首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium binding lysozyme from pigeon egg-white was crystallized by the hanging drop vapor diffusion technique using ammonium sulphate as a precipitant. The crystals belong to the orthorhombic system, space group P2(1)2(1)2(1), and have unit cell dimensions of a = 34.2 A, b = 34.8 A, and c = 99.4 A. One asymmetric unit contains one molecule of the pigeon lysozyme. The crystals diffract X-rays at least to 2.0 A resolution and are suitable for high resolution structure analysis. The diffraction data up to 3.0 A resolution were collected with a diffraction image processor, DIP100, using a Fuji imaging plate as an area detector. The structure was solved by the molecular replacement technique and refined to an R factor of 0.216. Least-squares fitting of the main-chains of pigeon egg-white lysozyme with those of chicken egg-white lysozyme and baboon alpha-lactalbumin showed that the main-chain folding of pigeon lysozyme is more similar to that of chicken lysozyme than that of alpha-lactalbumin. The largest differences between the pigeon and chicken lysozymes are in the surface loop regions.  相似文献   

2.
Crystal structures of pheasant and guinea fowl egg-white lysozymes.   总被引:2,自引:2,他引:0       下载免费PDF全文
The crystal structures of pheasant and guinea fowl lysozymes have been determined by X-ray diffraction methods. Guinea fowl lysozyme crystallizes in space group P6(1)22 with cell dimensions a = 89.2 A and c = 61.7 A. The structure was refined to a final crystallographic R-factor of 17.0% for 8,854 observed reflections in the resolution range 6-1.9 A. Crystals of pheasant lysozyme are tetragonal, space group P4(3)2(1)2, with a = 98.9 A, c = 69.3 A and 2 molecules in the asymmetric unit. The final R-factor is 17.8% to 2.1 A resolution. The RMS deviation from ideality is 0.010 A for bond lengths and 2.5 degrees for bond angles in both models. Three amino acid positions beneath the active site are occupied by Thr 40, Ile 55, and Ser 91 in hen, pheasant, and other avian lysozymes, and by Ser 40, Val 55, and Thr 91 in guinea fowl and American quail lysozymes. In spite of their internal location, the structural changes associated with these substitutions are small. The pheasant enzyme has an additional N-terminal glycine residue, probably resulting from an evolutionary shift in the site of cleavage of prelysozyme. In the 3-dimensional structure, this amino acid partially fills a cleft on the surface of the molecule, close to the C alpha atom of Gly 41 and absent in lysozymes from other species (which have a large side-chain residue at position 41: Gln, His, Arg, or Lys). The overall structures are similar to those of other c-type lysozymes, with the largest deviations occurring in surface loops. Comparison of the unliganded and antibody-bound models of pheasant lysozyme suggests that surface complementarity of contacting surfaces in the antigen-antibody complex is the result of local, small rearrangements in the epitope. Structural evidence based upon this and other complexes supports the notion that antigenic variation in c-type lysozymes is primarily the result of amino acid substitutions, not of gross structural changes.  相似文献   

3.
The crystal structure of turkey egg-white lysozyme, determined by the molecular replacement method at 5 Å resolution (Bott & Sarma, 1976) has now been refined to 2.8 Å resolution and a model has been built to fit the electron density. A comparison of the co-ordinates with those of hen lysozyme indicate a rootmean-square deviation of 1.6 Å for all the main-chain and side-chain atoms. A significant difference is observed in the region of residues 98 to 115 of the structure. The molecules are packed in this crystal form with the entire length of the active cleft positioned in the vicinity of the crystallographic 6-fold axis and is not blocked by neighboring molecules. A difference electron density map calculated between crystals of turkey lysozyme soaked in a disaccharide of N-acetyl glucosamine—N-acetyl muramic acid and the native crystals showed a strong positive peak at subsite C, a weak positive peak at subsite D and two strong peaks that correspond to the subsite E and a new subsite F′. This new site F′ is different from the subsite F predicted for the sixth saccharide from model building in hen lysozyme. The interactions between the saccharides bound at subsites E and F′ and the enzyme molecules are discussed.  相似文献   

4.
Crystalline monoclonal antibody Fabs complexed to hen egg white lysozyme   总被引:3,自引:0,他引:3  
The Fab of a monoclonal anti-lysozyme antibody (HyHEL-10) has been crystallized as the free Fab and as the Fab-antigen complex. Crystals have also been grown of the antigen complex of the Fab of another monoclonal anti-lysozyme antibody (HyHEL-9), which recognizes a different binding surface of lysozyme. All three crystals diffract to at least 3 A resolution and are suitable for X-ray diffraction studies.  相似文献   

