首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decision where to live has far-reaching fitness consequences for animals. In contrast to most other mammals or birds that use sheltered nest sites, female Bechstein's bats frequently switch day roosts during one breeding season, and therefore must often decide where to spend the day. Selecting the right roost is important, because roost quality, e.g. microclimatic condition, influences survival and reproduction in bats. Although thermal factors are very important for the quality of roosts occupied by bats, whether bats base their day roost selection directly on roost temperature has not been tested in the field. Over one summer, we examined and tested the roost choice of 21 individually marked female Myotis bechsteinii living in one maternity colony. In a field experiment, we allowed the bats to choose between relatively warm versus cold bat boxes, while controlling for site preferences. We expected females to exhibit a preference for warm roosts during pregnancy and lactation to accelerate gestation and shorten the period of growth of their young. Roost occupancy over 160 census days reflected significant temperature differences among 89 surveyed roosts (14 tree holes and 75 bat boxes), and preferences changed with the season. Females significantly preferred cold roosts before parturition, whereas post-partum, they significantly favoured warm roosts. Temperature preferences were independent of the roost site, and thus roost selection was based directly on temperature. Boxes with significantly different daytime temperatures did not differ significantly at night. Consequently, bats would have to spend at least 1 day in a new roost to test it. Information transfer among colony members might facilitate knowledge of roost availability. Access to many roosts providing different microclimates is likely to be important for successful reproduction in the endangered Bechstein's bat.  相似文献   

2.
Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range.  相似文献   

3.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

4.
In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest‐roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost‐switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.  相似文献   

5.
Many North American bat species hibernate in both natural and artificial roosts. Although hibernacula can have high internal climate stability, they still retain spatial variability in their thermal regimes, resulting in various “microclimates” throughout the roost that differ in their characteristics (e.g., temperature and air moisture). These microclimate components can be influenced by factors such as the number of entrances, the depth of the roost, and distance to the nearest entrance of the roost. Tri‐colored bats are commonly found roosting in caves in winter, but they can also be found roosting in large numbers in culverts, providing the unique opportunity to investigate factors influencing microclimates of bats in both natural and artificial roost sites. As tri‐colored bats are currently under consideration for federal listing, information of this type could be useful in aiding in the conservation and management of this species through a better understanding of what factors affect the microclimate near roosting bats. We collected data on microclimate temperature and microclimate actual water vapor pressure (AWVP) from a total of 760 overwintering tri‐colored bats at 18 caves and 44 culverts. Using linear mixed models analysis, we found that variation in bat microclimate temperatures was best explained by external temperature and distance from nearest entrance in both caves and culverts. External temperature had a greater influence on microclimate temperatures in culverts than caves. We found that variation in microclimate AWVP was best explained by external temperature, distance from nearest entrance, and proportion from entrance (proportion of the total length of the roost from the nearest entrance) in culvert‐roosting bats. Variation in microclimate AWVP was best explained by external temperature and proportion from entrance in cave‐roosting bats. Our results suggest that bat microclimate temperature and AWVP are influenced by similar factors in both artificial and natural roosts, although the relative contribution of these factors differs between roost types.  相似文献   

6.
Roost utilisation byRhinolophus ferrumequinum (Schreber, 1774) was investigated between 1984 and 1998 in north-eastern Hungary. Exploration of summer and winter roosts, monitoring and bat-banding were implemented to find movements between the colonies. Data on roost utilisation by this species in south-eastern Slovakia, collected in a similar way, were included for comparison. Twenty-two marked bats were recaptured. The studied bats created nursery colonies in Hungarian churches and moved to Slovakian mines and caves to hibernate in winter. The population used two main hibernacula, two large nursery roosts and one temporary roost but several other roosts were also visited. The area occupied by the population was 5180 km2.R. ferrumequinum living in SE Slovakia and NE Hungary formed probably a separate population on the northern edge of the species range. This population is a part of the metapopulation of the species.  相似文献   

