首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nitrile hydratase (NHase, EC 4.2.1.84) genes (α and β subunit) and the corresponding activator gene from Rhodococcus equi TG328-2 were cloned and sequenced. This Fe-type NHase consists of 209 amino acids (α subunit, Mr 23 kDa) and 218 amino acids (β subunit, Mr 24 kDa) and the NHase activator of 413 amino acids (Mr 46 kDa). Various combinations of promoter, NHase and activator genes were constructed to produce active NHase enzyme recombinantly in E. coli. The maximum enzyme activity (844 U/mg crude cell extract towards methacrylonitrile) was achieved when the NHase activator gene was separately co-expressed with the NHase subunit genes in E. coli BL21 (DE3). The overproduced enzyme was purified with 61% yield after French press, His-tag affinity chromatography, ultrafiltration and lyophilization and showed typical Fe-type NHase characteristics: besides aromatic and heterocyclic nitriles, aliphatic ones were hydrated preferentially. The purified enzyme had a specific activity of 6,290 U/mg towards methacrylonitrile. Enantioselectivity was observed for aromatic compounds only with E values ranging 5–17. The enzyme displayed a broad pH optimum from 6 to 8.5, was most active at 30°C and showed the highest stability at 4°C in thermal inactivation studies between 4°C and 50°C.  相似文献   

2.
An alkaline active xylanase, XynBYG, was purified from an alkaliphilic Bacillus pumilus BYG, which was newly isolated from paper mill effluent. It had an optimum pH of 8.0–9.0, and showed good stability after incubated at pH 9.0 for 120 min. The optimum temperature for the activity was 50°C, and the enzyme retained below 55% of its original activity for 30 min at 55°C. The gene coding for XynBYG consists of 687 bp and encodes 229 amino acids. Similarity analysis indicated that XynBYG belong to family 11 glycosyl hydrolases. Site-directed mutagenesis was performed to replace five sites (Tyr/Ser) to Arg/Glu and the results demonstrated that the optimum temperature of the mutant Y7 (S39R-T146E) increased 5°C and the half-life of inactivation (T1/2) at 60 and 65°C was 1 h and 25 min, respectively. Thus, it provides a potential xylanase that can meet the harsh conditions in the industrial applications.  相似文献   

3.

A metagenomic library from DNA isolated from a biogas plant was constructed and screened for thermoactive endoglucanases to gain insight into the enzymatic diversity involved in plant biomass breakdown at elevated temperatures. Two cellulase-encoding genes were identified and the corresponding proteins showed sequence similarities of 59% for Cel5A to a putative cellulase from Anaerolinea thermolimosa and 99% for Cel5B to a characterized endoglucanase isolated from a biogas plant reactor. The cellulase Cel5A consists of one catalytical domain showing sequence similarities to glycoside hydrolase family 5 and comprises 358 amino acids with a predicted molecular mass of 41.2 kDa. The gene coding for cel5A was successfully cloned and expressed in Escherichia coli C43(DE3). The recombinant protein was purified to homogeneity using affinity chromatography with a specific activity of 182 U/mg, and a yield of 74%. Enzymatic activity was detectable towards cellulose and mannan containing substrates and over a broad temperature range from 40 °C to 70 °C and a pH range from 4.0 to 7.0 with maximal activity at 55 °C and pH 5.0. Cel5A showed high thermostability at 60 °C without loss of activity after 24 h. Due to the enzymatic characteristics, Cel5A is an attractive candidate for the degradation of lignocellulosic material.

  相似文献   

4.
NADH-dependent enzyme reducing acetophenone derivatives with high stereoselectivities and wide substrate specificities from Geotrichum candidum NBRC 4597 was isolated, purified, characterized, and used for asymmetric synthesis. Through five-step purification including ammonium sulfate fractionation and a series of chromatographies, the enzyme was purified about 150-fold with a yield of 5.6%. The active enzyme has a molecular mass of 73 kDa determined by gel filtration chromatography, and the SDS-PAGE result reveals that the molecular size of the subunit is 36 kDa. These results indicate that the enzyme consists of a homodimer of a 36 kDa subunit. The acetophenone reductase exhibited the highest activity at 50°C and optimal pH at 5.5. The enzyme was the most stable at 40°C. No metal ions considerably activated the enzyme, and such metal ions as Cu2+, Cd2+, and Zn2+ strongly inhibited the activity of the enzyme. The V max and the apparent K m value of the reductase were 77.0 μmol/min per milligram of protein and 0.296 mM for acetophenone, respectively. The N-terminal and internal amino acid sequences were determined by peptide sequencer. Furthermore, the purified enzyme was used for asymmetric reduction of acetophenone, resulting in the formation of corresponding (S)-alcohol with 99% ee.  相似文献   

