首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
伊春地区红松和红皮云杉径向生长对气候变化的响应   总被引:1,自引:0,他引:1  
树木生长-气候关系对准确评估气候变化对森林生态系统影响、预测森林生产力与植被动态及揭示树木对气候变化的响适应策略至关重要。在全球变暖背景下,升温可能会对树木的生长产生影响,从而改变区域森林生态系统的生产力或碳储量。本研究利用生长-气候响应函数、滑动相关分析等树木年轮学方法,探讨伊春地区阔叶红松林内红松和红皮云杉径向生长的主要限制因子及两者径向生长对快速升温(1980年后)响应的异同。结果表明:1980年前红松径向生长有明显加速的趋势,红皮云杉上升趋势较弱;而1980年后红松径向生长趋势显著下降,红皮云杉则下降不明显。红皮云杉径向生长与上一年9月及当年6月平均气温显著负相关,而红松径向生长与上一年12月及当年1月、4月和6月最低气温显著正相关。1980年快速升温后,高温对两树种生长的抑制作用增强,尤其是红松。生长季末(9月)降水对红松和红皮云杉的限制作用由升温前的负相关转变为升温后的显著正相关。温度是限制红松和红皮云杉径向生长的主要气候因子,降水影响相对较弱;其中红松径向生长对气候变化的响应比红皮云杉更敏感。快速升温后,红松和红皮云杉生长-气候关系的变化可能与升温导致的暖干旱化有关。若气候变暖持续或加剧,二者径向生长的气候限制因子也将由温度转变为水分;红松和红皮云杉会出现生长衰退,尤其是红松。  相似文献   

2.
长白山自然保护区阔叶红松林林隙更新的研究   总被引:46,自引:6,他引:40  
通过对林隙及非林隙林分组成树种数量特征的对比分析,研究了长白山自然保护区阔叶红松林中主要树种对林隙的更新反应特点,阐述了林隙在阔叶红松林结构与多样性维持中的作用.随着林隙与非林隙的交替变化,红松和阔叶树以及主林层和中下层树种的相对优势(或重要性)亦呈现出交替变化的规律.林隙提高了阔叶红松林的物种丰富度,增加了其多样性,为不同特性物种的共存提供了可能,从而保持了阔叶红松林的整体稳定性.  相似文献   

3.
Climate change will drive significant changes in vegetation cover and also impact efforts to restore ecosystems that have been disturbed by human activities. Bitumen mining in the Alberta oil sands region of western Canada requires reclamation to “equivalent land capability,” implying establishment of vegetation similar to undisturbed boreal ecosystems. However, there is consensus that this region will be exposed to relatively severe climate warming, causing increased occurrence of drought and wildfire, which threaten the persistence of both natural and reclaimed ecosystems. We used a landscape model, LANDIS‐II, to simulate plant responses to climate change and disturbances, forecasting changes to boreal forests within the oil sands region. Under the most severe climate forcing scenarios (representative concentration pathway [RCP] 8.5) the model projected substantial decreases in forest biomass, with the future forest being dominated by drought‐ and fire‐tolerant species characteristic of parkland or prairie ecosystems. In contrast, less extreme climate forcing scenarios (RCPs 2.6 and 4.5) had relatively minor effects on forest composition and biomass with boreal conifers continuing to dominate the landscape. If the climate continues to change along a trajectory similar to those simulated by climate models for the RCP 8.5 forcing scenario, current reclamation goals to reestablish spruce‐dominated boreal forest will likely be difficult to achieve. Results from scenario modeling studies such as ours, and continued monitoring of change in the boreal forest, will help inform reclamation practices, which could include establishment of species better adapted to warmer and drier conditions.  相似文献   

