首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—The action of hemicholinium-3 (HC-3) on the cerebral cortex of the rat was studied after subarachnoidal administration. There was a marked decrease of content of ACh in nerve endings and especially in the fraction containing synaptic vesicles, despite the fact that the number of synaptic vesicles was not reduced, as judged by electron microscopy, by the rate of incorporation of ortho [32P]phosphate, and by the phosphorus content of the phospholipids of the isolated synaptic vesicles. There was a close association of [l4C]HC-3 and of monoaminoxidase, which indicated that the drug was preferentially bound to mitochondria. Experiments indicating that HC-3 could be acetylated suggested that this drug may compete with choline not only for entry but also for acetylation.  相似文献   

2.
-Synaptosomes prepared from guinea-pig cerebral cortex were incubated with 32P1 in a medium with or without 10?4 M-acetylcholine and 10?4 M-eserine. They were then subjected to osmotic shock and density-gradient centrifugation for the preparation of subsynaptosomal fractions and the phospholipids of each fraction were separated by two-dimensional thin-layer chromatography. The fraction containing synaptic vesicles and that containing mitochondria were the most highly labelled of the sub-synaptosomal fractions. Phosphatidic acid followed by phosphatidylinositol had the highest specific activity of the phospholipids studied. Acetylcholine caused a marked increase in the specific activity of the vesicular but not of the mitochondrial phosphatidic acid. Phosphatidylinositol specific activity also increased in the presence of acetylcholine but the increase was more reproducible in the fraction containing microsomal membranes than in the vesicle fraction. The other phospholipids were relatively poorly labelled and no effect of acetylcholine on the incorporation of 32P1 into these lipids could be detected. Acetylcholine also caused a decrease in the amount of phosphatidic acid in the synaptic vesicles.  相似文献   

3.
Phosphorylation of phospholipids was studied in Langendorff perfused guinea pig hearts subjected to beta-adrenergic stimulation. Hearts were perfused with Krebs-Henseleit buffer containing [32P]Pi and freeze-clamped in a control condition or at the peak of the inotropic response to isoprenaline. 32P incorporation into total phospholipids, individual phospholipids and polyphosphoinositides was analysed in whole tissue homogenates and membranes, enriched in sarcoplasmic reticulum, prepared from the same hearts. Isoprenaline stimulation of the hearts did not result in any significant changes in the levels of phosphate incorporation in the total phospholipid present in cardiac homogenates (11.6 +/- 0.4 nmol of 32P/g for control hearts and 12.4 +/- 0.5 nmol of 32P/g for isoprenaline-treated hearts; n = 6), although there was a significant increase in the degree of phospholipid phosphorylation in sarcoplasmic reticulum (3.5 +/- 0.3 nmol of 32P/mg for control hearts and 6.7 +/- 0.2 nmol of 32P/mg for isoprenaline-treated hearts; n = 6). Analysis of 32P incorporation into individual phospholipids and polyphosphoinositides revealed that isoprenaline stimulation of the hearts was associated with a 2-3-fold increase in the degree of phosphorylation of phosphatidylinositol monophosphate and bisphosphate as well as phosphatidic acid in both cardiac homogenates and sarcoplasmic reticulum membranes. In addition, there was increased phosphate incorporation into phosphatidylinositol in sarcoplasmic reticulum membranes. Thus, perfusion of guinea pig hearts with isoprenaline is associated with increased formation of polyphosphoinositides and these phospholipids may be involved, at least in part, in mediating the effects of beta-adrenergic agents in the mammalian heart.  相似文献   