5.
An insect antifreeze protein gene Mpafp149 was cloned by the RT-PCR approach from the desert beetle Microdera punctipennis dzungarica. Sequence analysis revealed that this gene encoding a protein of 120 amid acids and this protein showed 65–76% homology with other insect antifreeze proteins, the deduced amino acid sequence displays very high similarities in those regions that contain tandem the 12-residue repeats (TCTxSxxCxxAx) domain and the TCT motif. Mpafp149 gene was cloned into pET-28a vector and expressed in Escherichia coli. A single-step purification based on specific binding of histidine residues was achieved. The purified His-MpAFP149 was SDS–PAGE analyzed, showing an atypical migration with molecular weight of about 24 kDa. The expression of His-MpAFP149 was confirmed by Western blot with specific binding to anti-GST-MpAFP149 antibody. The thermal hysteresis activity of the purified recombinant protein was 0.915°C at 0.09 mg/ml, and the supercooling point was −9.6°C at 0.03 mg/ml. In vitro antifreeze activity assay by measuring the survival rate of bacteria at −7 and −20°C respectively, with the protection of His-MpAFP149 showed that the His-MpAFP149 fusion protein was able to enhance the freeze resistance of bacteria.  相似文献   

6.
Hansenula fabianii J640 highly expresses an extracellular glucoamylase (GA). Here, we purified the GA and showed that it has pH and temperature optima of 5.0 and 50 °C, respectively, stable at temperatures up to 50 °C, and is inhibited by Ag2+, Hg2+, and Cu2+. The gene was found in an expression library with anti-GA antibodies. A cDNA was found to encode 491 amino acids, including a putative signal peptide of 21 amino acids. Because of the gene’s high expression, we used its promoter and terminator regions to improve a previously developed H. fabianii J640 expression system.  相似文献   

7.
Analysis of the Thermoplasma acidophilum DSM 1728 genome identified two putative alcohol dehydrogenase (ADH) open reading frames showing 50.4% identity against each other. The corresponding genes Ta0841 and Ta1316 encode proteins of 336 and 328 amino acids with molecular masses of 36.48 and 36.01 kDa, respectively. The genes were expressed in Escherichia coli and the recombinant enzymes were functionally assessed for activity. Throughout the study only Ta1316 ADH resulted active in the oxidative reaction in the pH range 2–8 (optimal pH 5.0) and temperatures from 25 to 90°C (optimal 75°C). This ADH catalyzes the oxidation of several alcohols such as ethanol, methanol, 2-propanol, butanol, and pentanol during the reduction of the cofactor NAD+. The highest activity was found in the presence of ethanol producing optically pure acetaldehyde. The specific enzyme activity of the purified Ta1316 ADH with ethanol as a substrate in the optimal conditions was 628.7 U/mg.  相似文献   

8.
The outer membrane proteins of Desulfovibrio piger and Bilophila wadsworthia (Omp-DP and Omp-BW, respectively) and the genes encoding them (omp-DP and omp-BW) were isolated and characterized. Native Omp-DP and Omp-BW form a trimeric structure of approximately 120 kDa. These proteins disaggregated into monomers with a molecular weight of approximately 53 kDa after heating at 95°C for 10 min. The pore-forming abilities of these oligomeric proteins demonstrated that they form small nonspecific channels with an exclusion limit of 260–300 Da. The omp-DP and omp-BW genes were cloned and sequenced. Sequence analyses revealed an open reading frame of 1,512 bp for omp-DP and 1,440 bp for omp-BW. The mature Omp-DP protein consisted of 480 amino acids and had a calculated MW of 53,290 Da. The mature Omp-BW protein consisted of 456 amino acids and had a calculated MW of 50.050 Da. Alignment of Omp-DP with Omp-BW revealed 54% homology, whereas alignment with other known porins showed a low level of homology. Analysis of the secondary structures indicated that both proteins span the outer membrane 18 times with amphipathic β-strands. This research presents porins which were isolated and characterized for the first time from bacteria belonging to the Desulfovibrionaceae family. O. Avidan and E. Kaltageser have contributed equally to this work.  相似文献   