4.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

5.
Gap-phase replacement is a general phenomenon found in forest ecosystems, worldwide. Different tree species can be expected to produce different sizes of gaps when they die. Species also vary in their regeneration success in gaps of different sizes. In this paper, the gap-phase interactions among tree species in a forest stand are simulated by a role-type stand model called ROPE. By incorporation of environmental effects on tree height, ROPE can simulate forest composition and stand leaf area under different climate conditions. The model was developed for forest ecosystems in northeastern China and was used to simulate the forest landscape structures under current climate conditions and under four climate change scenarios for greenhouse gas related warming. These scenarios were obtained from general circulation models developed by different atmospheric research centers. Korean pinebroadleaf mixed forest and larch forest are the major stand types in the study area under present conditions. Under the four climate change scenarios, Korean pine-broadleaf mixed forest would be expected to occur only on the higher parts of large mountains. Larch forest only would be found north of the study area. Broadleaf forest would become the dominant vegetation over the study area. Use of the Kappa statistic to test for similarity in spatial maps, indicates that each climate change scenario would result in a significant change of forest distributions.Supported by The United States National Science Foundation Grant BSR-8702333 to University of Virginia.  相似文献   

6.
凉水自然保护区松鼠和星鸦贮食生境选择差异   总被引:9,自引:2,他引:7  
宗诚  陈涛  马建章  宣立锋 《兽类学报》2007,27(2):105-111
2003 年9 月30 日~2005 年10 月8 日,在黑龙江凉水国家级自然保护区,应用样方调查法, 采用Vanderploeg和Scavia 选择系数Wi和选择指数Ei作为衡量指标,对松鼠和星鸦贮食生境选择进行了研究。结果表明, 二者贮食生境选择优先顺序略有不同,松鼠偏爱的贮食生境依次是: 云杉林、原始红松林、人工红松林、针阔混交林、人工云杉林、白桦林、针叶混交林、人工落叶松林、阔叶混交林、冷杉林和其它。星鸦对贮食生境的偏爱程度依次为: 人工红松林、原始红松林、云杉林、人工云杉林、针阔混交林、阔叶混交林、白桦林、针叶混交林、人工落叶松林、冷杉林和其它。在对贮食微生境因子的选择利用上, 二者大致相同,只是在对优势灌丛的选择上略有差异, 松鼠优先选择在狗枣猕猴桃优势灌丛内贮藏红松种子, 而星鸦优先选择在刺五加优势灌丛内贮食。松鼠和星鸦贮食生境选择的差异将对随后的红松天然更新过程产生不同的影响。  相似文献   

7.
PnET-Ⅱ(photosynthesis and evapotranspiration)模型是生态系统过程模型,运行过程中所需的参数较多, 包括植被、土壤和气候参数等.本文估计了丰林自然保护区阔叶红松林中红松和阔叶树的总净初级生产力(NPP)和枝干NPP对PnET-Ⅱ模型参数变化的敏感程度.结果表明: PnET-Ⅱ模型的植被参数中,林冠参数变化对模拟结果影响较大,且红松总NPP对植被参数的敏感性大于阔叶树;红松和阔叶树NPP对土壤持水量变化敏感性较小,且红松NPP对土壤持水量的敏感性略小于阔叶树;在气候情景范围内,气温变化对红松和阔叶树NPP的影响最大,降水和光合有效辐射次之.不同气候情景对NPP模拟结果的影响不同.红松和阔叶树的总NPP和枝干NPP对各输入参数的敏感程度并不完全一致.  相似文献   

8.
以中国东北长白山阔叶红松林为例,应用林窗模型NEWCOP探索了不同模拟样地面积对林窗模型输出结果的影响.结果表明,模拟样地面积大小变化可影响模拟出的森林群落的树种组成和模拟样地的林窗出现周期,通过应用这一特点确定了阔叶红松林的林窗面积为400~800m2.  相似文献   

9.
凉水自然保护区松鼠(Sciurus vulgaris)贮食生境选择   总被引:9,自引:0,他引:9  
马建章  宗诚  吴庆明  邹红菲  孙岩  郑昕 《生态学报》2006,26(11):3542-3548
2003年10月~2004年4月,在黑龙江省小兴安岭凉水国家级自然保护区,应用跟踪观察法、样线调查法、样方调查法等研究方法,采用Vanderploeg和scavia选择系数Wi和选择指数Ei作为衡量指标,对松鼠贮食红松种子生境选择进行了研究。研究表明,松鼠贮食对生境具有选择性:以主要林型为划分标准,松鼠偏爱贮食生境依次为:原始红松林,云杉林,人工云杉林,针叶混交林,人工落叶松林,针阔混交林,阔叶混交林,次生白桦林和人工红松林。在原始红松林内,松鼠对微生境的利用存在选择性差异:松鼠对郁闭良好(郁闭度大于0.6)、灌丛密度中等、倒木和枯立木密度中等(1~5个)、盗食动物活动较弱(大林姬鼠Apodemus peninsulae为主要盗食动物)的原始红松林生境表现出较强的选择性(Ei>0.2);而对坡度小于5°、基质为霉菌土、倒木和枯立木密度较高(大于5个)、草本盖度较高、盗食动物活动中等(花鼠Eutamias sibiricus为主要盗食动物)的原始红松林生境表现出较强的负选择性(Ei<-0.2),对阴坡表现出强烈的回避性(Ei=-0.5368)。  相似文献   

