: an APH3'III and an AAC6'-APH2". These strains also carry two types of streptomycin resistance: high-level resistance due to chromosomal mutation(s) affecting ribosome affinity and low-level resistance, the mechanism of which was not characterized. All the aminoglycoside resistance genes were located on the chromosome. DNA fragments of 1.5 and 1.95 kb carrying the aphA and aacA genes, respectively, were isolated, by cloning, from the cellular DNA of a clinical isolate. When these genes were introduced into Escherichia coli and Bacillus subtilis strains, the enzymes synthesized were indistinguishable from those produced by the S. aureus strains. When the cellular DNAs of wild-type and resistant strains were hybridized with the cloned fragments, sequences homologous to the fragment carrying the aphA gene were found to be located at the same chromosomal site, while those hybridizing with the fragment carrying the aacA gene were at different chromosomal sites.  相似文献   

9.
The levels and spectra of drug resistance were determined in 530 strains of P. aeruginosa isolated in hospitals of three cities of the USSR within 1979-1984. Their conjugative R plasmids were searched for and distribution of various type resistance determinants in the composition of these plasmids was investigated. The results were compared with the findings of analogous studies on clinical strains of P. aeruginosa isolated within 1976-1979. It was shown that there were a rise in the relative number of the strains resistant to kanamycin and a decrease in the occurrence of the P. aeruginosa strains resistant to streptomycin, tetracycline and sulfanilamides. The frequency of the kanamycin, carbenicillin and gentamicin resistance genes in the composition of the detected conjugative R plasmids increased. Hybridization of 32P-labeled probes containing various type antibiotic resistance determinants with strains of P. aeruginosa ML (PAO) containing conjugative R plasmids was indicative of wide spread of genes determining APH(3')II and APH(3") and determinants of classes A and C in the composition of the studied plasmids.  相似文献   

10.
DNA of S. fradiae B-45 partially cleaved by Sau3A restrictase was cloned in S. lividans TK64 in the plasmid vector pIJ702. Three recombinant plasmids pVG251, pVG262, and pVG253 with tlr1, tlr2 and tlr3 genes were isolated from the transformed clones of S. lividans TK64 with higher inducible resistance to tylosin as compared to the plasmid-free strain. DNA-DNA blot hybridization was performed between the total DNA cleaved by several restrictases from S. fradiae B-45 and some other strains and the DNA probes containing the tlr genes. It was shown that tlr1 and tlr3 genes were unique in S. fradiae B-45. Sequences homologous to tlr2 gene were present both in DNA of S. fradiae B-45 in 7 copies and in strains of S. antibiotics and S. hygroscopicus producing respectively oleandomycin and turimycin.  相似文献   

11.
Antibiotic resistance of enterobacterial strains from population isolated in Krasnodar region is rather often controlled by the "plasmid" genes. The conclusion is based on using the colony hybridization with [32P]-DNA fragments of plasmids, carrying the genetic determinants of antibiotic resistance, as a method for antibiotic resistance, genes screening. Kanamycin resistance in the majority of strains is coded by APH (3') II gene, streptomycin resistance by APH (3") gene, chloramphenicol resistance by CATI, sulphonilamide resistance by DHPS type II gene. Tetracycline resistance of the studied enterobacterial strains is not connected with the widespread genetic determinants of a new class tetracycline resistance.  相似文献   

