首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Progesterone receptor (PR) isoforms (PRA and PRB) are implicated in the progression of breast cancers frequently associated with imbalanced PRA/PRB expression ratio. Antiprogestins represent potential antitumorigenic agents for such hormone-dependent cancers. To investigate the mechanism(s) controlling PR isoforms degradation/stability in the context of agonist and antagonist ligands, we used endometrial and mammary cancer cells stably expressing PRA and/or PRB. We found that the antiprogestin RU486 inhibited the agonist-induced turnover of PR isoforms through active mechanism(s) involving distinct MAPK-dependent phosphorylations. p42/44 MAPK activity inhibited proteasome-mediated degradation of RU486-bound PRB but not PRA in both cell lines. Ligand-induced PRB turnover required neosynthesis of a mandatory down-regulating partner whose interaction/function is negatively controlled by p42/44 MAPK. Such regulation strongly influenced expression of various endogenous PRB target genes in a selective manner, supporting functional relevance of the mechanism. Interestingly, in contrast to PRB, PRA stability was specifically increased by MAPK kinase kinase 1-induced p38 MAPK activation. Selective inhibition of p42/p44 or p38 activity resulted in opposite variations of the PRA/PRB expression ratio. Moreover, MAPK-dependent PR isoforms stability was independent of PR serine-294 phosphorylation previously proposed as a major sensor of PR down-regulation. In sum, we demonstrate that MAPK-mediated cell signaling differentially controls PRA/PRB expression ratio at posttranslational level through ligand-sensitive processes. Imbalance in PRA/PRB ratio frequently associated with carcinogenesis might be a direct consequence of disorders in MAPK signaling that might switch cellular responses to hormonal stimuli and contribute towards pathogenesis.  相似文献   

3.
Ovarian cancer progression is correlated with accumulation of aberrant CpG island methylation. In ovarian cancer, ascites fluid contains numerous Epidermal-Growth-Factor-Receptor (EGFR) activators, which could result in a tumor microenvironment of constant EGFR activation. Signaling pathways downstream of EGFR, such as Ras, regulate DNA methylation. We hypothesized that chronic EGFR activation could alter DNA methylation. We found that EGFR activation increased DNA methyltransferase (DNMT) activity acutely, as well as after long-term EGF treatment or expression of a mutationally activated EGFR. Furthermore, this increase in DNMT activity was dependent on EGFR catalytic activity and resulted in increased global DNA methylation. Additionally, treatment with the DNMT inhibitor/hypomethylating agent 5-Aza-2′-deoxycytidine (AZA) inhibited the EGF induced increase of both DNMT activity and global methylation. These data support a role for EGFR in the process of accumulated DNA methylation during ovarian cancer progression and suggest that epigenetic therapy may be beneficial for the treatment of ovarian cancer.Key words: ovarian cancer, DNA methylation, epidermal growth factor receptor, DNA methyltransferase, epigenetics, E-cadherin  相似文献   

4.
5.
6.
Liu ZJ  Maekawa M  Horii T  Morita M 《Life sciences》2003,73(15):1963-1972
The changes of methylation status of various gene promoters are a common feature of malignant cells and these changes can occur early in the progression process. Therefore, abnormal methylation can be used as cancer marker. Such studies will first require the development of a panel of methylated markers that are methylated in cancer tissues but unmethylated in normal tissues or methylated status is different between cancer tissues and normal tissues. By using methylation-specific PCR (MSP) assay method, we observed alterations in DNA methylation at the double promoter regions of the progesterone receptor (PR) gene and estrogen receptor (ERalpha) gene in various tumor cell lines. Compared with normal white blood cell, the methylation status of PRA promoter in various cancer cell lines changed from unmethylation pattern to methylation pattern. That of PRB promoter changed from both unmethylated and methylated alleles to only methylated allele. The methylation status of ERalpha-A and ERalpha-B promoter in various cancer cell lines are cell -specific. This study indicates that PR promoter methylation may be a molecular marker in various cancer detections. And the methylation status of ERalpha-A and ERalpha-B is cell-specific.  相似文献   

7.
《Epigenetics》2013,8(3):216-224
Ovarian cancer progression is correlated with accumulation of aberrant CpG island methylation. In ovarian cancer, ascites fluid contains numerous Epidermal-Growth-Factor-Receptor (EGFR) activators, which could result in a tumor microenvironment of constant EGFR activation. Signaling pathways downstream of EGFR, such as Ras, regulate DNA methylation. We hypothesized that chronic EGFR activation could alter DNA methylation. We found that EGFR activation increased DNA methyltransferase (DNMT) activity acutely, as well as after long-term EGF treatment or expression of a mutationally activated EGFR. Furthermore, this increase in DNMT activity was dependent on EGFR catalytic activity and resulted in increased global DNA methylation. Additionally, treatment with the DNMT inhibitor/hypomethylating agent 5-Aza-2’-deoxycytidine (AZA) inhibited the EGF induced increase of both DNMT activity and global methylation. These data support a role for EGFR in the process of accumulated DNA methylation during ovarian cancer progression and suggest that epigenetic therapy may be beneficial for the treatment of ovarian cancer.  相似文献   

