首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shiga toxin variant type 2d (Stx2d) produced by some strains of Shiga toxin-producing Escherichia coli is composed of an enzymatically active A subunit and a B (binding) pentamer. The cytotoxicity of Stx2d is increased (activated) 10-1000-fold for Vero cells when the toxin is incubated with mucus obtained from the small intestine of mice. In this study we isolated an Stx2d activator and identified it as a mouse elastase with strong homology to human elastase IIIB. Moreover, commercially available porcine pancreatic elastase preparations also activated Stx2d cytotoxicity although with a lower specific activity than isolated mouse elastase. Elastase directly nicked the Stx2d A subunit to A(1) and A(2), an event that did not correlate with activation. However, elastase also reduced the size and changed the isoelectric point of the A(2) peptide, as determined by SDS-polyacrylamide gel electrophoresis and two-dimensional electrophoresis followed by Western immunoblot analysis. This elastase-mediated size and charge shift in the A(2) peptide of Stx2d occurred concurrently with activation of the toxin. Both the reduction in size of the Stx2d A(2) peptide by incubation with elastase as well as the associated activation of Stx2d cytotoxicity were fully inhibited by elastatinal, an elastase-specific inhibitor.  相似文献   

2.
Shiga toxins (Stx) are the main virulence factors associated with a form of Escherichia coli known as Shiga toxin-producing E. coli (STEC). They are encoded in temperate lambdoid phages located on the chromosome of STEC. STEC strains can carry more than one prophage. Consequently, toxin and phage production might be influenced by the presence of more than one Stx prophage on the bacterial chromosome. To examine the effect of the number of prophages on Stx production, we produced E. coli K-12 strains carrying either one Stx2 prophage or two different Stx2 prophages. We used recombinant phages in which an antibiotic resistance gene (aph, cat, or tet) was incorporated in the middle of the Shiga toxin operon. Shiga toxin was quantified by immunoassay and by cytotoxicity assay on Vero cells (50% cytotoxic dose). When two prophages were inserted in the host chromosome, Shiga toxin production and the rate of lytic cycle activation fell. The cI repressor seems to be involved in incorporation of the second prophage. Incorporation and establishment of the lysogenic state of the two prophages, which lowers toxin production, could be regulated by the CI repressors of both prophages operating in trans. Although the sequences of the cI genes of the phages studied differed, the CI protein conformation was conserved. Results indicate that the presence of more than one prophage in the host chromosome could be regarded as a mechanism to allow genetic retention in the cell, by reducing the activation of lytic cycle and hence the pathogenicity of the strains.  相似文献   

3.
Probiotics are known to have an inhibitory effect against the growth of various foodborne pathogens, however, the specific role of probiotics in Shiga-toxin-producing Escherichia coli (STEC) virulence gene expression has not been well defined. Shiga toxins are members of a family of highly potent bacterial toxins and are the main virulence marker for STEC. Shiga toxins inhibit protein synthesis in eukaryotic cells and play a role in hemorrhagic colitis and hemolytic uremic syndrome. STEC possesses Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2), both of which have A and B subunits. Although STEC containing both Stx1 and Stx2 has been isolated from patients with hemorrhagic colitis, Stx2 is more frequently associated with human disease complications. Thus, the effect of Lactobacillus, Pediococcus, and Bifidobacterium strains on stx2A expression levels in STEC was investigated. Lactic acid bacteria and bifidobacteria were isolated from farm animals, dairy, and human sources and included L. rhamnosus GG, L. curvatus, L. plantarum, L. jensenii, L. acidophilus, L. casei, L. reuteri, P. acidilactici, P. cerevisiae, P. pentosaceus, B. thermophilum, B. boum, B. suis and B. animalis. E. coli O157:H7 (EDL 933) was coincubated with sub-lethal concentrations of each probiotic strain. Following RNA extraction and cDNA synthesis, relative stx2A mRNA levels were determined according to a comparative critical threshold (Ct) real-time PCR. Data were normalized to the endogenous control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the level of stx2A expression between treated and untreated STEC was compared. Observed for all probiotic strains tested, stx2A was down-regulated, when compared to the control culture. Probiotic production of organic acids, as demonstrated by a decrease in pH, influenced stx2A gene expression.  相似文献   