9.
A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica. Analysis of the 1,203 bp coding region revealed that the deduced peptide sequence is composed of 400 amino acids with a predicted molecular mass of 44.1 kDa. EstO contains a N-terminal esterase domain and an additional OsmC domain at the C-terminus (osmotically induced family of proteins). The highly conserved five-residue motif typical for all α/β hydrolases (G × S × G) was detected from position 104 to 108 together with a putative catalytic triad consisting of Ser106, Asp196, and His225. Sequence comparison showed that EstO exhibits 90% amino acid identity with hypothetical proteins containing similar esterase and OsmC domains but only around 10% identity to the amino acid sequences of known esterases. EstO variants with and without the OsmC domain were produced and purified as His-tag fusion proteins in E. coli. EstO displayed an optimum pH of 7.5 and optimum temperature of 25°C with more than 50% retained activity at the freezing point of water. The thermostability of EstO (50% activity after 5 h at 40°C) dramatically increased in the truncated variant (50% activity after 2.5 h at 90°C). Furthermore, the esterase displays broad substrate specificity for esters of short-chain fatty acids (C2–C8).  相似文献   

10.
A protease-producing bacterium was isolated from an alkaline wastewater of the soap industry and identified as Vibrio metschnikovii J1 on the basis of the 16S rRNA gene sequencing and biochemical properties. The strain was found to over-produce proteases when it was grown at 30°C in media containing casein as carbon source (14,000 U ml−1). J1 enzyme, the major protease produced by V. metschnikovii J1, was purified by a three-step procedure, with a 2.1-fold increase in specific activity and 33.3% recovery. The molecular weight of the purified protease was estimated to be 30 kDa by SDS-PAGE and gel filtration. The N-terminal amino acid sequence of the first 20 amino acids of the purified J1 protease was AQQTPYGIRMVQADQLSDVY. The enzyme was highly active over a wide range of pH from 9.0 to 12.0, with an optimum at pH 11.0. The optimum temperature for the purified enzyme was 60°C. The activity of the enzyme was totally lost in the presence of PMSF, suggesting that the purified enzyme is a serine protease. The kinetic constants K m and K cat of the purified enzyme using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide were 0.158 mM and 1.14 × 105 min−1, respectively. The catalytic efficiency (K cat /K m) was 7.23 × 108 min−1 M−1. The enzyme showed extreme stability toward non-ionic surfactants and oxidizing agents. In addition, it showed high stability and compatibility with some commercial liquid and solid detergents. The aprJ1 gene, which encodes the alkaline protease from V. metschnikovii J1, was isolated, and its DNA sequence was determined. The deduced amino acid sequence of the preproenzyme differs from that of V. metschnikovii RH530 detergent-stable protease by 12 amino acids, 7 located in the propeptide and 5 in the mature enzyme.  相似文献   

11.
Two novel genes (pwtsB and pwtsC) encoding lipases were isolated by screening the soil metagenomic library. Sequence analysis revealed that pwtsB encodes a protein of 301 amino acids with a predicted molecular weight of 33 kDa, and pwtsC encodes a protein of 323 amino acids with a predicted molecular weight of 35 kDa. Furthermore, both genes were cloned and expressed in Escherichia coli BL21 (DE3) using pET expression system. The expressed recombinant enzymes were purified by Ni-nitrilotriacetic acid affinity chromatography and characterized by spectrophotometric with different p-nitrophenyl esters. The results showed that PWTSB displayed a high degree of activity and stability at 20°C with an optimal pH of around 8.0, and PWTSC at 40°C with an optimal pH of around 7.0. P-nitrophenyl palmitate (p-NPP) was identified as the best substrate of PWTSB and PWTSC. The specific activities of PWTSB and PWTSC were 150 and 166 U/mg, respectively toward p-NPP at 30°C, about 20-fold higher than that toward p-nitrophenyl butyrate (C4) and caprylate (C8). In conclusion, our results suggest that PWTSB is a cold adapt lipase and PWTSC is a thermostable lipase to long-chain p-nitrophenyl esters. P. Wei and L. Bai contributed equally to this work.  相似文献   

