首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypothesis that leukocyte infiltration mediated by intercellular adhesion molecule (ICAM)-1 is involved in early alcohol-induced liver injury, male wild-type or ICAM-1 knockout mice were fed a high-fat liquid diet with either ethanol or isocaloric maltose-dextrin for 4 wk. There were no differences in mean urine alcohol concentrations between the groups fed ethanol. Alcohol administration significantly increased liver size and serum alanine aminotransferase levels in wild-type mice over high-fat controls, effects that were blunted significantly in ICAM-1 knockout mice. Dietary ethanol caused severe steatosis, mild inflammation, and focal necrosis in livers from wild-type mice. Furthermore, livers from wild-type mice fed ethanol showed significant increases in the number of infiltrating leukocytes, which were predominantly lymphocytes. These pathological changes were blunted significantly in ICAM-1 knockout mice. Tumor necrosis factor (TNF)-alpha mRNA expression was increased in wild-type mice fed ethanol but not in ICAM-1 knockout mice. These data demonstrate that ICAM-1 and infiltrating leukocytes play important roles in early alcohol-induced liver injury, most likely by mechanisms involving TNF-alpha.  相似文献   

2.
The activity of lipoprotein lipase (LPL) is increased after alcohol consumption and can contribute to an increased level of HDL-cholesterol, which is considered to play a key role in the ethanol-mediated protective effect against cardiovascular disease. The increase in HDL-cholesterol concentration can be also due to an ethanol-enhanced synthesis and secretion of apolipoprotein A-I (apo A-I) from hepatocytes. Therefore, the hypothesis that ethanol consumption affects the LPL and apo A-I gene (LPL and APOA1, respectively) expression was tested in male C57BL/6 mice drinking 5 % ethanol or water and fed a standard chow or high-fat (HF) diet for 4 weeks. The LPL expression was determined in the heart, epididymal and dorsolumbal adipose tissues, the APOA1 expression in the liver. Alcohol consumption did not affect lipid and lipoprotein concentrations in the serum. The LPL expression was increased in the heart of mice given ethanol and HF diet compared to mice on chow and ethanol (p<0.001) and was also increased in epididymal fat in mice given ethanol and HF diet compared to mice on water and HF diet (p<0.05). Neither LPL expression in dorsolumbal fat nor APOA1 expression in the liver were affected by ethanol consumption. Our data suggest that ethanol consumption upregulates LPL expression in a tissue- and diet-dependent manner.  相似文献   

3.
Ethanol-induced sleep onset times, sleep times and blood alcohol levels upon awakening were measured in mice fed an essential fatty acid deficient, Purina Chow or unsaturated fat diet for nine months. These values in animals fed the essential fatty acid deficient and Purina Chow diets did not differ, but mice fed the unsaturated fat diet had longer sleep times and lower blood alcohol levels upon awakening than mice fed essential fatty acid deficient or Purina Chow diets. Crude brain mitochondrial fractions isolated from mice fed the essential fatty acid deficient diet had decreased levels of docosahexaenoic [22:6(n-3)] and increased levels of eicosatrienoic [20:3(n-9)], docosatrienoic [22:3(n-9)] and docosapentaenoic [22:5(n-6)] acids compared to mice fed the Purina Chow diet. The unsaturated fat diet decreased 22:6(n-3) and increased 22:5(n-6) compared to the Purina Chow dietary regimen. The longer sleep times and lower blood alcohol levels found in mice fed the unsaturated fat diet probably resulted from an artifact due to the obesity of the mice fed this diet and from the hinderance of obesity to the righting reflex (our measure of ethanol potency). We conclude that the alteration of several polyunsaturated fatty acid components in the brain has little or no influence on the sensitivity of the nervous system to alcohol.  相似文献   