7.
Roost requirements of most North American forest bats are well-documented, but questions remain regarding the ultimate mechanisms underlying roost selection. Hypotheses regarding roost selection include provision of a stable microclimate, space for large colonies, protection from predators, and proximity to foraging habitat, among others. Although several hypotheses have been proposed, specific mechanisms likely vary by species and geographic region. Rafinesque's big-eared bat (Corynorhinus rafinesquii) commonly roosts in trees with large basal hollows in the Coastal Plain of the southeastern United States. Our objective was to weigh evidence for hypotheses regarding selection of diurnal summer roosts by Rafinesque's big-eared bat at 8 study sites across the Coastal Plain of Georgia, USA. We used transect searches and radiotelemetry to locate roosts and measured 22 characteristics of trees, tree cavities, and surrounding vegetation at all occupied roosts and for randomly selected unoccupied trees. We evaluated 10 hypotheses using single-season occupancy models and used Akaike's information criterion to select the most parsimonious models. We located 170 tree roosts containing approximately 870 bats for our analysis. The best supported model predicted bat presence from cavity size, interior wall texture, and number of entrances. Because large cavities allow bats to fly and smooth walls impede attacks by terrestrial predators, our results are consistent with the hypothesis that bats select roosts that allow them to evade predators. However, data on predation rates are needed for a conclusive determination. Because trees suitable as roosts for Rafinesque's big-eared bat are rare in the landscape, protection of suitable forested wetland habitat is essential to provide current and long-term roost tree availability. © 2012 The Wildlife Society.  相似文献   

8.
Serotine nursery roosts with less than 20 bats were found to have home ranges of at least 24 to 77 km2 and core areas of activity from 13 to 33 km2. The size of the range may have increased further if more individuals had been tracked, as three of the four colonies studied had not reached their asymptotes. The total home-range area covered by four serotine colonies was 127.36 km2. Excluding non-breeding bats, a density of one bat per 120 ha was estimated. However, actual density was likely to be higher if there were additional non-breeding females and immatures that were not in nursery roosts. Colonial home ranges and core areas overlapped, with individuals from different colonies feeding at the same sites. Individual home ranges ( n = 32) varied from 0.16 to 47.58 km2, but these were not used exclusively by one individual. Around the colonial core area and breeding roosts, home ranges were used by all individuals from a single colony. It is only further from the core area that ranges appeared to be used by individuals. The distance from roost to feeding areas varied by up to 7.4 km, but the bat usually commuted along lines of trees and hedges and over pastures. This resulted in greater distances being travelled than if they had flown by a direct route. On average, individuals commuted distances of 8 km each night between feeding areas, with a maximum distance of over 41 km. They visited between 0 and 10 feeding sites each night (mean = 2.89).  相似文献   

9.
Distribution and minimum population densities for seven UK bat species known to be resident in northern England were calculated in an area covering 2500 km2. The species present were pipistrelle ( Pipistrellus pipistrellus ), brown long-eared ( Plecotus auritus ), Daubenton's ( Myotis daubentonii ), whiskered ( Myotis mystacinus ), Natterer's (Myotis nattereri) , noctule ( Nyctalus noctula ) and Brandt's (Myotis brandtii). Data were collected primarily from counts at summer roosts over the period 1983 to 1990. A total of 310 bat roosts were discovered within the study area. Of the 256 roosts at which the species present was identified, the majority, 127 (49.6%) were P. pipistrellus , with a mean maternity roost size of 69.6 bats. A minimum population density of 12.6 batskm−2 was estimated for P. pipistrellus , based on summer (maternity) roosts. The minimum population density estimate was higher than previous studies in northern England but substantially lower than those reported in Scotland (18.2 bats km-−2). The combined density of M. mystacinus, M. brandtii, and P. pipistrellus , which have similar foraging styles (15.8 bats km−2), is comparable to Scottish P. pipistrellus densities. The density of M. duubentonii was also lower than in Scotland, although the density of P. auritus was comparable. The majority of summer roosts for all species were found in buildings, except N. noctula and M. duubentonii which used bridges/tunnels or trees.  相似文献   

10.
<正>大多数种类的蝙蝠不会整个晚上都进行觅食,通常在觅食期间有一段长短不一的时间停留在临时地休息,此为夜栖息行为(Hatfield,1937;Krutzsch,1954;Barbour and Davis,1969;Kunz,1973,1974;Hirshfeld et al.,1977)。蝙蝠在夜栖息地进食(Vaughan,1976;Funakoshi and Maeda,2003)、休息并消化食物(Brigham,1991;Funakoshi and Maeda,2003),甚至社会交流(Kunz,1982;Kunz and Lumsden,2003)。不同种类的蝙蝠  相似文献   