4.
Six of 37 non-O157 Escherichia coli strains possessing Shiga toxin (Stx) 2 gene variant stx(2d) or stx(2e) secreted no detectable Stx. These isolates produced significantly less stx mRNA than Stx2d, Stx2e, Stx2c, or Stx2 secretors did. Standard screening procedures miss a significant subset of E. coli harboring stx(2) variants.  相似文献   

5.
A novel variant of Shiga toxin 1 (Stx1) was identified from bovine Escherichia coli strains. The stx1 variant genes designated as stx1v51 and stx1v52 were cloned and sequenced. The two variant genes differed each other by 2 bp, but the deduced amino acid sequences of the two Stx1 variant toxins were the same and had 94% and 92% homology to that of prototype A and B subunits of Stx1, respectively. The variant toxin designated as Stx1v52 was purified to homogeneity. Although inhibition of protein synthesis in vitro by purified Stx1v52 was almost equal to that of purified Stx1, Vero cell cytotoxicity and mouse lethality of Stx1v52 were several folds lower than those of prototype Stx1. In Ouchterlony double gel diffusion test, the precipitin line between Stx1v52 and Stx1 formed a spur against anti-Stx1 serum but was fused against anti-Stx1v52 serum. Stx1v52 and Stx1v52-specific-bead-ELISA was developed, and both Stx1 and Stx1v52 could be detected with high sensitivity using Stx1v52 conjugate. However, Stx1v52 but not Stx1 could be detected with Stx1v52-specific bead-ELISA.  相似文献   

6.
There is considerable heterogeneity among the Shiga toxin type 2 (Stx2) toxins elaborated by Shiga toxin-producing Escherichia coli (STEC). One such Stx2 variant, the Stx2d mucus-activatable toxin (Stx2dact), is rendered more toxic by the action of elastase present in intestinal mucus, which cleaves the last two amino acids of the A2 portion of the toxin A subunit. We screened 153 STEC isolates from food, animals, and humans for the gene encoding Stx2dact by using a novel one-step PCR procedure. This method targeted the region of stx2dact that encodes the elastase recognition site. The presence of stx2dact was confirmed by DNA sequencing of the complete toxin genes. Seven STEC isolates from cows (four isolates), meat (two isolates), and a human (one isolate) that carried the putative stx2dact gene were identified; all were eae negative, and none was the O157:H7 serotype. Three of the isolates (CVM9322, CVM9557, and CVM9584) also carried stx1, two (P1332 and P1334) carried stx1 and stx2c, and one (CL-15) carried stx2c. One isolate, P1130, harbored only stx2dact. The Vero cell cytotoxicities of supernatants from P1130 and stx1 deletion mutants of CVM9322, CVM9557, and CVM9584 were increased 13- to 30-fold after treatment with porcine elastase. Thus, Stx2dact-producing strains, as detected by our one-step PCR method, can be isolated not only from humans, as previously documented, but also from food and animals. The latter finding has important public health implications based on a recent report from Europe of a link between disease severity and infection with STEC isolates that produce Stx2dact.  相似文献   

7.
AIMS: To evaluate the suitability of the commercially distributed Ridascreen Verotoxin enzyme immunoassay (EIA) for detection of known genetic types of the Vero (Shiga) toxins 1 (Stx1) and 2 (Stx2) families and to determine its relative sensitivity and specificity. METHODS AND RESULTS: The Ridascreen-EIA was compared with the Vero cell assay, a P(1)-glycoprotein receptor EIA and with stx gene-specific PCs for detection of Stx with 43 Shiga toxin-producing strains of Escherichia coli (STEC) reference strains and with 241 test strains. The Ridascreen-EIA detects strains producing Stx1 and variants Stx1c and Stx1d, as well as Stx2 and variants Stx2d1, Stx2d2, Stx2e, Stx2d, Stx2-O118 (Stx2d-ount), Stx2-NV206, Stx2f and Stx2g. The assay showed a relative sensitivity of 95.7% and a relative specificity of 98.7%. Some of the Stx2-O118-, Stx2e- and Stx2g-producing STEC were not detected with the Ridascreen-EIA probably because of low amount of toxin produced by these strains. CONCLUSIONS: The Ridascreen-EIA is able to detect all known types of Stx and is applicable for routine screening of bacterial isolates owing to its high specificity. It is less applicable for testing samples where low amounts of Stx are expected, such as mixed cultures and certain Stx2 variants. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents a first comprehensive evaluation of the Ridascreen-EIA, a rapid standardized STEC screening test for routine diagnostic laboratories. Data are presented on the type of the spectrum of Stx that are detected with this immunoassay and its advantages and limits for practical use.  相似文献   