4.
Cellular responses to endotoxins are enhanced markedly by LPS-binding protein (LBP). Furthermore, it has been demonstrated that endotoxins and proinflammatory cytokines such as TNF-alpha participate in early alcohol-induced liver injury. Therefore, in this study, a long-term intragastric ethanol feeding model was used to test the hypothesis that LBP is involved in alcoholic hepatitis by comparing LBP knockout and wild-type mice. Two-month-old female mice were fed a high-fat liquid diet with either ethanol or isocaloric maltose-dextrin as control continuously for 4 wk. There was no difference in mean urine alcohol concentrations between the groups fed ethanol. Dietary alcohol significantly increased liver to body weight ratios and serum alanine aminotransferase levels in wild-type mice (189 +/- 31 U/L) over high-fat controls (24 +/- 7 U/L), effects which were blunted significantly in LBP knockout mice (60 +/- 17 U/L). Although no significant pathological changes were observed in high-fat controls, 4 wk of dietary ethanol caused steatosis, mild inflammation, and focal necrosis in wild-type animals as expected (pathology score, 5.9 +/- 0.5). These pathological changes were reduced significantly in LBP knockout mice fed ethanol (score, 2.6 +/- 0.5). Endotoxin levels in the portal vein were increased significantly after 4 wk in both groups fed ethanol. Moreover, ethanol increased TNF-alpha mRNA expression in wild-type, but not in LBP knockout mice. These data are consistent with the hypothesis that LBP plays an important role in early alcohol-induced liver injury by enhancing LPS-induced signal transduction, most likely in Kupffer cells.  相似文献   

5.
The hypoglycemic effects of Eriobotrya japonica seeds were investigated in type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats and KK-A(y) mice. The rats and mice were fed on a diet containing 10% powdered Eriobotrya japonica seeds with the coat intact for 4 months. Although the blood glucose concentration in the OLETF rats fed on the control diet without Eriobotrya japonica seeds was increased with time, the concentration in the OLETF rats fed on the diet with Eriobotrya japonica seeds was consistently low throughout the experimental period and was comparable to the level in Long-Evans Tokushima Otsuka (LETO) rats which are normal non-diabetic rats. Serum insulin was significantly lower in the OLETF rats fed on the Eriobotrya japonica seed diet than in those fed on the control diet at the termination of the experimental period. Eriobotrya japonica seeds suppressed the increment of blood glucose for 4 months and also effectively improved the glucose tolerance in the KK-A(y) mice, these actions being mainly exerted by the ethanol extract of the seeds. These results suggest that Eriobotrya japonica seeds had a hypoglycemic property and the effect is attributable to the components extracted by ethanol.  相似文献   

6.
BACKGROUND: Folic acid (FA) has been shown to reduce the incidence of neural tube, craniofacial, and cardiovascular defects and low birth weight. The mechanism(s) by which the vitamin is effective, however, has not been determined. Therefore, a folic acid deficient mouse model was developed. METHODS: To create a folic acid deficiency, ICR female mice were placed on a diet containing no FA and including 1% succinyl sulfathiazole (SS) for 4 weeks before mating. Control mice were fed diets with either: 1) FA and 1% SS [+SS only diet]; 2) FA [normal diet]; or 3) a breeding diet. Dams and fetuses were examined during various days of gestation. RESULTS: Blood analysis showed that by gestational day 18, plasma folate concentrations in the -FA+SS fed dams decreased to 1.13 ng/ml, a concentration approximately 3% of that in breeding diet fed dams (33.24 ng/ml) and 8% of that in +SS only/normal fed dams (13.59 ng/ml). RBC folate levels showed a similar decrease, whereas homocysteine concentrations increased. Reproductive outcome in the -FA+SS fed dams was poor with increased fetal deaths, decreased fetal weight, and delays in palate and heart development. CONCLUSIONS: Female mice fed a folic acid deficient diet and 1% succinyl sulfathiazole exhibited many of the characteristics common to human folic acid deficiency, including decreased plasma and RBC folate, increased plasma homocysteine, and poor reproductive outcomes. Thus, an excellent model has been created to investigate the mechanism(s) underlying the origin of birth defects related to folic acid deficiency.  相似文献   

