首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycogen synthase kinase-3beta (GSK-3beta) has been postulated to mediate Alzheimer's disease tau hyperphosphorylation, beta-amyloid-induced neurotoxicity and presenilin-1 mutation pathogenic effects. By using the tet-regulated system we have produced conditional transgenic mice overexpressing GSK-3beta in the brain during adulthood while avoiding perinatal lethality due to embryonic transgene expression. These mice show decreased levels of nuclear beta-catenin and hyperphosphorylation of tau in hippocampal neurons, the latter resulting in pretangle-like somatodendritic localization of tau. Neurons displaying somatodendritic localization of tau often show abnormal morphologies and detachment from the surrounding neuropil. Reactive astrocytosis and microgliosis were also indicative of neuronal stress and death. This was further confirmed by TUNEL and cleaved caspase-3 immunostaining of dentate gyrus granule cells. Our results demonstrate that in vivo overexpression of GSK-3beta results in neurodegeneration and suggest that these mice can be used as an animal model to study the relevance of GSK-3beta deregulation to the pathogenesis of Alzheimer's disease.  相似文献   

2.
Deregulation of glycogen synthase kinase-3 (GSK-3) activity in neurones has been postulated as a key feature in Alzheimer's disease (AD) pathogenesis. This was further supported by our recent characterization of transgenic mice that conditionally over-express GSK-3beta in hippocampal and cortical neurones. These mice, designated Tet/GSK-3beta, showed many of the biochemical and cellular aspects of AD neuropathology such as tau hyperphosphorylation and somatodendritic localization, decreased nuclear beta-catenin, neuronal death and reactive gliosis. Tet/GSK-3beta mice, however, did not show tau filament formation up to the latest tested age of 3 months at least. Here we report spatial learning deficits of Tet/GSK-3beta mice in the Morris water maze. In parallel, we also measured the increase in GSK-3 activity while further exploring the possibility of tau filament formation in aged mice. We found a significant increase in GSK-3 activity in the hippocampus of Tet/GSK-3beta mice whereas no tau fibrils could be found even in very old mice. These data reinforce the hypothesis of GSK-3 deregulation in AD pathogenesis, and suggest that Tet/GSK-3beta mice can be used as an AD model and, most remarkably, can be used to test the therapeutic potential of the selective GSK-3 inhibitors that are currently under development. Additionally, these experiments suggest that destabilization of microtubules and alteration of intracellular metabolic pathways contribute to AD pathogenesis independent of toxicity triggered by the aberrant tau deposits.  相似文献   

3.
4.
5.
Li R 《Current biology : CB》2005,15(6):R198-R200
Specification of the axon and dendrites is a critical step in the development of a neuron. Two new studies have shed light on the molecular pathway that controls the establishment of neuronal polarity.  相似文献   

6.
Neuronal expression of chimeric genes in transgenic mice   总被引:9,自引:0,他引:9  
  相似文献   

7.
Increasing evidence implicates caspase-1-mediated cell death as a major mechanism of neuronal death in neurodegenerative diseases. In the present study we investigated the role of caspase-1 in neurotoxic experimental animal models of Huntington's disease (HD) by examining whether transgenic mice expressing a caspase-1 dominant-negative mutant are resistant to malonate and 3-nitropropionic acid (3-NP) neurotoxicity. Intrastriatal injection of malonate resulted in significantly smaller striatal lesions in mutant caspase-1 mice than those observed in littermate control mice. Caspase-1 was significantly activated following malonate intrastriatal administration in control mice but significantly attenuated in mutant caspase-1 mice. Systemic 3-NP treatment induced selective striatal lesions that were significantly smaller within mutant caspase-1 mice than in littermate control mice. These results provide further evidence of a functional role for caspase-1 in both malonate- and 3-NP-mediated neurotoxin models of HD.  相似文献   