8.
The AB(5) toxin Shiga toxin 2 (Stx2) has been implicated as a major virulence factor of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains in the progression of intestinal disease to more severe systemic complications. Here, we demonstrate that supernatant from a normal E. coli isolate, FI-29, neutralizes the effect of Stx2, but not the related Stx1, on Vero cells. Biochemical characterization of the neutralizing activity identified the lipopolysaccharide (LPS) of FI-29, a serogroup O107/O117 strain, as the toxin-neutralizing component. LPSs from FI-29 as well as from type strains E. coli O107 and E. coli O117 were able bind Stx2 but not Stx1, indicating that the mechanism of toxin neutralization may involve inhibition of the interaction between Stx2 and the Gb(3) receptor on Vero cells.  相似文献   

9.
Human intestinal cells lack globotriaosylceramide (Gb(3)), the receptor for Shiga toxin-1 (Stx1) and Shiga toxin-2 (Stx2). Therefore, the role of these toxins in mediating intestinal disease during infection with Shiga toxin-producing Escherichia coli is unclear. The aims of this study were to determine whether Stx1 and Stx2 induce apoptosis in epithelial cells expressing (HEp-2, Caco-2) or lacking (T84) Gb(3) and to characterize the role of the Bcl-2 family. Stx1 (12.5 ng/ml) induced apoptosis in both HEp-2 (21.9 +/- 7.9% vs. 0.8 +/- 0.3%, P = 0.01) and Caco-2 (10.1 +/- 1.2% vs. 3.1 +/- 0.4%, P = 0.006) cells but not in Gb(3)-deficient T84 cells. Toxin-mediated apoptosis of HEp-2 cells was associated with enhanced expression of the proapoptotic protein Bax. Inhibition of caspase activation prevented toxin-stimulated apoptosis. In addition, overexpression of Bcl-2 by transient transfection blocked Stx1-stimulated cell death. These findings indicate that Shiga toxins produced by E. coli signal Gb(3)-expressing epithelial cells to undergo apoptosis in association with enhanced Bax expression, thereby resulting in activation of the caspase cascade.  相似文献   

10.
Shiga toxins (Stx) play an important role in the pathogenesis of hemolytic uremic syndrome, a life-threatening renal sequela of human intestinal infection caused by specific Escherichia coli strains. Stx target a restricted subset of human endothelial cells that possess the globotriaosylceramide receptor, like that in renal glomeruli. The toxins, composed of five B chains and a single enzymatic A chain, by removing adenines from ribosomes and DNA, trigger apoptosis and the production of pro-inflammatory cytokines in target cells. Because bacteria are confined to the gut, the toxins move to the kidney through the circulation. Polymorphonuclear leukocytes (PMN) have been indicated as the carriers that "piggyback" shuttle toxins to the kidney. However, there is no consensus on this topic, because not all laboratories have been able to reproduce the Stx/PMN interaction. Here, we demonstrate that conformational changes of Shiga toxin 1, with reduction of α-helix content and exposition to solvent of hydrophobic tryptophan residues, cause a loss of PMN binding activity. The partially unfolded toxin was found to express both enzymatic and globotriaosylceramide binding activities being fully active in intoxicating human endothelial cells; this suggests the presence of a distinct PMN-binding domain. By reviewing functional and structural data, we suggest that A chain moieties close to Trp-203 are recognized by PMN. Our findings could help explain the conflicting results regarding Stx/PMN interactions, especially as the groups reporting positive results obtained Stx by single-step affinity chromatography, which could have preserved the correct folding of Stx with respect to more complicated multi-step purification methods.  相似文献   