7.
Dietary-induced hypertrophic--hyperplastic obesity in mice   总被引:1,自引:0,他引:1  
Metabolically intact NMRI mice and genetically obese NZO mice were fed ad lib. either a high-carbohydrate diet (standard) or a high-fat diet for a period of about 11 (NMRI mice) or 38 (NZO mice) wk. In both strains of mice, body weight increased more in the groups fed the high-fat diet. However, caloric intake by NMRI mice fed the high-fat diet was less than that of the controls. In NMRI mice fed the high-fat diet, epididymal and subcutaneous fat cell volumes increased; when these mice were fed the standard diet, only epididymal fat cell volume increased. Epididymal and subcutaneous fat cell numbers increased only in the group fed the high-fat diet. In NMRI mice fed either diet, the postprandial blood glucose was lower in older animals, but plasma insulin remained unchanged. The glucose tolerance deteriorated insignificantly. In NZO mice fed either diet, epididymal fat cell volumes and fat cell numbers increased. In this strain of mice the postprandial blood glucose and plasma insulin exhibited the strain-specific pattern, independent of the diet. In older animals fed either diet the glucose tolerance decreased.  相似文献   

8.
Endothelial progenitor cells (EPCs) and monocytic cells from bone marrow (BM) can be recruited to the injured endothelium and contribute to its regeneration. During metabolic diseases such as obesity and diabetes, progenitor cell function is impaired. Several studies have shown that moderate alcohol consumption prevents the development and progression of atherosclerosis in a variety of animal/mouse models and increases mobilization of progenitor cells. Along with these studies, we identify ethanol at low concentration as therapeutic tool to in vitro expand progenitor cells in order to obtain an adequate number of cells for their use in the treatment of cardiovascular diseases.We evaluated the effects of ethanol on the phenotype of BM-derived cells from mice fed with high-fat diet (HFD). HFD did not induce changes in weight of mice but induced metabolic alterations. HFD feeding increased the differentiation of monocytic progenitors but not EPCs. Whereas ethanol at 0.6% is able to increase monocytic progenitor differentiation, 1% ethanol diminished it. Furthermore, ethanol at 0.6% increased the ability of progenitor cells to promote in vivo angiogenesis as well as secretome of BM-derived cells from mice fed with HFD, but not in mice fed normal diet. In conclusion, ethanol at low concentration is able to increase angiogenic abilities of progenitor cells from animals with early metabolic alterations.  相似文献   

9.
Genetic selection based on severity of withdrawal seizures following inhalation of ethanol vapor has produced two lines of mice, WSR (withdrawal seizure resistant) and WSP (withdrawal seizure prone), that differ markedly in withdrawal signs. In the present study, we report that these mice also differed in the severity of withdrawal seizures following consumption of an ethanol-containing liquid diet but did not differ in ethanol intake. In contrast to ethanol withdrawal seizures, the lines displayed similar sensitivity to electrical- or pentylenetetrazole-induced seizures. These results suggest that the lines differ in the development of physical dependence on ethanol rather than seizure sensitivity per se. Because decreased synaptic membrane fluidity has been associated with ethanol dependence, we used fluorescence polarization of diphenylhexatriene and trimethylammonium-diphenylhexatriene to evaluate membrane fluidity in WSP and WSR mice fed lab chow, an ethanol-containing liquid diet, or an isocaloric sucrose-containing liquid diet. Fluidity of brain synaptic membranes was identical for WSP and WSR mice fed lab chow. The control liquid diet did not alter membrane fluidity, and the ethanol diet decreased fluidity equally for WSP and WSR mice. Thus, the genetic difference in development of ethanol dependence found in these lines was not reflected in the physical properties of brain membranes.  相似文献   