4.
1. The use of ;marker' enzymes for investigating the contamination by endoplasmic reticulum of mitochondrial and synaptosomal (nerve-ending) fractions isolated from guinea-pig brain was examined. NADPH-cytochrome c reductase appeared to be satisfactory. With the synaptosomal preparation there was a non-occluded enzymic activity believed to arise from contaminating microsomes and an occluded form released by detergent, which probably was derived from some type of intraterminal smooth endoplasmic reticulum. 2. Isolated brain mitochondria, both intact and osmotically shocked, could not synthesize more labelled phosphatidylcholine from CDP-[Me-(14)C]choline or phosphoryl[Me-(14)C]choline than could be accounted for by microsomal contamination. They could synthesize only phosphatidic acid and diphosphatidylglycerol from a [(32)P]P(i) precursor and not nitrogen-containing phosphoglycerides or phosphatidylinositol. 3. The synaptosomal outer membrane and the intraterminal mitochondria could not synthesize phosphatidylcholine from CDP-[Me-(14)C]choline but the synaptic vesicles and probably the intraterminal ;endoplasmic reticulum' appeared to be capable of catalysing the incorporation of label from this substrate into their phospholipids. 4. Microsomal fractions and synaptosomes from guinea-pig brain could incorporate [Me-(14)C]choline into their phospholipids by a non-energy-requiring exchange process, which was catalysed by Ca(2+). Fractionation of the synaptosomes after such an exchange had taken place revealed that the label was predominantly in the intraterminal mitochondria and not associated with membranes containing NADPH-cytochrome c reductase. 5. On the intraperitoneal injection of [(32)P]P(i) into guinea pigs, incorporation of radioactivity into phosphatidylinositol and phosphatidic acid was much faster than into the nitrogen-containing phosphoglycerides. Mitochondria and microsomal fractions showed a roughly equivalent incorporation into individual phospholipids, and that into synaptosomes was appreciably less, whereas the phospholipids of myelin showed little (32)P incorporation up to 10h.  相似文献   

5.
A highly purified preparation of synaptic vesicles was prepared to study the relationship between calcium-dependent neurotransmitter release and protein phosphorylation. Calcium ions simultaneously produced significant increases in both the endogenous release of norepinephrine from the synaptic vesicles and the endogenous incorporation of [32p] phosphate into specific synaptic vesicle proteins. The results are compatible with the hypothesis that the action of calcium on the phosphorylation of specific synaptic vesicle proteins is the molecular mechanism mediating some of the effects of calcium on neurotransmitter release and synaptic vesicle function.  相似文献   

6.
The membranes of Acanthamoeba palestinensis were studied by examination in fixed cells, and then by following the movements of glycerol-3H-labeled phospholipids by cell fractionation. Two previously undescribed structures were observed: collapsed cytoplasmic vesicles of cup shape, and plaques in food vacuole and plasma membrane similar in size to the collapsed vesicles. It appeared that the plaques formed by insertion of collapsed vesicles into membranes and/or that collapsed vesicles formed by pinching off of plaques. Fractions were isolated, enriched with nuclei, rough endoplasmic reticulum (RER), plasma membrane, Golgi-like membranes, and collapsed vesicles. The changes in specific activity of glycerol-3H-labeled phospholipids in these membranes during incorporation, turnover, and after pulse-labeling indicated an ordered sequence of appearances of newly synthesized phospholipids, first in nuclei and RER, then successively in Golgi membranes, collapsed vesicles, and finally, plasma membrane. In previous work we had found no large nonmembranous phospholipid pool in A. palestinensis. These observations are consistent with the hypothesis that membrane phospholipids are synthesized, perhaps as integral parts of membranes, in RER and nuclei. Subsequently, some of the newly synthesized phospholipids are transported to the Golgi complex to become integrated into the membranes of collapsed vesicles, which are precursors of the plasma membrane. Collapsed vesicles from the plasma membrane by inserting into it as plaques. When portions of the plasmalemma from food vacuoles, collapsed vesicles pinch off from their membranes and are recycled back to the cell surface.  相似文献   