5.
Pigs immunized with lysozyme responded by producing only nonprecipitating antibody throughout the immunization period. Fig antilysozyme antibodies were found to be resistant to papain fragmentation, only 33% of the antibodies were fragmented with papain. From the binding of fluorescein labeled or 14C-labeled lysozyme to antilysozyme antibodies it was concluded that the antibodies elicited in pigs recognized only two antigenic determinants of lysozyme. These results were confirmed from the binding of Fab fragments to 14C-lysozyme. Fab fragments prepared from precipitating rabbit antilysozyme antibody bound 14C-lysozyme at a molar ratio of Fab/lysozyme = 3. Therefore nonprecipitating antibodies are the outcome of recognition of only two antigenic determinants on lysozyme and inability to form a lattice structure when antibody and antigen interact. This work emphasizes the limitations of using antibodies as a biological reagent for delineating the antigenic determinants on proteins.  相似文献   

6.
The binding of beta-methyl N-acetylglucosaminide (betaMeGlcNAc) to egg-white lysozyme of hen in the tetragonal crystal form was studied by X-ray diffraction techniques to a resolution of 0.25 nm. The binding of the beta-methyl glycoside is almost identical with the binding of beta-N-acetylglucosamine (betaGlcNAc). Real-space refinement of the lysozyme-alpha/beta GlcNAc and lysozyme-betaMeGlcNAc complexes allowed preliminary analysis of the conformational changes observed on binding monosaccharide inhibitors, specially in the region involving tryptophan-62 and residues 70--76. Tetagonal lysozyme crystals, grown in the absence of acetate ions, were examined by X-ray diffraction to 0.25nm resolution. The resulting difference Fourier synthesis shows no firm evidence for bound acetate ions and indicates only minor conformational changes in the side-chain positions of aspartic acid-101 and asparagine-103. The close similarity of the lysozyme structures in the presence and absence of acetate is contrary to expectations from previous n.m.r. studies.  相似文献   

7.
The three-dimensional structure of the single-chain Fv fragment 1F9 in complex with turkey egg-white lysozyme (TEL) has been determined to a nominal resolution of 2.0 A by X-ray diffraction. The scFv fragment 1F9 was derived from phage-display libraries in two steps and binds both hen and turkey egg-white lysozyme, although the level of binding affinity is two orders of magnitude greater for the turkey lysozyme. The comparison of the crystal structure with a model of the single-chain Fv fragment 1F9 in complex with hen egg-white lysozyme (HEL) reveals that in the latter a clash between Asp101 in lysozyme and Trp98 of the complementarity determining region H3 of the heavy chain variable domain occurs. This is the only explanation apparent from the crystal structure for the better binding of TEL compared to HEL.The binding site topology on the paratope is not simply a planar surface as is usually found in antibody-protein interfaces, but includes a cleft between the light chain variable domain and heavy chain variable domain large enough to accommodate a loop from the lysozyme. The scFv fragment 1F9 recognizes an epitope on TEL that differs from the three antigenic determinants recognized in other known crystal structures of monoclonal antibodies in complex with lysozyme.  相似文献   

8.
Human lysozyme and hen egg-white lysozyme have antibacterial, antiviral, and antifungal properties with numerous potential commercial applications. Currently, hen egg-white lysozyme dominates low cost applications but the recent high-level expression of human lysozyme in rice could provide an economical source of lysozyme. This work compares human lysozyme and hen egg-white lysozyme adsorption to the cation exchange resin, SP-Sepharose FF, and the effect of rice extract components on lysozyme purification. With one exception, the dynamic binding capacities of human lysozyme were lower than those of hen egg-white at pH 4.5, 6, and 7.5 with ionic strengths ranging from 0 to 100 mM (5-20 mS). Ionic strength and pH had a similar effect on the adsorption capacities, but human lysozyme was more sensitive to these two factors than hen egg-white lysozyme. In the presence of rice extract, the dynamic binding capacities of human and hen egg-white lysozymes were reduced by 20-30% and by 32-39% at pH 6. Hen egg-white lysozyme was used as a benchmark to compare the effectiveness of human lysozyme purification from transgenic rice extract. Process simulation and cost analyses for human lysozyme purification from rice and hen egg-white lysozyme purification from egg-white resulted in similar unit production costs at 1 ton per year scale.  相似文献   

9.
Preliminary crystallographic data are given for the complex between the Fab fragment of a monoclonal anti-lysozyme antibody and its antigen. This crystalline complex was found by screening a number of Fab-lysozyme complexes prepared from monoclonal anti-lysozyme antibodies produced by hybrids of BALB/c immune spleen cells with a non-secreting mouse hybrid myeloma line. The complex crystallizes in the monoclinic space group P21 with a = 55.5 (+/- 0.1) A, b = 143.5 (+/- 0.3) A, c = 49.1 (+/- 0.1) A, beta = 120 degrees 20' (+/- 10'). X-ray photographs show reflections extending to a resolution of 2.7 A. The crystals are suitable for high-resolution X-ray diffraction studies.  相似文献   