10.
Reduced early alcohol-induced liver injury in CD14-deficient mice   总被引:11,自引:0,他引:11  
Activation of Kupffer cells by gut-derived endotoxin is associated with alcohol-induced liver injury. Recently, it was shown that CD14-deficient mice are more resistant to endotoxin-induced shock than wild-type controls. Therefore, this study was designed to investigate the role of CD14 receptors in early alcohol-induced liver injury using CD14 knockout and wild-type BALB/c mice in a model of enteral ethanol delivery. Animals were given a high-fat liquid diet continuously with ethanol or isocaloric maltose-dextrin as control for 4 wk. The liver to body weight ratio in wild-type mice (5.8 +/- 0.3%) was increased significantly by ethanol (7.3 +/- 0.2%) but was not altered by ethanol in CD14-deficient mice. Ethanol elevated serum alanine aminotransferase levels nearly 3-fold in wild-type mice, but not in CD14-deficient mice. Wild-type and knockout mice given the control high-fat diet had normal liver histology, whereas ethanol caused severe liver injury (steatosis, inflammation, and necrosis; pathology score = 3.8 +/- 0.4). In contrast, CD14-deficient mice given ethanol showed minimal hepatic changes (score = 1.6 +/- 0.3, p < 0.05). Additionally, NF-kappa B, TGF-beta, and TNF-alpha were increased significantly in wild-type mice fed ethanol but not in the CD14 knockout. Thus, chronic ethanol feeding caused more severe liver injury in wild-type than CD14 knockouts, supporting the hypothesis that endotoxin acting via CD14 plays a major role in the development of early alcohol-induced liver injury.  相似文献   

11.
The present study was aimed at studying energy balance in mice fed a high-fat diet. Albino mice were divided into three groups. One group had free access to the stock diet, whereas the two other groups consumed a high-fat diet. One of the high-fat fed groups was fed ad libitum, whereas the other was offered a restricted amount of the same diet so that its energy intake was comparable to the group of mice given the stock diet. Energy balance measurements, which included indirect calorimetry and carcass analysis, were performed. Brown adipose tissue (BAT) properties were also investigated. The results show that gains in both body weight and fat were higher in mice that had free access to high-fat diet than in mice fed the stock diet. In animals given a restricted amount of the high-fat diet, fat gain increased, whereas protein gain was reduced in comparison with animals fed the stock diet. Unrestricted access to the high-fat diet led to an increase in both energy intake and energy gain. As revealed by both slaughter and indirect calorimetry techniques energy expenditure was, in high-fat fed mice, 40% higher than in animals fed either stock or a restricted amount of high-fat diet. Nadolol was shown to suppress a large part of the elevated metabolic rate seen in mice fed an unrestricted high-fat diet. In those mice, BAT mitochondrial GDP binding was also increased. In summary, the present results confirm that adaptive diet-induced thermogenesis (DIT) develops in mice made hyperphagic by an energy-dense palatable diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain.  相似文献   

13.
A breeder diet that shortens estrous cycles in mice has been reported to contain estrogenic substances, based on its ability to increase uterine weight of immature mice. However, the estrogenicity of the diet was inferred from uterine weight gain of immature mice that were intact. The increased uterine weight of mice on the breeder diet could thus have resulted from a precocious pubertal increase of endogenous estrogens induced by the diet rather than estrogenic substances in the diet. We therefore measured the estrogenicity of the breeder diet in ovariectomized animals. C57BL/6J mice were fed the breeder diet or a standard diet for 1 or 4 weeks. The breeder diet failed to increase uterine weights above control values for either treatment interval. Intact mice that were fed the breeder diet had twice the number of cycles of mice fed the standard diet, a confirmation of earlier studies. These results indicate that the breeder diet does not contain biologically significant estrogenic activity, and thus potentiates cyclicity by other means.  相似文献   