10.
气候变化对长白山阔叶红松林冠层蒸腾影响的模拟   总被引:2,自引:0,他引:2  
应用基于过程的碳水耦合多层模型对长白山阔叶红松林冠层蒸腾量进行了模拟和模型验证,并模拟了冠层蒸腾量对未来气候变化的响应.结果表明:多层模型可以较好地模拟长白山阔叶红松林冠层蒸腾量,模拟值与涡动相关技术观测的实测值拟合较好.冠层蒸腾对气候变化响应的模拟显示,气温升高,潜热通量(LE)增加;土壤含水量减少,LE减少;大气CO2浓度增加,LE减少.在研究假定的气候变化情景下,LE对0~20 cm土壤含水量减少10%、CO2浓度增加190μmol·mol-1的联合变化的响应最敏感,对气温增加3.6℃、土壤含水量减少10%的联合变化的响应不敏感.  相似文献   

11.
贺丹妮  杨华  温静  谢榕 《应用生态学报》2020,31(6):1916-1922
2019年8月在云冷杉针阔混交林样地(0.36 hm2),对48个林隙及幼苗(0.2<更新高度RH<1 m)、幼树(RH≥1 m,胸径DBH<5 cm)进行调查,分析林隙大小(<20 m2,小;20~50 m2,中;50~120 m2,大;>120 m2,特大)对林隙内红松、鱼鳞云杉及冷杉幼苗幼树密度和生长指标(高、基径)的短期影响,并采用核密度估计法分析其空间分布规律。结果表明: 云冷杉更新的密度通常随林隙增大而降低,仅对幼树影响显著,小林隙下云冷杉幼树密度分别为0.34和1.74株·m-2,红松密度不受林隙大小的影响。林隙大小对冷杉幼苗幼树生长指标的影响最大,对红松影响最小,平均最大值多出现在大林隙。红松和云杉幼树的基径和树高最大值均分布在小、中、大林隙东北部,在特大林隙中转移至冠空隙西北部。小林隙有助于幼苗的建立和萌发,可通过择伐冷杉创造小林隙,随后扩大林隙面积(>50 m2)促进幼树生长,需要持续监测来确定林隙大小对森林更新的长期影响。  相似文献   

12.
Different tree species growing in the same area may have different, or even contrasting growth responses to climate change. Korean pine (Pinus koraiensis) and Mongolia oak (Quercus mongolica) are two crucial tree species in temperate forest ecosystems. Six tree-ring chronologies for Korean pine and Mongolia oak were developed by using the zero-signal method to explore their growth response to the recent climate warming in northeast China. Results showed that Mongolia oak radial growth was mainly limited by precipitation in the growing season, while Korean pine growth depended on temperature condition, especially monthly minimum temperature. With the latitude decrease, the relationships between Korean pine growth and monthly precipitation changed from negative to positive correlation, while the positive correlation with monthly temperature gradually weakened. In the contrary, Mongolia oak growth at the three sampling sites was significantly and positively correlated with precipitation in the growing season, while it was negatively correlated with temperature and this relationship decreased with the latitude decrease. The radial growth of Korean pine at different sites showed a clearly discrepant responses to the recent warming since 1980. Korean pine growth in the north site increased with the temperature increase, decreased in the midwest site, and almost unchanged in the southeast site. Conversely, Mongolia oak growth was less affected by the recent climate warming. Our finding suggested that tree species trait and sites are both key factors that affect the response of tree growth to climate change. In addition, the suitable distribution area of Korean pine may be moved northward with the continued global warming in the future, but Mongolia oak may not shift in the same way.  相似文献   