8.
DNA cytosine methylation is one of the major epigenetic gene silencing marks in the human genome facilitated by DNA methyltransferases. DNA cytosine-5 methyltransferase 1 (DNMT1) performs maintenance methylation in somatic cells. In cancer cells, DNMT1 is responsible for the aberrant hypermethylation of CpG islands and the silencing of tumor suppressor genes. Here we show that the catalytically active recombinant DNMT1, lacking 580 amino acids from the amino terminus, binds to unmethylated DNA with higher affinity than hemimethylated or methylated DNA. To further understand the binding domain of enzyme, we have used gel shift assay. We have demonstrated that the CXXC region (C is cysteine; X is any amino acid) of DNMT1 bound specifically to unmethylated CpG dinucleotides. Furthermore, mutation of the conserved cysteines abolished CXXC mediated DNA binding. In transfected COS-7 cells, CXXC deleted DNMT1 (DNMT1 (DeltaCXXC)) localized on replication foci. Both point mutant and DNMT1 (DeltaCXXC) enzyme displayed significant reduction in catalytic activity, confirming that this domain is crucial for enzymatic activity. A permanent cell line with DNMT1 (DeltaCXXC) displayed partial loss of genomic methylation on rDNA loci, despite the presence of endogenous wild-type enzyme. Thus, the CXXC domain encompassing the amino terminus region of DNMT1 cooperates with the catalytic domain for DNA methyltransferase activity.  相似文献   

9.
The progesterone receptor (PR) with its isoforms and ligands are involved in breast tumorigenesis and prognosis. We aimed at analyzing the respective contribution of PR isoforms, PRA and PRB, in breast cancer cell proliferation in a new estrogen-independent cell based-model, allowing independent PR isoforms analysis. We used the bi-inducible human breast cancer cell system MDA-iPRAB. We studied the effects and molecular mechanisms of action of progesterone (P4) and ulipristal acetate (UPA), a new selective progesterone receptor modulator, alone or in combination. P4 significantly stimulated MDA-iPRA expressing cells proliferation. This was associated with P4-stimulated expression of the anti-apoptotic factor BCL2-L1 and enhanced recruitment of PRA, SRC-1 and RNA Pol II onto the +58 kb PR binding motif of the BCL 2 -L 1 gene. UPA decreased cell proliferation and repressed BCL2-L1 expression in the presence of PRA, correlating with PRA and SRC1 but not RNA Pol II recruitment. These results bring new information on the mechanism of action of PR ligands in controlling breast cancer cell proliferation through PRA in an estrogen independent model. Evaluation of PR isoforms ratio, as well as molecular signature studies based on PRA target genes could be proposed to facilitate personalized breast cancer therapy. In this context, UPA could be of interest in endocrine therapy. Further confirmation in the clinical setting is required.  相似文献   

10.
11.
12.
An essential role for DNA methyltransferase DNMT3B in cancer cell survival   总被引:13,自引:0,他引:13  
Abnormal methylation and associated silencing of tumor suppressor genes is a common feature of many types of cancers. The observation of persistent methylation in human cancer cells lacking the maintenance methyltransferase DNMT1 suggests the involvement of other DNA methyltransferases in gene silencing in cancer. To test this hypothesis, we have evaluated methylation and gene expression in cancer cells specifically depleted of DNMT3A or DNMT3B, de novo methyltransferases that are expressed in adult tissues. Here we have shown that depletion of DNMT3B, but not DNMT3A, induced apoptosis of human cancer cells but not normal cells. DNMT3B depletion reactivated methylation-silenced gene expression but did not induce global or juxtacentromeric satellite demethylation as did specific depletion of DNMT1. Furthermore, the effect of DNMT3B depletion was rescued by exogenous expression of either of the splice variants DNMT3B2 or DNMT3B3 but not DNMT1. These results indicate that DNMT3B has significant site selectivity that is distinct from DNMT1, regulates aberrant gene silencing, and is essential for cancer cell survival.  相似文献   