11.
We have isolated Shiga toxin (Stx)-producing Escherichia coli (STEC) strains from the feces of feral pigeons which contained a new Stx2 variant gene designated stx(2f). This gene is most similar to sltIIva of patient E. coli O128:B12 isolate H.I.8. Stx2f reacted only weakly with commercial immunoassays. The prevalence of STEC organisms carrying the stx(2f) gene in pigeon droppings was 12.5%. The occurrence of a new Stx2 variant in STEC from pigeons enlarges the pool of Stx2 variants and raises the question whether horizontal gene transfer to E. coli pathogenic to humans may occur.  相似文献   

12.
Shiga toxin-producing Escherichia coli strains are human pathogens linked to hemorrhagic colitis and hemolytic uremic syndrome. The major virulence factors of these strains are Shiga toxins Stx1 and Stx2. The majority of the genes coding for these toxins are borne by bacteriophages. Free Stx2-encoding bacteriophages have been found in aquatic environments, but there is limited information about the lysogenic strains and bacteria present in the environment that are susceptible to phage infection. The aim of this work was to study the prevalence and the distribution of the stx(2) gene in coliform bacteria in sewage samples of different origins. The presence of the stx(2) gene was monitored every 2 weeks over a 1-year period in a municipal sewage treatment plant. A mean value of 10(2) genes/ml was observed without significant variation during the study period. This concentration was of the same order of magnitude in raw municipal sewage of various origins and in animal wastewater from several slaughterhouses. A total of 138 strains carrying the stx(2) gene were isolated by colony hybridization. This procedure detected approximately 1 gene-carrying colony per 1,000 fecal coliform colonies in municipal sewage and around 1 gene-carrying colony per 100 fecal coliform colonies in animal wastewaters. Most of the isolates belonged to E. coli serotypes other than E. coli O157, suggesting a low prevalence of strains of this serotype carrying the stx(2) gene in the wastewater studied.  相似文献   

13.
Shiga toxin 2 (Stx2) variants have been found to exhibit not only antigenic divergence, but also differences in toxicity for tissue culture cells and animals. To clarify whether all or just a subset of Stx2 variants are important for the virulence of Shiga toxin-producing Escherichia coli, we designed PCR primers to detect and type all reported variants. We classified them into four groups according to the nucleotide sequences of the Stx2 family; for example, group 1 (G1) contains VT2vha and group 2 (G2) contains VT2d-Ount. The 120 strains of Shiga toxin-producing E. coli used in this study were isolated from humans in Japan between 1986 and 1999. Among the four variant groups, the G1 gene only was detected in 23 of the 120 clinical strains (19.2%) and all belonged to the O157 serotype. G1 is considered the most important Stx2 variant group in terms of human pathogenicity. A multiplex PCR that can detect the stx1, stx2, and G1 genes was developed as a means of rapid and easy typing to better understand the roles of the different types of Stx.  相似文献   

14.
Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.  相似文献   

15.
Shiga toxins and Shiga-like toxins (Stx) are a relatively large group of cytotoxins produced by certain serotypes of Shigella and E. coli (STEC). These toxins are responsible for diarrhea, hemorrhagic colitis and may induce hemolytic uremic syndrome (HUS) with serious consequences in young children. The toxins are proteins made up of 5 small B subunits responsible for binding to an outer membrane ligand on host cells and surround the larger, biologically active A subunit. For Shiga-like toxin 1 (Stx1), the cellular receptor is the carbohydrate globotriose. Stx1was purified from STEC. We utilized induction of apoptosis in the human monocyte cell line THP-1, as a biological endpoint to test the stability of Stx1 activity added to fruit punch at different pH (2-9) and temperatures (4 and 20 degrees C). A flow cytometric method was used to test for early and late apoptotic events based on binding of R-phycoerytherin-labeled annexin V to exposed membrane phosphatidyl serine. Membrane permeability to 7-Amino-actinomycin corresponds with late apoptosis or necrosis. The combination of acid pH and higher storage temperature resulted in greatest degree of toxin inactivation. This approach provides a rapid and high throughput method to determine the functional activity of Stx1, and related toxins in a food matrix.  相似文献   