12.
13.
The aminoglycoside 6'-N-acetyltransferase [AAC(6')-I] and AAC(6')-II enzymes represent a class of bacterial proteins capable of acetylating tobramycin, netilmicin, and 2'-N-ethylnetilmicin. However, an important difference exists in their abilities to modify amikacin and gentamicin. The AAC(6')-I enzymes are capable of modifying amikacin. In contrast, the AAC(6')-II enzymes are capable of modifying gentamicin. Nucleotide sequence comparison of the aac(6')-Ib gene and the aac(6')-IIa gene showed 74% sequence identity (K. J. Shaw, C. A. Cramer, M. Rizzo, R. Mierzwa, K. Gewain, G. H. Miller, and R. S. Hare, Antimicrob. Agents Chemother. 33:2052-2062, 1989). Comparison of the deduced protein sequences showed 76% identity and 82% amino acid similarity. A genetic analysis of these two proteins was initiated to determine which amino acids were responsible for the differences in specificity. Results of domain exchanges, which created hybrid AAC(6') proteins, indicated that amino acids in the carboxy half of the proteins were largely responsible for determining specificity. Mutations shifting the specificity of the AAC(6')-Ib protein to that of the AAC(6')-IIa protein (i.e., gentamicin resistance and amikacin sensitivity) have been isolated. DNA sequence analysis of four independent isolates revealed base changes causing the same amino acid substitution, a leucine to serine, at position 119. Interestingly, this serine occurs naturally at the same position in the AAC(6')-IIa protein. Oligonucleotide-directed mutagenesis was used to construct the corresponding amino acid change, a serine to leucine, in the AAC(6')-IIa protein. This change resulted in the conversion of the AAC(6')-IIa substrate specificity to that of AAC(6')-Ib. Analysis of additional amino acid substitutions within this region of AAC(6')-Ib support the model that we have identified an aminoglycoside binding domain of these proteins.  相似文献   

14.
The aim of the study was to evaluate the aminoglycoside resistance of Gram-negative bacilli isolated from patients. To the examination 35 strains of Enterobacteriaceae and 18 of non-fermentative bacteria were included. Resistance to aminoglycosides (gentamicin (G), netilmicin (Nt), tobramycin (T), amikacin (A), kanamycin (K), neomycin (N)) was established by disk diffusion method. Interpretation of enzymatic mechanisms was performed by Livermore. The most common enzymes AAC(6')I were found in Enterobacteriaceae group (mostly in E. cloaceae and P. mirabilis) and AAC(3') and in non-fermentative bacteria: AAC(6')I in P. aeruginosa and APH(3')VI and AAC(3')I in A. baumanii. The most frequent phenotype was resistance to six antibiotics (G, Nt, T, A, K, N) Resistance rates were high for gentamicin (>70 %) in both groups and amikacin (88,89 %) in non-fermentatives.  相似文献   

15.
The genes coding for 4 aminoglycoside-modifying enzymes AAC(6')-APH(2"), APH(3'), ANT(4') and ANT(6) were determined in 44 Slovak clinical isolates of Enterococcus faecalis with high-level resistance to gentamicin (HLGR, collection 1) and 48 E. faecalis isolates with resistance to amikacin (AR, collection 2). The occurrence of spotted genes was (collection 1 vs. collection 2): aac(6)-aph(2") 81.8 vs. 8.3 %, ant(4') 52.3 vs. 81.3 %, aph(3') 50 vs. 56.3 % and ant(6) 6.8 vs. 4.2 %, the most frequent combinations of genes in the HLGR collection were aac(6')-aph(2") + ant(4') and aac(6')-aph(2") + aph(3). In contrast, the aph(3') + ant(4') gene profile was predominant in AR isolates. None of the isolates contained all four AGME genes simultaneously.  相似文献   

16.
The mechanism of resistance to gentamicin and tobramycin in a clinical isolate ofAcinetobacter baumannii, in which aminoglycoside-modifying enzymes were not detected, was investigated. For increase of the resistance gene product, DNA prepared from theA. baumannii isolate was cloned into pUC18 and introduced intoEscherichia coli by transformation. Gentamicin-resistant transformants were screened for aminoglycoside-modifying enzymes. This approach identified two genes encoding AAC(3) and AAD(2) activity, respectively. To determine whether both genes are expressed in the hostAcinetobacter strain, we extracted total cellular RNA from this strain, and Northern blots were hybridized with the cloned AAC(3) and AAD(2) structural genes. mRNA transcribed from the AAC(3) gene alone was detected. This shows that cloning a functional resistance gene is not sufficient in itself to investigate mechanisms of resistance in bacterial strains without detectable aminoglycoside-modifying activity. Furthermore, this study suggests a potential limitation of antibiotic resistance gene probes for studying mechanisms of resistance.  相似文献   