12.
Yu ZL  Liu J  Wang FQ  Dai M  Zhao BH  He JG  Zhang H 《Folia microbiologica》2011,56(3):246-252
A novel phenylacetic acid (PAA)-induced CoA-ligase-encoding gene, designated as phlC, has been cloned from penicillin-producing fungus Penicillium chrysogenum. The open reading frame of phlC cDNA was 1671 bp and encoded a 556 amino acid residues protein with the consensus AMP binding site and a peroxisomal targeting signal 1 on its C terminus. The deduced amino acid sequence showed 37% and 38% identity with characterized P. chrysogenum Phl and PhlB protein, respectively. Functional recombinant PhlC protein was overexpressed in Escherichia coli. The purified recombinant enzyme was capable to convert PAA into its corresponding CoA ester with a specific activity of 129.5 ± 3.026 pmol/min per mg protein. Similar to Phl and PhlB, PhlC displayed broad substrate spectrum and showed higher activities to medium- and long-chain fatty acids. The catalytic properties of PhlC have been determined and compared to those of Phl and PhlB.  相似文献   

13.
The activity of a dye-linked l-proline dehydrogenase (dye-l-proDH) was found in the crude extract of an aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis JCM 11548, and was purified 163-fold through four sequential chromatography steps. The enzyme has a molecular mass of about 108 kDa and is a homodimer with a subunit molecular mass of about 46 kDa. The enzyme retained more than 90% of its activity after incubation at 100 °C for 120 min (pH 7.5) or after incubation at pHs 4.5–9.0 for 30 min at 50 °C. The enzyme catalyzed l-proline dehydrogenation to Δ1-pyroline-5-carboxylate using 2,6-dichloroindophenol (DCIP) as the electron acceptor and the Michaelis constants for l-proline and DCIP were 1.67 and 0.026 mM, respectively. The prosthetic group on the enzyme was identified as flavin adenine dinucleotide by high-performance liquid chromatography. The subunit N-terminal amino acid sequence was MYDYVVVGAG. Using that sequence and previously reported genome information, the gene encoding the enzyme (Pcal_1655) was identified. The gene was then cloned and expressed in Escherichia coli and found to encode a polypeptide of 415 amino acids with a calculated molecular weight of 46,259. The dye-l-proDH gene cluster in P. calidifontis inherently differs from those in the other hyperthermophiles reported so far.  相似文献   

14.
In this study, the cellulase gene celD from Clostridium thermocellum was cloned into expression vectors pET-20b(+) and pHsh. While high expression can be achieved by means of both these expression systems, only the pHsh expression system gives soluble proteins. By weakening the mRNA secondary structure and replacing the rare codons for the N-terminal amino acids of the target protein, the expression level of CelD was increased from 4.1 ± 0.3 to 6.4 ± 0.4 U ml−1 in LB medium. Recombinant CelD was purified by heat treatment followed by Ni–NTA affinity. The purified CelD exhibited the highest activity at pH 5.4 and 60°C, and retained more than 50% activity after incubation at 70°C for 1 h. The cellulase activity of CelD was significantly enhanced by Ca2+ but inhibited by EDTA. The favorable properties of CelD offer the potential for genetic modification of strains for biomass degradation. Presently, one of the major bottlenecks for industrial cellulase users is the high cost of enzyme production. The high level expression of soluble enzymes from the pHsh expression system offers a novel approach for the production of cellulases to be used in various agro-industrial processes such as chemical, food and textile.  相似文献   

15.
A gene encoding extracellular lipase was cloned and characterized from metagenomic DNA extracted from hot spring soil. The recombinant gene was expressed in E. coli and expressed protein was purified to homogeneity using hydrophobic interactions chromatography. The mature polypeptide consists of 388 amino acids with apparent molecular weight of 43 kDa. The enzyme displayed maximum activity at 50°C and pH 9.0. It showed thermal stability up to 40°C without any loss of enzyme activity. Nearly 80% enzyme activity was retained at 50°C even after incubation for 75 min. However above 50°C the enzyme displayed thermal instability. The half life of the enzyme was determined to be 5 min at 60°C. Interestingly the CD spectroscopic study carried out in the temperature range of 25–95°C revealed distortion in solution structure above 35°C. However the intrinsic tryptophan fluorescence spectroscopic study revealed that even with the loss of secondary structure at 35°C and above the tertiary structure was retained. With p-nitrophenyl laurate as a substrate, the enzyme exhibited a K m , V max and K cat of 0.73 ± 0.18 μM, 239 ± 16 μmol/ml/min and 569 s−1 respectively. Enzyme activity was strongly inhibited by CuCl2, HgCl2 and DEPC but not by PMSF, eserine and SDS. The protein retained significant activity (~70%) with Triton X-100. The enzyme displayed 100% activity in presence of 30% n-Hexane and acetone.  相似文献   