11.
Regional migrations are important elements of the biology of bats, but remain poorly understood. We obtained a large dataset of recoveries of ringed Miniopterus schreibersii to study the patterns and drivers of migration of a Mediterranean cave-dwelling bat. In spite of the mildness of Mediterranean winters, in average years bats hibernated, and few movements were recorded during this period. After hibernation, females migrated to spring roosts, and again to maternity roosts just before parturition. This late arrival at nurseries could be a strategy to avoid a harmful build-up of parasites. Soon after the juveniles were weaned, the mothers migrated to the roosts where they spent autumn and sometimes also winter. Juveniles remained in the warm nurseries longer, presumably because high roost temperatures speed up growth. The pattern of migration of males was similar to that of females, but they left hibernacula later and remained more mobile during the maternity season. They also arrived at the hibernacula later, possibly because they needed time to build up fat stores after the energetically costly mating season. Maternity colonies spent the yearly cycle in well-defined home ranges (mean=19 030 km2), which overlapped greatly. Bats were furthest from the maternity sites during hibernation, but even then 80% remained within 90 km of them. Each hibernaculum attracted bats from multiple nurseries, from within a mean range of 10 770 km2. We tested two potential drivers for migration – temperature in the roosts and at the foraging areas – but our results supported only the first one. Bats migrated to reach the roosts most thermally suited for each phase of their life cycle, indicating that roost temperature and associated metabolic advantages are key drivers for regional migrations of cave-dwelling bats.  相似文献   

12.
Although tree cavities are a particularly critical resource for forest bats, how bats search for and find new roosts is still poorly known. Building on a recent study on the sensory basis of roost finding in the noctule (Ruczynski et al. 2007), here we take a comparative approach to how bats find roosts. We tested the hypothesis that species' flight abilities and echolocation call characteristics play important roles in how well and by which cues bats find new tree roosts. We used the very manoeuvrable, faintly echolocating brown long-eared bat ( Plecotus auritus ) and the less manoeuvrable, louder Daubenton's bat ( Myotis daubentonii ) as study species. The species are sympatric in European temperate forests and both roost in tree cavities. We trained bats in short-term captivity to find entrances to tree cavities and experimentally manipulated the sensory cues available to them. In both species, cue type influenced the search time for successful cavity detection. Visual, olfactory and temperature cues did not improve the bats' performance over the performance by echolocation alone. Eavesdropping on conspecific echolocation calls played back from inside the cavity decreased search time in Daubenton's bat ( M. daubentonii ), underlining the double function of echolocation signals – orientation and communication. This was not so in the brown long-eared bat ( P. auritus ) that has low call amplitudes. The highly manoeuvrable P. auritus found cavities typically from flight and the less manoeuvrable M. daubentonii found more entrances during crawling. Comparison with the noctule data from Ruczyński et al. (2007) indicates that manoeuvrability predicts the mode of cavity search. It further highlights the importance of call amplitude for eavesdropping and cavity detection in bats.  相似文献   

13.
Many European migratory bat species hibernate in large hollow trees, a decreasing resource in present day silviculture. Here, we report on the importance of man-made hibernacula to support trans-boundary populations of noctule bats (Nyctalus noctula), a species that performs seasonal long distance movements throughout Europe. In winter, we surveyed nine bat roosts (eight artificial and one natural) in Germany and collected small tufts of fur from a total of 608 individuals. We then measured the stable isotope ratios of the non-exchangeable hydrogen in fur keratin and estimated the origin of migrants using a refined isoscape origin model that included information on expected flight distances and migration directions. According to the stable isotope signature, 78 % of hibernating bats originated from local populations. The remaining 22 % of hibernacula occupants originated from distant populations, mostly from places in northern or eastern countries such as Sweden, Poland and Baltic countries. Our results confirm that many noctule bats cross one or several political borders during migration. Data on the breeding origin of hibernating noctule bats also suggest that artificial roosts may not only be important for local but also for distant populations. Protection of natural and artificial hibernacula in managed forests may support the trans-boundary populations of migratory bats when hollow trees are scarce in managed forests.  相似文献   