13.
Tom Moss 《Epigenetics》2011,6(2):128-133
Mutations in the pattern of CpG methylation imprinting of the human genome have been correlated with a number of diseases including cancer. In particular, aberrant imprinting of tumor suppressor genes by gain of CpG methylation has been observed in many cancers and thus represents an important alternative pathway to gene mutation and tumor progression. Inhibitors of DNA methylation display therapeutic effects in the treatment of certain cancers and it has been assumed that these effects are due to the reversal of mutant gene imprinting. However, significant reactivation of imprinted tumor suppressor genes is rarely observed in vivo following treatment with DNA methylation inhibitors. A recent study revealed an unexpected requirement for CpG methylation in the synthesis and assembly of the ribosome, an essential function for cell growth and proliferation. As such, the data provide an unforeseen explanation of the action of DNA methylation inhibitors in restricting cancer cell growth.Key words: DNA methylation, meCpG, DNA methyltransferase-inhibition, DNMT1-/-, DNMT3b-/-, aza-deoxycytidine, gene silencing, ribosome biogenesis, cancer therapy  相似文献   

14.
15.
γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0444-0) contains supplementary material, which is available to authorized users.  相似文献   

16.
The human progesterone receptor (PR) is expressed as two isoforms, PRA and PRB, which differ in the N-terminal region and exhibit different activities in vitro, with PRA demonstrating dominant negative inhibitory effects on the activity of PRB and other nuclear receptors. PRA and PRB are expressed in target tissues at comparable levels although cells expressing a predominance of one isoform can be identified. In breast cancers, PRA is expressed at high levels in some tumors, and this may be associated with features of poorer prognosis. To investigate the role of PRA overexpression in PR-positive target cells, the effect of PRA induction on cell proliferation and expression of endogenous progestin-sensitive genes, SOX4 and fatty acid synthetase (FAS), was examined using PR-positive T-47D cell lines, which express a predominance of PRB, in which PRA could be increased 2- to 20-fold over basal levels. No effect of PRA induction was noted on cell proliferation, but marked changes in morphology, consistent with loss of adherent properties, were observed. Increases up to 4-fold in the relative PRA levels augmented progestin induction of SOX4 mRNA expression, and RU486 treatment revealed a progestin agonist effect. There was no consistent effect of PRA induction on progestin-mediated increases in FAS mRNA levels under these conditions. Clones with PRA:PRB ratios greater than 15 were associated with diminished progestin responses on both SOX4 and FAS mRNA expression. These data show that PRA overexpression is associated with alteration in adhesive properties in breast cancer cells and effects on endogenous progestin targets that were dependent on the cellular ratio of PRA:PRB. The results of this study are consistent with the view that PRA expression can fluctuate within a broad range in target cells without influencing the nature of progestin action on downstream targets, but that overexpression of PRA, such as is seen in a proportion of breast cancers, may be associated with inhibition of progestin action and features of poor prognosis.  相似文献   

17.
CDX1 is a homeobox protein that inhibits proliferation of intestinal epithelial cells and regulates intestine-specific genes involved in differentiation. CDX1 expression is developmentally and spatially regulated, and its expression is aberrantly down-regulated in colorectal cancers and colon cancer-derived cell lines. However, very little is known about the molecular mechanism underlying the regulation of CDX1 gene expression. In this study, we characterized the CDX1 gene structure and identified that its gene promoter contained a typical CpG island with a CpG observed/expected ratio of 0.80, suggesting that the CDX1 gene is a target of aberrant methylation. Alterations of DNA methylation in the CDX1 gene promoter were investigated in a series of colorectal cancer cell lines. Combined Bisulfite Restriction Analysis (COBRA) and bisulfite sequencing analysis revealed that the CDX1 promoter is methylated in CDX1 non-expressing colorectal cancer cell lines but not in human normal colon tissue and T84 cells, which express CDX1. Treatment with 5'-aza-2'-deoxycytidine (5-azaC), a DNA methyltransferase inhibitor, induced CDX1 expression in the colorectal cancer cell lines. Furthermore, de novo methylation was determined by establishing stably transfected clones of the CDX1 promoter in SW480 cells and demethylation by 5-azaC-activated reporter gene expression. These results indicate that aberrant methylation of the CpG island in the CDX1 promoter is one of the mechanisms that mediate CDX1 down-regulation in colorectal cancer cell lines.  相似文献   

18.
DNA methylation is a key regulator of gene expression and changes in DNA methylation occur early in tumorigenesis. Mutations in the de novo DNA methyltransferase gene, DNMT3A, frequently occur in adult acute myeloid leukemia patients with poor prognoses. Most of the mutations occur within the dimer or tetramer interface, including Arg-882. We have identified that the most prevalent mutation, R882H, and three additional mutants along the tetramer interface disrupt tetramerization. The processive methylation of multiple CpG sites is disrupted when tetramerization is eliminated. Our results provide a possible mechanism that accounts for how DNMT3A mutations may contribute to oncogenesis and its progression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号