14.
We have shown previously that mice fed the American Institute of Nutrition (AIN-76A) purified diet experience a significant increase in uterine:body weight (U:BW) ratios when compared to the U:BW ratios of mice fed a closed formula natural ingredient diet (Certified Rodent Chow #5002) for 7 days. The AIN-76A purified diet contains 5% corn oil and 65% carbohydrates with 50% of the carbohydrates coming from sucrose or dextrose and 15% from corn starch. The objective of this study was to determine whether the fat and carbohydrate content contributed to the unexpected uterine growth promoting activity observed in mice fed the AIN-76A diet. Estrogen bioassays were performed using CD-1 mice weaned at 15 days of age and assigned randomly to the negative control diet (Certified Rodent Chow #5002) or to the positive control diet (#5002) containing 4 or 6 ppb DES for comparison or to the test diets. The test diets were prepared by adding sucrose, dextrose, corn starch, corn oil or soybean oil to the #5002 negative control diet at 10% w/w concentration. Uterine:BW ratios were determined at 7 days post-feeding. The uterine weights and the U:BW ratios of mice fed the test diets containing dextrose, corn starch, or corn oil, were increased significantly (P less than 0.05) over those of mice fed the negative control diet. The uterine weights and U:BW ratios of mice fed the test diets containing sucrose or soybean oil also were increased over those of mice fed the negative control diet. These increases in uterine weights and U:BW ratios were similar to the increases in uterine weights and U:BW ratios of mice fed the positive control diet containing 4 ppb DES. It was concluded that the fats and carbohydrates caused preferential increases in uterine weights and in U:BW ratios and may account for the estrogen-like uterine growth promoting activity observed in mice fed the AIN-76A purified diet.  相似文献   

15.
We previously demonstrated that hyperglycemic-obese (obob) mice fed a 1% corn oil diet accumulated 10 times as much hepatic cholesterol as did their non-obese (+/?) littermates fed this diet because of difficulty in removal of cholesterol from the liver rather than from increased synthesis. Furthermore, feeding the bile acid analog Delta(22)-5beta-taurocholenic acid completely prevented the accumulation of hepatic cholesterol in obob mice fed the 1% corn oil diet. The hypothesis to be tested in the current study is that these aspects of cholesterol metabolism in the obob mouse do not occur in the hyperinsulinemic and insulin-resistant gold thioglucose obese mouse. Gold thioglucose obese (gtgo) and non-obese (ngtgo) mice were fed diets containing either 1% corn oil or 40% lard each with or without added taurocholenic acid for 6 weeks and then given a 250 mg meal of [U-(14)C]-glucose with incorporation of label into hepatic cholesterol and fatty acid measured 2 hours later. Consistent with earlier results in the obob model, incorporation of labeled glucose was significantly increased in obese compared with non-obese mice fed 1% corn oil and significantly reduced either by feeding 40% lard or by adding taurocholenic acid to the diet. In addition, taurocholenic acid greatly increased incorporation of labeled glucose into hepatic cholesterol in obese or non-obese mice fed either diet. In contrast to obob mice, the percentage of fat in the liver of gtgo mice was increased only 50% compared with ngtgo mice. The comparable increase in obob mice was 480%. Hepatic cholesterol did not increase significantly in the liver of gtgo mice fed 1% corn oil when compared with the ngtgo controls. The comparable increase in obob mice fed 1% corn oil was 350%. Also in marked contrast to obob mice, feeding taurocholenic acid increased hepatic cholesterol compared with non-obese controls fed either diet. The results are discussed in the light of the presence of circulating leptin in gtgo but not in obob mice.  相似文献   

16.
G W Lin  D Lester 《Life sciences》1984,34(23):2265-2272
The influence of ethanol feeding during pregnancy on histamine excretion was studied. Pregnant Sprague-Dawley rats (N = 5) were fed a liquid diet containing 30% ethanol-derived calories from gestation-day 7 to 21; control rats (N = 5) were pair-fed with isocaloric sucrose substituted for ethanol. Twenty-four hour urines were collected for histamine analysis. Rats were killed on day 21 of gestation. Food and ethanol intakes averaged 260 kcal and 11 g/kg/day, respectively. No differences were found between ethanol and control rats in maternal weight gain, litter size or in fetal and placental weights. Although urinary histamine increased in all rats with the advance of pregnancy, on day 16, ethanol rats excreted significantly more (47%) than the controls (199.1 +/- 33.9 vs 135.5 +/- 51.4 ug/24 hr); on day 20, it was 123% more (534.6 +/- 114.4 vs 239.5 +/- 99.3 ug/24 hr). Ethanol enhanced urinary histamine did not reflect the histamine content or histidine decarboxylase activity of fetal liver, presumed site of histamine formation; its physiological significance is discussed.  相似文献   