8.
9.
10.
Specific cell ablation is a useful method for analyzing the in vivo function of cells. We have developed a simple and sensitive method for conditional cell ablation in transgenic mice, called "toxin receptor-mediated cell knockout." We expressed the diphtheria toxin (DT) receptor in transgenic mice using a hepatocyte-specific promoter and found that injection of DT caused fulminant hepatitis. Three independently established transgenic lines demonstrated a good correlation between the sensitivity of hepatocytes to DT and the expression level of the DT receptors. Moreover, the degree of hepatocyte damage was easily controlled over a wide range of doses of injected DT without any obvious abnormalities in other cells or tissues. This system is useful for generating mouse models of disease and for studying the recovery or regeneration of tissues from cell damage or loss. As DT is a potent inhibitor of protein synthesis in both growing and non-growing cells, the method is applicable to a wide range of cells and tissues in mice or in other DT-insensitive animals.  相似文献   

11.
Molecular and cellular mechanisms for memory consolidation in the cortex are poorly known. To study the relationships between synaptic structure and function in the cortex and consolidation of long-term memory, we have generated transgenic mice in which catalytic activity of PAK, a critical regulator of actin remodeling, is inhibited in the postnatal forebrain. Cortical neurons in these mice displayed fewer dendritic spines and an increased proportion of larger synapses compared to wild-type controls. These alterations in basal synaptic morphology correlated with enhanced mean synaptic strength and impaired bidirectional synaptic modifiability (enhanced LTP and reduced LTD) in the cortex. By contrast, spine morphology and synaptic plasticity were normal in the hippocampus of these mice. Importantly, these mice exhibited specific deficits in the consolidation phase of hippocampus-dependent memory. Thus, our results provide evidence for critical relationships between synaptic morphology and bidirectional modifiability of synaptic strength in the cortex and consolidation of long-term memory.  相似文献   

12.
13.
Glycogen synthase kinase-3 (GSK-3) plays a critical role in neuronal apoptosis. The two mammalian isoforms of the kinase, GSK-3α and GSK-3β, are inhibited by phosphorylation at Ser-21 and Ser-9, respectively. Depolarization, which is vital for neuronal survival, causes both an increase in Ser-21/9 phosphorylation and an inhibition of GSK-3α/β. However, the role of GSK-3 phosphorylation in depolarization-dependent neuron survival and the signaling pathway contributing to GSK-3 phosphorylation during depolarization remain largely unknown. Using several approaches, we showed that both isoforms of GSK-3 are important for mediating neuronal apoptosis. Nonphosphorylatable GSK-3α/β mutants (S21A/S9A) promoted apoptosis, whereas a peptide encompassing Ser-9 of GSK-3β protected neurons in a phosphorylation-dependent manner; these results indicate a critical role for Ser-21/9 phosphorylation on depolarization-dependent neuron survival. We found that Ser-21/9 phosphorylation of GSK-3 was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) but not by Akt/PKB, PKA, or p90RSK. CaMKII associated with and phosphorylated GSK-3α/β. Furthermore, the pro-survival effect of CaMKII was mediated by GSK-3 phosphorylation and inactivation. These findings identify a novel Ca2+/calmodulin/CaMKII/GSK-3 pathway that couples depolarization to neuronal survival.  相似文献   

14.
15.
Glycogen synthase kinase-3beta (GSK-3beta) can participate in the induction of apoptosis or, alternatively, provide a survival signal that minimizes cellular injury. We previously demonstrated that the multikinase inhibitor sorafenib induces apoptosis in melanoma cell lines. In this report, we show that sorafenib activates GSK-3beta in multiple subcellular compartments and that this activation undermines the lethality of the drug. Pharmacologic inhibition and/or down-modulation of the kinase enhances sorafenib-induced apoptosis as determined by propidium iodide staining and by assessing the mitochondrial release of apoptosis-inducing factor and Smac/DIABLO. Conversely, the forced expression of a constitutively active form of the enzyme (GSK-3beta(S9A)) protects the cells from the apoptotic effects of the drug. This protective effect is associated with a marked increase in basal levels of Bcl-2, Bcl-x(L), and survivin and a diminution in the degree to which these anti-apoptotic proteins are down-modulated by sorafenib exposure. Sorafenib down-modulates the pro-apoptotic Bcl-2 family member Noxa in cells with high constitutive GSK-3beta activity. Pharmacologic inhibition of GSK-3beta prevents the disappearance of Noxa induced by sorafenib and enhances the down-modulation of Mcl-1. Down-modulation of Noxa largely eliminates the enhancing effect of GSK-3 inhibition on sorafenib-induced apoptosis. These data provide a strong rationale for the use of GSK-3beta inhibitors as adjuncts to sorafenib treatment and suggest that preservation of Noxa may contribute to their efficacy.  相似文献   