10.
The associated heavy (VH) and light (VL) chain variable domains (Fv) of the monoclonal anti-lysozyme antibody D1.3, secreted from Escherichia coli, have been crystallized in their antigen-bound and free forms. FvD1.3 gives tetragonal crystals, space group P4(1)2(1)2 (or P4(3)2(1)2), with a = 90.6 A, c = 56.4 A. The FvD1.3-lysozyme complex crystallizes in space group C2, with a = 129.2 A, b = 60.8 A, c = 56.9 A and beta = 119.3 degrees. The crystals contain one molecule of Fv or of the Fv-lysozyme complex in their asymmetric units and diffract X-rays to high resolution, making them suitable for X-ray crystallographic studies.  相似文献   

11.
The formation of amyloid fibrils is an intractable problem in which normally soluble protein polymerizes and forms insoluble ordered aggregates. Such aggregates can range from being a nuisance in vitro to being toxic in vivo. The latter is true for lysozyme, which has been shown to form toxic deposits in humans. In the present study, the effects of partial denaturation of hen egg-white lysozyme via incubation in a concentrated solution of the denaturant guanidine hydrochloride are investigated. Results show that when lysozyme is incubated under moderate guanidine hydrochloride concentrations (i.e., 2-5 M), where lysozyme is partially unfolded, fibrils form rapidly. Thioflavin T, Congo red, X-ray diffraction, transmission electron microscopy, atomic force microscopy, and circular dichroism spectroscopy are all used to verify the production of fibrils under these conditions. Incubation at very low or very high guanidine hydrochloride concentrations fails to produce fibrils. At very low denaturant concentrations, the structure of lysozyme is fully native and very stable. On the other hand, at very high denaturant concentrations, guanidine hydrochloride is capable of dissolving and dis-aggregating fibrils that are formed. Raising the temperature and/or concentration of lysozyme accelerates fibril formation by further adding to the concentration of partially unfolded species. The addition of preformed fibrils also accelerates fibril formation but only under partially unfolding conditions. The results presented here provide further evidence that partial unfolding is a prerequisite to fibril formation. Partial denaturation can accelerate fibril formation in much the same way that mutations have been shown to accelerate fibril formation.  相似文献   

12.
13.
The complex formed between the Fab fragment of a murine monoclonal anti-hen egg lysozyme antibody F9.13.7 and the het-erologous antigen Guinea-fowl egg lysozyme has been crystallized by the hanging drop technique. The crystals, which diffract X-rays to 3 Å resolution, belong to the monoclinic space group P21, with a = 83.7 Å, b = 195.5 Å, c = 50.2 Å, β = 108.5° and have two molecules of the complex in the asymmetric unit The three-dimensional structure has been determined from a preliminary data set to 4 Å using molecular replacement techniques. The lysozyme–Fab complexes are arranged with their long molecular axes approximately parallel to the crystallo-graphic unique axis. Fab F9.13.7 binds an anti-genie determinant that partially overlaps the epitope recognized by antilysozyme antibody HyHEL10. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Lanthanide ions and the N-acetylglucosamine (GlcNAc) sugars are able to bind simultaneously to hen egg-white lysozyme (EC 3.2.1.17). The present study characterizes the properties of the ternary complexes with lysozyme, which involve up to seven paramagnetic lanthanides and two diamagnetic lanthanides, together with alpha GlcNAc, beta GlcNAc, alpha MeGlcNAc and beta MeGlcNAc. pH titrations and binding titrations of the GlcNAc sugars with lysozyme-La(III) complexes show that the GlcNAc sugars bind to at least two independent sites and that one of them competes with La(III) for binding to lysozyme. Given the known binding site of lanthanides at Asp-52 and Glu-35, the competitive binding site of GlcNAc is identified as subsite E. A simple analysis of the paramagnetic-lanthanide-induced shifts shows that the GlcNAc sugar binds in subsite C, in accordance with crystallographic results [Perkins, Johnson, Machin & Phillips (1979) Biochem. J. 181, 21-36]. This finding was refined by several computer analyses of the lanthanide-induced shifts of 17 proton and carbon resonances of beta MeGlcNAc. Good fits were obtained for all the signals, except for two that were affected by exchange broadening phenomena. No distinction could be made between a fit for a two-position model of Ln(III) binding with axial symmetry to lysozyme, according to the crystallographic result, or a one-position model with axial symmetry where the Ln(III) is positioned mid-way between Asp-52 and Glu-35. Although this work establishes the feasibility of lanthanide shift reagents for study of protein-ligand complexes, further work is required to establish the manner in which lanthanides bind to lysozyme in solution.  相似文献   