17.
Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD) to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD) and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE), inner cell mass (ICM) and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health.  相似文献   

18.
Female Sprague-Dawley rats were fed a complete liquid diet containing either 5.5% ethanol (mean daily intake of about 9g of ethanol per kg body weight) or an isocaloric amount of dextrose (control group), with additional water available adlibitum. The diets were fed for four weeks prior to and throughout pregnancy. On day 20 of gestation cardiac output and blood flow to the placeta, heart, kidneys and uterus were measured and plasma osmolality and muscle dry weight were determined. No significant differences were seen between alcohol and control groups with respect to litter size, fetal weight, maternal cardiac output, blood flow to the placenta or other organs, plasma osmolality, or muscle dry weight. This contrasts with previous experiments in which a similar quantity of alcohol (as % calories) was offered in drinking water (equivalent to a mean daily ethanol intake of 10g/kg body weight). Under those conditions fetal weight was reduced, blood flow to the plascenta was reduced, and plasma osmolality and muscle dry weight were increased, indicating a moderate degree of dehydration. It is concluded that the effect of ethanol ingestion is influenced by the mode of administration of the ethanol. Dehydration may be a confounding factor in studies of animal models of fetal alcohol syndrome, although it is not possible to rule out a differential metabolic response to alcohol, depending on the mode of administration.  相似文献   

19.
Several dietary oils have been used preventatively and therapeutically in the setting of neurological disease. However, the mechanisms underlying their influence on brain function and metabolism remain unknown. It was investigated whether 3 types of dietary oils affected emotional behaviors in mice. Wild-type (WT) mice and sialyltransferase ST3Gal IV-knockout (KO) mice, which exhibit increased emotional and cognitive behaviors, were fed diets containing 20% dietary oils from post-weaning to adulthood. Mice were fed pellets made from control feed AIN93G powder containing 18% fish oil, soybean oil, or a mixture of 1-palmitoyl-2-oleoyl-3-palmitoyl glycerol (POP) and 1-stearoyl-2-oleoyl-3-stearoyl glycerol (SOS), plus 2% soybean oil. Once mice reached adulthood, they were subjected to fear conditioning test to measure cognitive anxiety and forced swim test to measure depression. WT mice fed the POP-SOS diet showed a 0.6-fold decrease in percent freezing with contextual fear compared with WT mice fed the control diet. KO mice fed the fish oil diet showed a 1.4-fold increase in percent freezing with contextual fear compared with KO mice fed the control diet. These findings indicate that response to contextual fear was improved in WT mice that consumed POP-SOS but aggravated in KO mice that consumed fish oils. Furthermore, KO mice showed a 0.4-fold decrease in percent freezing in response to tone fear when they were fed POP-SOS diet compared to a control diet. Thus, POP-SOS diet reduced tone fear level of KO mice until the same level of WT mice. Finally, KO mice fed the soybean oil diet showed a 1.7-fold increase in immobility in the forced swim test compared to KO mice fed the control diet. Taken together, oil-rich diets differentially modulate anxiety and depression in normal and anxious mice. Oils rich in saturated fatty acids may alleviate anxiety more strongly than other oils.  相似文献   

20.
Jean K. Tews 《Life sciences》1981,29(24):2535-2542
Body weight and food intake were decreased more in lean than in genetically obese (ob/ob) mice fed a low protein diet containing GABA. Young lean and obese mice, when fed a 4.5% GABA diet, lost 30% or 20% of their initial weight over periods of 10 or 32 days, respectively. When refed the control diet both groups of mice gained weight rapidly but the obese grew more over a longer period of time. With GABA at 2 or 2.5% of the diet, respectively, lean and obese mice could be maintained at constant low weights for weeks. The obese were less sensitive than the lean mice to dietary GABA. Weights increased rapidly when a high protein diet containing GABA was fed. Hepatic GABA aminotransferase activity increased in all mice fed the high protein diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号