14.
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.  相似文献   

15.
Jens Rydell 《Ecography》1992,15(2):195-198
Food habits of the parti-coloured bat in southern Sweden were investigated by analysis of fecal samples collected from three maternity roosts used in summer and, in addition, one roost used by a male during the mating season m autumn Small (c 3-10 mm) dipterans dominated all samples, representing 64-82% by volume, but larger flying insects like moths, caddis-flies and dung beetles were also eaten, together representing 14-33% At the family level, midges (Chironomidae) were by far the most common prey items, compnsing 12-67% of the diet The dominance of small prey items in the diet of the parti-coloured bat in Sweden contrasts with other bat species of similar size and foraging habits, but agrees with observations on parti-coloured bats in Ukrama and Poland  相似文献   

16.
17.
Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural components that are products of past and current land use interacting with environmental aspects such as landform also are important factors influencing roost-tree selection patterns.  相似文献   

18.
Ectoparasitism in bats seems to be influenced strongly by the type of roost preferred by the hosts, and group size; however, the effect of habitat loss and fragmentation on the prevalence of ectoparasites in bats has scarcely been studied. In northeastern Yucatan, Mexico, we estimated the prevalence of infestation by Streblidae flies in three phyllostomid bat species with different roost preferences (caves, trees, or both) in two types of landscape matrices (tropical semi‐deciduous forest and man‐made pastures) that differed in area of forest cover and the number of forest fragments. Habitat fragmentation and the presence of a contrasting matrix may limit the availability of roosts (trees) and the movement of bats across the landscape. Accordingly, we hypothesized higher prevalence of Streblidae infestation in the pasture matrix and in the group of bats that roost in trees. Bat abundance was higher in the pasture matrix; however, the prevalence of infestation was significantly higher in the continuous forest matrix and in bats that roosted in caves. The prevalence of some species of Streblidae was affected by habitat fragmentation in species that roost in caves, such as Desmodus rotundus, as well as those using foliage and caves, such as Artibeus jamaicensis. Our results provide evidence that some species of Streblidae may respond differently to habitat fragmentation than their hosts, generating changes to bat‐ectoparasite interactions in fragmented areas. Environmental variations involving roosts, not evaluated in this study, may influence our results, since these factors affect ectoparasite abundance and reproduction.  相似文献   

19.
We radio-tracked fifteen reproductive females (5 pregnant, 5 lactating, 5 in post-lactation) of the Daubenton’s bat in summer 2005 in order to reveal the effect of reproductive state on their foraging and roosting activity. Spatial activity of females decreased from pregnancy to lactation and increased again in the post-lactation period. Overall time spent foraging did not differ among the three study periods. However, while pregnant and lactating females spent similar proportion of the night length foraging, females in the post-lactation period were foraging for shorter part of night. The frequency of nightly visits to roosts was highest during lactation but there was a trend towards shortening of particular visits during that period. All but one roost were in tree hollows excavated by woodpeckers in spatially restricted area of ca 0.7 km2. Tree cavities used during pregnancy were located higher on a tree trunk and had larger entrance area than the cavities used in the two later periods. Bats switched roosts every 2–3 days (range 1–8) and moved to a new roost up to 800 m apart. Pregnant females tended to switch roosts more frequently than females in the two later periods. We did not observe a significant effect of minimum nightly temperature on the activity of radio-tracked Daubenton’s bats. Therefore, we suggest that observed seasonal changes in the pattern of behaviour of Daubenton’s bat females were driven by their changing energetic demands rather than by some extrinsic factors (e.g. weather conditions).  相似文献   

20.
As the human population continues to expand, increased encroachment on natural landscapes and wildlife habitats is expected. Organisms able to acclimate to human-altered environments should have a selective advantage over those unable to do so. Over the past two decades, bats have increasingly begun to roost and raise offspring in spaces beneath pre-cast concrete bridges. Few studies have examined the health or fitness of individuals living in these anthropogenic sites. In the present study, we examined birth size and postnatal growth, as surrogates of reproductive success, in Brazilian free-tailed bat pups born at a natural and a human-made roost. Based on putative stress-related conditions (noise from vehicular traffic, chemical pollutants and a modified social environment) present at bridges, we predicted that bats at these sites would have reduced reproductive success. Contrary to our prediction, pups born at a bridge site were on average heavier and larger at birth and grew faster than those born at a cave site. Also, both birth size and growth rates of pups differ between years. We attribute observed differences to a combination of roost-related conditions (i.e. roost temperature and proximity to foraging areas), climate and maternal effects with larger mothers raising larger pups. Thus, some bridge roosts, at least in the short term, are suitable, and in some cases may provide better conditions, for raising young bat pups than cave roosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号