7.
The turnover of arachidonoyl groups in synaptosomal phospholipids after stimulation by K+ was examined. Raising the K+ concentration in the incubation medium from 5 to 55 mM caused a rapid hydrolysis of labeled arachidonate from the synaptosomal phospholipids. Under this condition, radioactivity released from phosphatidylinositols was proportionally higher than that from phosphatidylcholines. Hydrolysis of arachidonoyl group from phospholipids was correlated to an increase in radioactivity in the free fatty acid-ion complex which appeared in the interphase after extraction with chloroform-methanol 2:1 (v/v). The K+-evoked phospholipid hydrolysis and the formation of fatty acid-ion complex, were Ca2+-dependent. Phospholipid deacylation activity was localized mainly in synaptic vesicles and synaptic plasma membranes but not in the mitochondria. The stimulated turnover of synaptosomal phospholipids appeared to be mediated by the deacylation-reacylation mechanism, because similar treatment with high K+ stimulated the incorporation of labeled arachidonate into phosphatidylinositols and phosphatidylcholines of synaptosomes. The possible physiological implication of membrane lipid involvement in synaptic processes is discussed.  相似文献   

8.
Sendai virus infection induced enhancement of 32P incorporation into phospholipids in chick embryo, monkey kidney and bovine kidney cells, as previously observed in chorioallantoic membranes of chick embryos. These findings indicate that phospholipid synthesis is enhanced upon Sendai virus infection. Ultraviolet irradiation abolished the ability of the virus to induce the enhanced synthesis of phospholipids, a fact suggesting that the phenomenon depends upon infectivity of the virus. Gamma irradiation of host cells little affected the enhanced 32P labeling of cellular phospholipids, suggesting that the function of host cell DNA may not be directly involved in the phenomenon.  相似文献   

9.
Synaptosomes prepared from guinea-pig cerebral cortex were suspended in a medium containing [32P]orthophosphate and subjected to electrical stimulation. When the synaptosomal phospholipids were subsequently separated, the most highly labelled was phosphatidic acid and electrical stimulation over a 10 min period increased incorporation of 32P1 into this lipid. Stimulated synaptosomes were osmotically lysed and subsynaptosomal fractions isolated. The electrically stimulated increase in phosphatidic acid labelling was localized in a fraction enriched in synaptic vesicles. This phospholipid effect was not merely a reflection of an increased specific radioactivity of synaptosomal ATP, due to the electrically stimulated increase in respiration. The time course of the phosphatidic acid effect suggests that it is synchronous with release of transmitter.  相似文献   

10.
Isolated membranes of soybean incorporate 32P from γ-[32P]ATP in vitro. The incorporation was rapid and did not require added calcium. When displayed on 10% sodium dodecyl sulfate-polyacrylamide gels, several protein bands were revealed. An apparent auxin (2,4-dichlorophenoxyacetic acid) stimulation of 32P incorporation into material from membrane vesicles insoluble in trichloroacetic acid-perchloric acid may be reflected partly in enhanced incorporation into protein bands with apparent molecular weights of 45,000 and 50,000. Additionally, a low molecular weight component was sometimes observed where incorporation was stimulated 2- to 3-fold by auxin. However, protein-bound radioactivity represented only a small fraction of the total radioactivity of the acid-insoluble material. Other labeled constituents, not retained on the gels, may contribute to the apparent, rapid (10 s or less) auxin response of the isolated membranes. Stimulation of incorporation into the low molecular weight component was given by diglyceride plus calcium, constituents known to augment protein kinase activities in other systems.  相似文献   