16.
Shiga toxins Stx1 and Stx2 play a prominent role in the pathogenesis of Shiga toxin-producing Escherichia coli (STEC) infections. Several variants of the stx(2) gene, encoding Stx2, have been described. In this study, we developed a PCR-restriction fragment length polymorphism system for typing stx(2) genes of STEC strains. The typing system discriminates eight described variants and allows the identification of new stx(2) variants and STEC isolates carrying multiple stx(2) genes. A phylogenetic tree, based on the nucleotide sequences of the toxin-encoding genes, demonstrates that stx(2) sequences with the same PvuII HaeIII HincII AccI type generally cluster together.  相似文献   

17.
Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7   总被引:3,自引:0,他引:3  
Several serotypes of Escherichia coli produce protein toxins closely related to Shiga toxin (Stx) from Shigella dysenteriae serotype 1. These Stx-producing E. coli cause outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in humans, with the latter being more likely if the E. coli produce Stx2 than if they only produce Stx1. To investigate the differences among the Stxs, which are all AB(5) toxins, the crystal structure of Stx2 from E. coli O157:H7 was determined at 1.8-A resolution and compared with the known structure of Stx. Our major finding was that, in contrast to Stx, the active site of the A-subunit of Stx2 is accessible in the holotoxin, and a molecule of formic acid and a water molecule mimic the binding of the adenine base of the substrate. Further, the A-subunit adopts a different orientation with respect to the B-subunits in Stx2 than in Stx, due to interactions between the carboxyl termini of the B-subunits and neighboring regions of the A-subunit. Of the three types of receptor-binding sites in the B-pentamer, one has a different conformation in Stx2 than in Stx, and the carboxyl terminus of the A-subunit binds at another. Any of these structural differences might result in different mechanisms of action of the two toxins and the development of hemolytic uremic syndrome upon exposure to Stx2.  相似文献   

18.
志贺毒素(Shigatoxin,Stx)主要由肠出血性大肠杆菌(EHEC)产生,是其主要的致病毒力因子,可通过引起急性肾衰竭导致死亡。迄今为止尚没有可推荐的治疗方案能够有效地预防或治疗Stx引起的疾病。目前,对于Stx的研究热点主要包括:Stx尚未清楚的致病机理研究,Stx与HUS的相关性研究,以及预防、治疗由Stx引起的疾病的研究。本文就以上几方面对国内外的相关研究进行总结及讨论。  相似文献   

19.
In recent years, Escherichia coli O157: H7 has emerged as a global public health concern. Among the more important virulence characteristics of this strain is its ability to produce one or more Shiga toxins (Stx). Traditional culture-based methods for assay of enteric toxins in foods and clinical samples are relatively slow and results can be ambiguous. In this work, we established a toxin-detection system based on bioluminescent enzyme immunoassay (BLEIA) using a simple and inexpensive device. The system could detect both Shiga toxin types 1 and 2 individually within 150 min with a detection limit for each toxin at 5 pg/ml. In our study of previously characterized Shigatoxigenic and all non-Shigatoxigenic E. coli and other bacterial species, we found all Shigatoxigenic strains to be positive and non-Shigatoxigenic E. coli and other bacterial species to be negative. This assay was also used to detect Stxs in milk and supernatant fluids from minced chicken and beef. For clinical stool samples we noted a tendency for the system to give unexpectedly high background level. Our results suggest the feasibility of using BLEIA methodology for the simple, rapid and sensitive detection of toxins from culture supernatant, various foods and clinical samples.  相似文献   

20.
Shiga toxins produced by Escherichia coli O157:H7 cause a wide spectrum of enteric diseases, such as lethal hemorrhagic colitis and hemolytic uremic syndrome. In this study, the B subunit protein of Shiga toxin type 1 (Stx1) was produced in the E. coli system, was further purified by Ni-column Affinity Chromatography method, and was then used as an immunogen to immunize laying hens for yolk immunoglobulin (IgY) production. Titers of IgY increased gradually with boosting vaccination and, finally, reached a level of 105, remaining steady over 1 year. Then the protective efficacy of IgY against Stx1 was evaluated by in vitro and in vivo experiments. It was shown that the anti-Stx1 IgY could effectively block the binding of Stx1 to the Hela cells and could protect BALB/c mice from toxin challenges. The data indicates the facility of using egg yolk IgY as a therapeutic intervention in cases of Shiga toxin intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号