13.
长白山阔叶红松林径级结构动态模拟和优化经营   总被引:3,自引:0,他引:3  
以原始阔叶红松林为研究对象,采用密度依赖矩阵模型,模拟了自然生长预案下林分径级结构的动态变化,分析了一种择伐预案对林分径级结构的影响,计算了7种不同择伐强度下森林的恢复期。结果表明:原始阔叶红松林比较稳定,但也有比较缓慢的自然生长,林分株数密度呈下降趋势,符合森林的自然稀疏规律,随着时间的推移,各径阶株数的变化速度逐渐减弱,趋于稳定,验证了演替顶极理论。以生长量、收获量、保留林分结构和采伐费用为森林经营效果的评价指标,则20%的采伐强度、35年采伐周期和25%的采伐强度、45年的采伐周期的2种方案较优。  相似文献   

14.
Forests around the world are undergoing rapid changes due to changing climate and increasing physiological stress, but forest response to climate at the ecosystem scale can be highly variable due to the mixed responses of different trees across heterogeneous landscapes. To determine the response of ecosystems in the Rocky Mountains to climate stress, we investigated the response of subalpine fir (Abies lasiocarpa) and Engelmann spruce (Picea engelmannii), two widely distributed subalpine forest species of Rocky Mountains, to climate warming across a region characterized by gradients of elevation, aspect and soil type. We investigated the growth trend of individual trees through time, determined the climate variables most important for driving growth and quantified the interactions between climate and topography that influence long-term growth trends and potential ecological changes across the study region. Growth trends of these two species are similar through the first part of the century, but diverge during the last several decades. Since 1975, subalpine fir growth decreased through time, while Engelmann spruce growth increased. We find that aspect and warm summer temperatures are the most important factors determining growth in subalpine fir, and subalpine fir growth declines are greatest on east- and south-facing aspects. In contrast, Engelmann spruce growth is uniformly unresponsive to climate. In addition to highlighting the importance of species-level differences in growth response to climate, our results also identify interactions between climate and local physiography as controls on long-term growth trends and suggest that the local landscape physiography can mediate climate-related stress in forested ecosystems. This work advances our understanding of how forest stress is mitigated by landscape factors at the ecosystem scale, and how interactions of species, landscape and climate will control future ecosystem composition and forest growth dynamics.  相似文献   

15.
林窗模型的几个基本问题的研究 Ⅰ.模拟样地面积的效应   总被引:9,自引:2,他引:7  
以中国东北长白山阔叶红松林为例,应用林窗模型NEWCOP探索了不同模拟样地面积对林窗模型输出结果的影响,结果表明,模拟样地面积大小变化可影响模拟出的森林群落的树种组成和模拟样地的林窗出现周期,通过应用这一特点确定了阔叶红松林的林窗面积为400-800m^2。  相似文献   

16.
东北山地水生鞘翅目昆虫多样性的比较研究   总被引:4,自引:0,他引:4  
王淼  陈欣 《应用生态学报》1998,9(4):411-415
调查了东北长白山自然保护区及辽宁省医巫闾山两地静水水体中水生甲虫.结果表明,长白山阔叶红松林生态系统水生甲虫比辽宁医巫闾山农林复合生态系统水生甲虫物种丰富的多.长白山水生甲虫共有17个属29个种,而辽宁医巫闾山水生甲虫只有10个属13个种.两地水生甲虫Shannon多样性指数分别为2.124、1.643,Shannon均匀度分别为1.260、0.641,两种不同生态系统中的水生甲虫物种多度分布较好地拟合于对数级数模型,均以少数物种为优势种,其中长白山自然保护区水生甲虫以Hydroglyphusjaponicus、Haliplussimplex为优势种,辽宁医巫闾山水生甲虫则以Hydroglyphuspusilus、Agabususuriensis、Agabusbrandti占优势.  相似文献   