11.
Abstract— Seventeen day old rats were injected intraocularly with a phospholipid precursor, [32P]phosphate, and a glycoprotein precursor, [3H]fucose. Animals were killed between 1 h and 21 days later, and structures of the visual pathway (retina, optic nerve, optic tract, lateral geniculate body, and superior colliculus) were dissected. Radioactivity in phospholipids ([32P] in solvent-extracted material) and in glycoproteins ([3H] in solvent-extracted residue) was determined. Incorporation of [3H]fucose into retinal glycoproteins peaked at 6–8 h. Labelled glycoproteins were present in superior colliculus by 2h after injection, indicating a rapid rate of transport; maximal labelling was at 8–10 h after injection. Incorporation of [32P]phosphate into retinal phospholipids peaked at 1 day after injection. Phospholipids were also rapidly transported since label was present in the superior colliculus by 3 h after injection: however, maximal labelling did not occur until 5–6 days. These results indicate that newly synthesized phospholipids enter a preexisting pool, part of which is later committed to transport at a rapid rate. Transported phospholipids were catabolized at the nerve endings with a maximum half-life of several days; there was minimal recycling of precursor label. Lipids were fractionated by thin-layer chromatography, and radioactivity in individual phospholipid classes determined. Choline and ethanolamine phosphoglycerides were the major transported phospholipids, together accounting for approx 85% of the total transported lipid radioactivity. At early time points, the ratio of radioactivity in choline phosphoglycerides to that in ethanolamine phosphoglycerides increased in structures progressively removed from the site of synthesis (retina) but by 2 days approached a constant value. In each structure, choline phosphoglyceride-ethanolamine phosphoglyceride radioactivity ratios decreased with time, rapidly at first, but plateaued by 2 days. These results indicate that choline phosphoglycerides are committed to transport sooner than ethanolamine phosphoglycerides. Some experiments were also conducted using [2-3H]glycerol as a phospholipid precursor. Results concerning incorporation of this precursor into individual phospholipid classes and their subsequent axonal transport were comparable to those obtained using [32P]phosphate, with the following exceptions: (a) incorporation of [2-3H]glycerol into retinal phospholipids was relatively rapid (near-maximal levels at 1 h after injection) although transport to the superior colliculus showed an extended time course very similar to [32P]-labelled lipids; (b) [2-3H]glycerol was somewhat less efficient than [32P]phosphate in labelling lipids committed to transport relative to labelling those which remained in the retina; and (c) [2-3H]glycerol did not label plasmalogens.  相似文献   

12.
Low-density (LD) lipoproteins inhibit phytohaemagglutinin-enhanced turnover of phosphatidylinositol in human peripheral lymphocytes. Turnover was assessed by 32P incorporation into phospholipids and by loss of 32P from [32P]phosphatidylinositol. Inhibition of lipid turnover by LD lipoproteins is not the result of a change in the amount of phytohaemagglutinin required for maximum cellular response. Neither phytohaemagglutinin nor LD lipoproteins influence 32P incorporation into phosphatidylethanolamine and phosphatidylcholine during the first 60min after mitogenic challenge. The extent of inhibition of phosphatidylinositol turnover by LD lipoproteins depends on the concentration of LD lipoproteins present in the incubation medium: 50% of maximum inhibition occurs at a low-density-lipoprotein protein concentration of 33μg/ml and maximum inhibition occurs at low-density-lipoprotein protein concentrations above 100μg/ml. Phytohaemagglutinin stimulates 32P incorporation into phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. However, LD lipoproteins abolish 32P incorporation into phosphatidylinositol without affecting incorporation into phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. The ability of LD lipoproteins to inhibit phytohaemagglutinin-induced phosphatidylinositol turnover is mimicked by EGTA. Furthermore, inhibition of LD lipoproteins by phytohaemagglutinin-induced 32P incorporation into phosphatidylinositol correlates directly with inhibition by LD lipoproteins of Ca2+ accumulation. These results suggest that Ca2+ accumulation and turnover of phosphatidylinositol are coupled responses in lymphocytes challenged by mitogens. The step in phosphatidylinositol metabolism that is sensitive to LD lipoproteins and, by inference, that is coupled to Ca2+ accumulation is release of [32P]phosphoinositol from phosphatidylinositol.  相似文献   

13.
The effects of epidermal growth factor (EGF) on the metabolism of phosphatidic acid and phosphoinositides were examined using renal cortical slices labelled with either sodium [32P]orthophosphate or myo-[3H]inositol. EGF was found to increase the incorporation of phosphate into phosphatidic acid and phosphoinositides. This effect is not dependent on external calcium and is inhibited by 12-O-tetradecanoylphorbol 13-acetate (TPA). When phospholipids were prelabelled, EGF did not decrease the level of 32P in phosphatidic acid and phosphoinositides, and EGF did not affect the formation of inositol phosphates or the concentration of cAMP and cGMP in renal tissue. The results show that EGF stimulates the incorporation of phosphate into phosphatidic acid and phosphoinositides, but does not affect breakdown of phosphoinositides by phospholipase C in renal cortical slices.  相似文献   