16.
《The Journal of cell biology》1993,123(6):1545-1553
We have produced two lines of transgenic mice in which the expression of temperature-sensitive SV-40 large T antigen is targeted to bone marrow megakaryocytes via the platelet factor 4 (PF4) tissue-specific promoter. The progeny of these transgenic mice were observed for about 3 mo, and no malignancies were detected over this period of time. The offspring of these transgenic mice, 6- to 12-wk of age, served as a source of bone marrow cells, which upon in vitro cultivation at the permissive temperature yielded immortalized cell lines (MegT). At the permissive temperature, MegT cells exhibit the characteristics of early 2N and 4N megakaryocytes which include the presence of specific gene products such as PF4, glycoprotein IIb, acetylcholinesterase, and CD45 as well as the absence of molecular markers of other cell lineages such as the macrophage marker Mac-1, the T helper cell marker CD4, the mast cell marker IgE, the T cell marker CD2 or the erythroid cell marker alpha-globin. The inactivation of the oncogene by a shift of temperature from 34 degrees to 39.5 degrees C produces a reduction in the frequency of the 2N cells, in conjunction with the appearance of 8N and 16N cells, consisting of 27 and 3% of total cells, respectively. Thus, we have generated hematopoietic cell lines that are trapped in the early stages of megakaryocyte commitment, but able to undergo part of the normal program of terminal differentiation.  相似文献   

17.
Ovarian follicle apoptosis in bovine growth hormone transgenic mice   总被引:8,自引:0,他引:8  
Growth hormone directly or via insulin like-growth factor-I has been shown to inhibit preovulatory follicle apoptosis, which is the underlying mechanism of follicular atresia. We studied the levels of apoptosis in the ovaries of transgenic mice expressing bovine growth hormone. Female bovine growth hormone transgenic mice (n = 10) and nontransgenic litter mates (n = 8) were killed at early proestrus. Ovaries were collected, sectioned, and processed using a nonradioactive in situ method for apoptosis detection. Follicles were classified and counted on the basis of size and level of apoptosis. Our results demonstrate that the percentage of ovarian follicles containing apoptotic cells was lower in transgenic versus normal mice (30% vs. 46%; P < 0.05). The percentage of follicles undergoing heavy apoptosis was lower (P < 0.05) in transgenic versus control animals in preovulatory and early antral follicles, but it was not different in preantral follicles. The percentage of healthy preovulatory follicles was also higher in transgenic versus normal mice (7.4% vs. 4.3%; P < 0.05). These results indicate that growth hormone overexpression in transgenic mice significantly decreases follicle apoptosis, and thus atresia in the mouse ovary, therefore leading to increased propensity for ovulation in these animals.  相似文献   

18.
19.
Neurodegeneration in Alzheimer's disease (AD) is associated with the activation of neurogenesis. The mechanisms underlying this crosstalk between neuronal death and birth and the extent to which it is affected by genetic risk factors of AD are not known. We employed transgenic mice expressing human apolipoprotein E4 (apoE4), the most prevalent genetic risk factor for AD, or expressing human apoE3 (an AD-benign allele), in order to examine the hypothesis that apoE4 tilts the balance between neurogenesis and neuronal cell death in favor of the latter. The results showed an isoform-specific increase in neurogenesis in the hippocampal dentate gyrus (DG) under standard conditions in apoE4-transgenic mice. Environmental stimulation, which increases neurogenesis in the DG of apoE3-transgenic and wild-type mice, had the opposite effect on the apoE4 mice, where it triggered apoptosis while decreasing hippocampal neurogenesis. These effects were specific to the DG and were not observed in the subventricular zone, where neurogenesis was unaffected by either the apoE genotype or the environmental conditions. These in vivo findings demonstrate a linkage between neuronal apoptosis and the impaired neuronal plasticity and cognition of apoE4-transgenic mice, and suggest that similar interactions between apoE4 and environmental factors might occur in AD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号