15.
The complexes between the Fab fragments of two monoclonal anti-lysozyme antibodies, Fab10.6.6 (high affinity) and D44.2 (lower affinity), and their specific antigen, hen egg-white lysozyme, have been crystallized. The antibodies recognize an antigenic determinant including Arg68, but differ significantly in their association constants for the antigen. Two crystalline forms were obtained for the complex with FabF10.6.6, the higher affinity antibody. One of them is monoclinic, space group P21, with unit cell dimensions a = 145.6 A, b = 78.1 A, c = 63.1 A, beta = 89.05 degrees, consistent with the presence of two molecules of the complex in the asymmetric unit. These crystals diffract X-rays beyond 3 A making this form suitable for high-resolution X-ray diffraction studies. The second form crystallizes in the triclinic space group P1, with unit cell dimensions a = 134.0 A, b = 144.7 A, c = 98.6 A, alpha = 90.30 degrees, beta = 97.1 degrees, gamma = 90.20 degrees, consistent with the presence of 10 to 12 molecules of the complex in the unit cell. These crystals do not diffract X-rays beyond 5 A resolution. The antigen-antibody complex between FabD44.2, the lower affinity antibody, and hen egg-white lysozyme crystallizes in space group P2(1)2(1)2(1), with unit cell dimensions a = 99.7 A, b = 167.3 A, c = 84.7 A, consistent with the presence of two molecules of the complex in the asymmetric unit. These crystals diffract X-rays beyond 2.5 A resolution.  相似文献   

16.
Sasahara K  Nitta K 《Proteins》2006,63(1):127-135
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.  相似文献   

17.
We report on the preparation, crystallization and preliminary X-ray crystallographic study of the Fab fragments from a murine monoclonal anti-cardiotoxin antibody M gamma 2-3 directed against a cobra cardiotoxin. The Fab fragment has been crystallized from polyethylene glycol 8000 solutions in a form suitable for high-resolution, X-ray crystallographic studies. The crystals are monoclinic, space group C2, with a = 161.2 A, b = 40.4 A, c = 96.5 A, beta = 118.3 degrees.  相似文献   

18.
A simple method of lysis of lyophilized cells ofEscherichia coli is described, using egg-white lysozyme in the absence of ethylenediaminetetraacetic acid (EDTA).  相似文献   

19.
The structure of the high-temperature orthorhombic form of hen egg-white lysozyme has been determined at 2.0 A resolution. Initial images of the molecule were obtained at 6.0 A resolution both by double isomorphous replacement and by molecular replacement with use of the known structure of the room-temperature tetragonal lysozyme. The initial model thus obtained (R = 0.52 at 6.0 A) was refined first as a rigid body at 6.0 A and then by restrained least squares at 2.5 A and later at 2.0 A resolution. The final model (R = 0.23 at 2.0 A) was compared with that of the tetragonal form: the structures are very similar with a root mean square difference in superimposed alpha-carbon coordinates of 0.46 A. There are, however, differences which are caused by a crystal contact involving the upper part of this active site in the high-temperature orthorhombic form. Because of this, residues Trp 62 and Pro 70 are much better ordered than in the tetragonal form, where they are exposed to solvent. These differences can partly explain the difficulty of inhibitor-binding in high-temperature orthorhombic crystals, but do not seem to reflect the particular behaviour of lysozyme in solution at high temperature.  相似文献   

20.
Synchrotron radiation circular dichroism, Fourier transform infrared, and nuclear magnetic resonance spectroscopies, and small-angle x-ray scattering were used to monitor the reversible thermal unfolding of hen egg white lysozyme. The results were compared with crystal structures and high- and low-temperature structures derived from molecular-dynamics calculations. The results of both experimental and computational methods indicate that the unfolding process starts with the loss of β-structures followed by the reversible loss of helix content from ∼40% at 20°C to 27% at 70°C and ∼20% at 77°C, beyond which unfolding becomes irreversible. Concomitantly there is a reversible increase in the radius of gyration of the protein from 15 Å to 18 Å. The reversible decrease in forward x-ray scattering demonstrates a lack of aggregation upon unfolding, suggesting the change is due to a larger dilation of hydration water than of bulk water. Molecular-dynamics simulations suggest a similar sequence of events and are in good agreement with the 1HN chemical shift differences in nuclear magnetic resonance. This study demonstrates the power of complementary methods for elucidating unfolding/refolding processes and the nature of both the unfolded structure, for which there is no crystallographic data, and the partially unfolded forms of the protein that can lead to fibril formation and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号