14.
Summary Large differences in lipid composition of apical and basolateral membranes from epithelial cells exist. To determine the responsible mechanism(s), rat renal cortical brush border and basolateral membrane phospholipids were labeled using32P and either [3H]-glycerol or [2-3H] acetate for incorporation and degradation studies, respectively. Brush border and basolateral membrane fractions were isolated simultaneously from the same cortical homogenate. Different phospholipid classes were degraded at variable rates with phosphatidylcholine having the fastest decay rate. Decay rates for individual phospholipid classes were, however, similar in both brush border and basolateral membrane fractions. In phospholipid incorporation studies again, large variations existed between individual phospholipid classes with phosphatidylcholine and phosphatidylinositol showing the most rapid rates of incorporation. Sphingomyelin and phosphatidylserine showed extremely slow incorporation rates and did not enter into the isotopic decay phase for 48 hr. In contrast to degradation studies, however, the same phospholipid class labeled the two surface membrane domains at highly variable rates. The difference in these rates, with the exception of phosphatidylinositol, were identical to the differences in phospholipid compositions between the two membranes. For example, phosphatidylcholine was incorporated into the basolateral membrane 2.5 × faster than into the brush border membrane and its relative composition was 2.5 × greater in the basolateral membrane. The opposite was true for sphingomyelin. These results indicate incorporation and not degradation rates of individual phospholipids play a major role in regulating the differing phospholipid composition of brush border and basolateral membranes.  相似文献   

15.
Bacteriorhodopsin-F1·F0 (mitochondrial oligomycin-sensitive ATPase complex) proteoliposomes have poor proton pumping and photophosphorylation activities when reconstituted by cholate dialysis. A considerable proportion of the bacteriorhodopsin is not incorporated by cholate dialysis, the particles being too large to be combined into liposomes. Much better reconstitution is achieved where the purple membranes are first fragmented by sonication. Optimal incorporation occurs where bacteriorhodopsin and the phospholipids are sonicated together, suggesting that some perturbation of the liposomes is necessary for successful integration. Since F1·F0 is denatured by sonication a two-step reconstitution procedure has been developed wherein bacteriorhodopsin is first incorporated by sonication, then F1·F0 by cholate dialysis. The vesicles have high phosphorylation rates and also catalyze postillumination [32P]ATP formation where pyridine is present during first stage illumination.F1·F0 can also be incorporated into sonicated bacteriorhodopsin vesicles by “direct incorporation.” This depends on the presence of negatively charged amphiphiles such as cholate or phosphatidylserine in the membranes, and is stimulated by divalent metal cations. Optimum conditions for the various reconstitution procedures are described.  相似文献   

16.
17.
Endogenous phosphorylation of platelet membrane proteins.   总被引:1,自引:0,他引:1  
The characteristics of the phosphorylating activity of platelet membranes have been studied. Plasma membranes of human platelets isolated by the glycerol lysis technique were shown to incorporate significant amounts of [32P]phosphate into specific membrane proteins. This activity was only partially cyclic 3′:5′-monophosphate (cyclic AMP)-dependent but had most of the other characteristics of protein kinases derived from other sources. Maximal stimulation of endogenous phosphorylation was obtained at 1 × 10?7, m cyclic AMP and exceeded by approximately 30% the [32P]phosphate incorporation in the absence of this cyclic nucleotide. The platelet membrane protein kinase was able to phosphorylate exogenous proteins, e.g., histone, fibrinogen etc., as well as endogenous membrane proteins. The latter solubilized by sodium dodecyl sulfate and separated by dodecyl sulfate-polyacrylamide gel electrophoresis incorporated [32P]phosphate into three polypeptides of apparent molecular weights 52,000, 31,000, and 20,000. The phosphorylation of the polypeptide of molecular weight 52,000 was cyclic AMP-dependent.  相似文献   