16.
A new superoxide dismutase (SOD) gene from the thermophilic fungus Chaetomium thermophilum (Ctsod) was cloned and expressed in Pichia pastoris and its gene product was characterized. The specific activity of the purified CtSOD was 2,170 U/mg protein. The enzyme was inactivated by KCN and H2O2 but not by NaN3, confirming that it belonged to the type of Cu, ZnSOD. The amino acid residues involved in coordinating copper and zinc were conserved. The recombinant CtSOD exhibited optimum activity at pH 6.5 and 60°C. The enzyme retained 65% of the maximum activity at 70°C for 60 min and the half-life was 22 and 7 min at 80 and 90°C, respectively. The recombinant yeast exhibited higher stress resistance than the control yeast cells to salt and superoxide-generating agents, such as paraquat and menadione.  相似文献   

17.
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).  相似文献   

18.
A gene (agrP) encoding a β-agarase from Pseudoalteromonas sp. AG4 was cloned and expressed in Escherichia coli. The agrP primary structure consists of an 870-bp open reading frame (ORF) encoding 290 amino acids (aa). The predicted molecular mass and isoelectric point were determined at 33 kDa and 5.9, respectively. The signal peptide was predicted to be 21 aa. The deduced aa sequence showed 98.6% identity to β-agarase from Pseudoalteromonas atlantica. The recombinant protein was purified as a fusion protein and biochemically characterized. The purified β-agarase (AgaP) had specific activity of 204.4 and 207.5 units/mg towards agar and agarose, respectively. The enzyme showed maximum activity at 55°C and pH 5.5. It was stable at pH 4.5 to 8.0 and below 55°C for 1 h. The enzyme produced neoagarohexaose and neoagarotetraose from agar and in addition to that neoagarobiose from the agarose. The neoagarooligosaccharides were biologically active. Hence, AgaP is a useful enzyme source for use by cosmetic and pharmaceutical industries.  相似文献   

19.
An OmpA family protein (FopA) previously reported as one of the major outer membrane proteins of an acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans was characterized with emphasis on the modification by heat and the interaction with peptidoglycan. A 30-kDa band corresponding to the FopA protein was detected in outer membrane proteins extracted at 75°C or heated to 100°C for 10 min prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). However, the band was not detected in outer membrane proteins extracted at ≤40°C and without boiling prior to electrophoresis. By Western blot analysis using the polyclonal antibody against the recombinant FopA, FopA was detected as bands with apparent molecular masses of 30 and 90 kDa, suggesting that FopA existed as an oligomeric form in the outer membrane of A. ferrooxidans. Although the fopA gene with a sequence encoding the signal peptide was successfully expressed in the outer membrane of Escherichia coli, the recombinant FopA existed as a monomer in the outer membrane of E. coli. FopA was detected in peptidoglycan-associated proteins from A. ferrooxidans. The recombinant FopA also showed the peptidoglycan-binding activity.  相似文献   

20.
The bacterial strain Paenibacillus xylanilyticus KJ-03 was isolated from a sample of soil used for cultivating Amorphophallus konjac. The cellulase gene, cel5A was cloned using fosmid library and expressed in Escherichia coli BL21 (trxB). The cel5A gene consists of a 1,743 bp open reading frame and encodes 581 amino acids of a protein. Cel5A contains N-terminal signal peptide, a catalytic domain of glycosyl hydrolase family 5, and DUF291 domain with unknown function. The recombinant cellulase was purified by Ni-affinity chromatography. The cellulase activity of Cel5A was detected in clear band with a molecular weight of 64 kDa by zymogram active staining. The maximum activity of the purified enzyme was displayed at a temperature of 40 °C and pH 6.0 when carboxymethyl cellulose was used as a substrate. It has 44% of its maximum activity at 70 °C and retained 66% of its original activity at 45 °C for 1 h. The purified cellulase hydrolyzed avicel, CMC, filter paper, xylan, and 4-methylumbelliferyl β-d-cellobiose, but no activity was detected against p-nitrophenyl β-d-glucoside. The end products of the hydrolysis of cellotetraose and cellopentaose by Cel5A were detected by thin layer chromatography, while enzyme did not hydrolyze cellobiose and cellotriose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号