17.
Apramycin-modifying strains isolated from pigs with coli bacteriosis, from humans and hospital environment were studied comparatively. Production of enzymes modifying the aminoglycoside was estimated with the radioactive cofactor procedure. E. coli isolates from the animals were phenotypically resistant to apramycin and a number of other aminoglycosides. They produced acetyltransferase AAC(3)IV, phosphotransferase APH(3')(5"), APH(3") and other enzymes. Resistance of the strains to gentamicin was also conditioned by AAC(3)IV since these strains did not produce AAD(2") and AAC(6'). In the resistant strains of E. coli and their transconjugates there were detected plasmids with a relative molecular weight of 60-80 MD. Some of the belonged to the compatibility group I1, the others belonged to the compatibility group H1. Strains of S. marcescens, K. pneumoniae. K. oxytoca and S. aureus isolated from humans and hospital environment were sensitive to apramycin. Only isolates of P. aeruginosa were resistant to this antibiotic. However, all the isolates produced AAC(3)IV. Some of them additionally produced AAC(6'), an enzyme modifying amikacin, kanamycin and other antibiotics and not acetylating apramycin. Almost all the strains produced kanamycin- and streptomycin phosphotransferases. Possible coselection of strains resistant to apramycin and gentamicin using one of these aminoglycosides is discussed.  相似文献   

18.
The genes for protein synthesis elongation factors Tu and G were cloned from the cyanobacterium Anacystis nidulans. The locations of these genes were mapped within the cloned DNA fragment by hybridization with Escherichia coli probes. The organization of the cloned fragment and the DNA flanking it in the A. nidulans chromosome was also determined. The elongation factor Tu and G genes are adjacent to one another and in the same 5'-to-3' orientation. In contrast to other gram-negative bacteria, A. nidulans contains only one gene for elongation factor Tu.  相似文献   

19.
The gene specifying the bifunctional 6'-aminoglycoside acetyltransferase [AAC(6')] 2"-aminoglycoside phosphotransferase [APH(2")] enzyme from the Streptococcus faecalis plasmid pIP800 was cloned in Escherichia coli. A single protein with an apparent molecular weight of 56,000 was specified by this cloned determinant as detected in minicell experiments. Nucleotide sequence analysis revealed the presence of an open reading frame capable of specifying a protein of 479 amino acids and with a molecular weight of 56,850. The deduced amino acid sequence of the bifunctional AAC(6')-APH(2") gene product possessed two regions of homology with other sequenced resistance proteins. The N-terminal region contained a sequence that was homologous to the chloramphenicol acetyltransferase of Bacillus pumilus, and the C-terminal region contained a sequence homologous to the aminoglycoside phosphotransferase of Streptomyces fradiae. Subcloning experiments were performed with the AAC(6')-APH(2") resistance determinant, and it was possible to obtain gene segments independently specifying the acetyltransferase and phosphotransferase activities. These data suggest that the gene specifying the AAC(6')-APH(2") resistance enzyme arose as a result of a gene fusion.  相似文献   

20.
DNA-DNA hybridization has been established as an important technology in bacterial species taxonomy and phylogenetic analysis. In this study, we analyzed how the efficiency with which the genomic DNA from one species hybridizes to the genomic DNA of another species (DNA-DNA hybridization) in microarray analysis relates to the similarity between two genomes. We found that the predicted DNA-DNA hybridization based on genome sequence similarity correlated well with the experimentally determined microarray hybridization. Between closely related strains, significant numbers of highly divergent genes (<55% identity) and/or the accumulation of mismatches between conserved genes lowered the DNA-DNA hybridization signal, and this reduced the hybridization signals to below 70% for even bacterial strains with over 97% 16S rRNA gene identity. In addition, our results also suggest that a DNA-DNA hybridization signal intensity of over 40% indicates that two genomes at least shared 30% conserved genes (>60% gene identity). This study may expand our knowledge of DNA-DNA hybridization based on genomic sequence similarity comparison and further provide insights for bacterial phylogeny analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号