18.
Rapidly-labelled, acidic phospholipids of the goldfish brain   总被引:1,自引:0,他引:1  
Homogenates and particulate fractions of goldfish brain incorporated radioactivity from γ-[32P]ATP selectively into acidic phospholipids during brief periods of incubation. Phosphatidate and lysophosphatidate became strongly labelled and activity was also found in phosphatidyl inositol phosphate and in phosphatidyl inositol diphosphate. When tetraphenylborate (a K+-complexing agent) was added, a selective stimulation of incorporation of 32P into phosphatidate occurred. The addition of perchlorate (also known to bind K+) did not produce a similar stimulation, nor did the addition of K+ block the stimulation by tetraphenylborate. The stimulation of the labelling of phospholipids by tetraphenylborate appeared to be the result of multiple actions. Besides the evidence that it acted by stimulating the phosphoinositide phosphodiesterase of brain, data were obtained suggesting that it stimulated diglyceride kinase and blocked endogenous destruction of ATP as well. The stimulation by tetraphenylborate was blocked by addition of atropine but not of arecoline.  相似文献   

19.
The effect of norepinephrine and acetylcholine on the 32P incorporation into phospholipids of normal and sympathetically denervated rabbit iris muscle was investigated. (1) In the absence of exogenously added neurotransmitters sympathetic denervation exerted little effect on the incorporation of 32P into the phospholipids of the excised iris muscle. In vivo thr iris muscle incorporated 32P into phosphatidylinositol, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and sphingomyelin in that order of activity while in vitro phosphatidylinositol was followed by phosphatidylcholine. (2) Tension responses of iris dilator muscle from denervated irises exhibited supersensitivity to norepinephrine. Furthermore, norepinephrine at concentrations of 3 μM and 30 μM produced 1.6 times and 3 times stimulation of the phosphatidic acid of the denervated muscle respectively. In contrast at 30 μM it stimulated this phospholipid by 1.6 times in the normal muscle. This stimulation was completely blocked by phentolamine. (3) While in the normal muscle acetylcholine stimulated the labelling of phosphatidic acid and phosphatidylinositol by more than 2 times, in the denervated muscle it only stimulated 1.4 to 1.7 times. (4) Similarly when 32Pi was administered intracamerally, the labelling found in the various phospholipids of the denervated iris was significantly lower than that of the normal. (5) It was concluded that denervation decreases the 32P labelling in the presence of acetylcholine. (6) The norepinephrine-stimulated 32P incorporation into phosphatidic acid appears to be post-synaptic.  相似文献   

20.
The lipids of Acanthamoeba castellanii (Neff) consist of 52% neutral lipids and 48% polar lipids. Triglycerides account for 75% and free sterols for 17% of the neutral lipids. The major phospholipids are phosphatidylcholine (45%), phosphatidylethanolamine (33%), phosphatidylserine (10%), a phosphoinositide (6%), and diphosphatidylglycerol (4%). The phosphoinositide is unique in that it contains fatty acids, aldehyde, inositol, and phosphate in the ratio of 1.4:0.5:1.1, but it contains no glycerol. Sphingomyelin, cerebrosides, psychosine, and glycoglycerides were not detected, but small amounts of unidentified long chain bases and sugars are present. The rates of uptake of palmitate-1-14C and of its incorporation into glycerides and phospholipids were not affected by the phagocytosis of polystyrene latex beads. Although phagocytosis usually decreased the uptake by amebas of phosphate-32P, serine-U-14C, and inositol-2-3H, their subsequent incroporation into phospholipids was not demonstrably stimulated or inhibited by phagocytosis. Phagocytosis did seem to increase the incorporation into ameba phospholipids of phosphatidylcholine-1 ,2-14C but not that of phosphatidylethanolamine-1 ,2-14C. These experiments, in which the incorporation of radioactive precursors into total cell lipids was measured, do not, of course, eliminate the possibility that localized effects may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号