17.
Ma J Z  Zong C  Wu Q M  Zou H F  Sun Y  Zheng X 《农业工程》2006,26(11):3542-3548
This study was conducted during October 2003–April 2004 in the Liangshui National Nature Reserve of the Xiao Xing'an Mountains of Northeast China. Results showed that hoarding behavior of squirrels exhibited selectivity. The preference order of hoarding habitat selection of squirrels is as follows: original Korean pine forest, secondary natural fir forest, artificial fir forest, mix-conifer leaf forest, artificial fallen leaves pine forest, mix-conifer-broadleaf forest, mix-broadleaf forest birch forest, and artificial Korean pine forest. Compared with the existing results, using the cache spots as an index, the order of habitat selection changed, revealing that this research should include more factors, such as pilferage from other animals and secondary dispersal by the squirrels or other species. The Vanderploeg and Scavia selectivity indexes, Wi and Ei, were used to evaluate the use of microhabitat by squirrels in the original Korean pine forest. Results indicated that the squirrels exhibited a significant microhabitat utilization pattern: (1) Squirrels prefer to use the microhabitat in original Korean pine forest with high canopies, the medium shrubby density, and the medium stub density, where pilferage animals are few (Ei > 0.2); (2) Squirrels did not prefer to use the microhabitat in the original Korean pine forest with a low slope degree, high density of fallen logs and stumps, a high herbage coverage, and an abundance of pilferage animals (Ei < ?0.2), and they showed an aversion for a shaded slope (Ei = ?0.5368). The selectivity of microhabitat utilization for the hoarding behavior of squirrels plays an important role in determining the spatial pattern of Korean pine seedlings.  相似文献   

18.
水分利用效率是反映植物水分利用的客观指标,对其研究有助于了解陆地生态系统的碳水耦合机制。本研究利用稳定碳同位素技术分析了长白山阔叶红松林演替序列下3种林分(中龄杨桦林、成熟杨桦林、阔叶红松林)中优势树种的水分利用效率。结果表明: 3种林分的水分利用效率在不同演替阶段存在阔叶红松林>中龄杨桦林>成熟杨桦林的大小顺序,且同一树种在不同林分中水分利用效率不同,中龄杨桦林中山杨和白桦的水分利用效率高于成熟杨桦林,阔叶红松林中水曲柳的水分利用效率远高于其在中龄杨桦林,阔叶红松林中色木槭和蒙古栎的水分利用效率高于其在成熟杨桦林;优势树种的水分利用效率存在木材类型上的差异,总体呈现环孔材树种>散孔材树种;阔叶红松林优势树种中,阔叶树种和针叶树种的水分利用效率在生长季呈现两种不同的变化趋势,水曲柳、色木槭、蒙古栎、紫椴总体呈现先减小后增加的趋势,而红松呈现先增加后减小的趋势。生长季阔叶红松林的水分利用效率与温度呈显著负相关。不同的水分利用效率是长白山阔叶红松林优势树种适应演替进程、响应气候和环境变化的策略之一。  相似文献   

19.
Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season‐average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first‐year recruitment in the forest, but had no net effect on fourth‐year recruitment at any site. Watering during the snow‐free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low‐elevation seeds of both species initially recruited more strongly than high‐elevation seeds across the elevation gradient, although the low‐provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High‐ and low‐elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high‐provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower sensitivity of limber pine to warming indicates a potential for this species to become more important in subalpine forest communities in the coming centuries.  相似文献   

20.
长白山西坡风灾区森林恢复状况   总被引:1,自引:0,他引:1  
以长白山西坡风灾迹地(阔叶红松林、云冷杉林、岳桦林)的样地调查资料为基础,研究了各林型森林群落遇灾23年后的恢复特征.结果显示:3种林型的恢复速度为阔叶红松林>云冷杉林>岳桦林,并且它们与各自对照的群落共有度指数分别为0.49、0.44、0.33.风灾对各林型的乔木组成和多样性的影响不同:阔叶红松林中,风灾显著增加了乔木总数量,但对乔木种数和α多样性指数没有显著影响(P>0.05);云冷杉林中,风灾仅显著降低了Shannon多样性指数和Simpson优势度指数;岳桦林中,除Pielou均匀度指数,其余多样性指数都因风灾而显著降低.各林型优势树种组成变化及更新情况对风灾的响应也与林型相关:阔叶红松林与对照区的优势树种组成显著不同,而云冷杉林及岳桦林受灾前后的优势树种组成差异均不大;阔叶红松林的幼树更新情况较好,云冷杉林有少量更新,岳桦林带几乎没有林木更新.表明风灾对森林群落的影响在23年后仍未消除,森林在风灾干扰后的恢复需要一个漫长的过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号