首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Summary We recently established a clone (2B8) of normal rat prolactin cells that secretes only prolactin into the medium. When grown in the presence of thyrotrophin-releasing hormone (TRH), estradiol (E2) or arginine vasotocin (AVT), the cells show increased production of prolactin. Subclones of single cell origin were developed from 2B8 cells exposed for 1 week to TRH, E2 or TRH plus E2. These subclones differ in their response to TRH, E2 or AVT and therefore may possess different receptors for these hormones. Presented in preliminary from at the meeting of the Endocrine Society in Chicago, June 9, 1977. This work was supported by USPHS Grant AM12583.  相似文献   

2.
Repeated intraarterial injections of synthetic thryrotropin releasing hormone (TRH, 1 microgram/rat) increased plasma prolactin levels 4 hours after a single subcutaneous injection of 10 micrograms estradiol-17 beta (E2-17 beta) in rats ovariectomized 1, 2 or 4 weeks and at 2 hours after E2-17 beta injection in rats ovariectomized for 6 weeks. The effect of TRH was still present at 24 but not 48 hours after estradiol treatment. TRH-induced increases in plasma prolactin were similar in groups of rats treated with 10 micrograms E2-17 beta (s.c.) or implanted with 0.5 cm Silastic capsules of crystalline E2-17 beta (s.c.) whereas smaller, yet significant, TRH-induced increases in plasma prolactin were observed in rats injected s.c. with 1.0 microgram E2-17 beta. Single intraarterial injections of TRH at 4 or 8 hours after E2-17 beta treatment induced increases in plasma prolactin similar in magnitude to those observed at the same times after E2-17 beta in rats given repeated TRH injections. No effect of TRH was observed in ovariectomized rats given sesame oil and E2-17 beta treatment did not influence plasma prolactin in rats given saline instead of TRH. Intraarterial administration of serotonin creatinine sulfate (5-HT, 10 mg/kg body weight) induced marked increases in plasma prolactin in rats ovariectomized for 4 weeks which were potentiated at 2 and 6 hours after E2-17 beta (10 micrograms) treatment. The data show that estradiol has a fairly rapid stimulatory effect on plasma levels of prolactin induced by two different secretagogues but the exact site and mechanism of action remain unresolved.  相似文献   

3.
Considering that estradiol is a major modulator of prolactin (PRL) secretion, the aim of the present study was to analyze the role of membrane estradiol receptor-α (mERα) in the regulatory effect of this hormone on the PRL secretion induced by thyrotropin-releasing hormone (TRH) by focusing on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway activation. Anterior pituitary cell cultures from female rats were treated with 17β-estradiol (E(2), 10 nM) and its membrane-impermeable conjugated estradiol (E(2)-BSA, 10 nM) alone or coincubated with TRH (10 nM) for 30 min, with PRL levels being determined by RIA. Although E(2), E(2)-BSA, TRH, and E(2)/TRH differentially increased the PRL secretion, the highest levels were achieved with E(2)-BSA/TRH. ICI-182,780 did not modify the TRH-induced PRL release but significantly inhibited the PRL secretion promoted by E(2) or E(2)-BSA alone or in coincubation with TRH. The PI3K inhibitors LY-294002 and wortmannin partially inhibited the PRL release induced by E(2)-BSA, TRH, and E(2)/TRH and totally inhibited the PRL levels stimulated by E(2)-BSA/TRH, suggesting that the mER mediated the cooperative effect of E(2) on TRH-induced PRL release through the PI3K pathway. Also, the involvement of this kinase was supported by the translocation of its regulatory subunit p85α from the cytoplasm to the plasma membrane in the lactotroph cells treated with E(2)-BSA and TRH alone or in coincubation. A significant increase of phosphorylated Akt was induced by E(2)-BSA/TRH. Finally, the changes of ERα expression in the plasmalemma of pituitary cells were examined by confocal microscopy and flow cytometry, which revealed that the mobilization of intracellular ERα to the plasma membrane of lactotroph cells was only induced by E(2). These finding showed that E(2) may act as a modulator of the secretory response of lactotrophs induced by TRH through mER, with the contribution by PI3K/Akt pathway activation providing a new insight into the mechanisms underlying the nongenomic action of E(2) in the pituitary.  相似文献   

4.
A significant elevation in both luteinizing hormone (LH) and prolactin release was observed in the culture medium of hemipituitaries from castrated estrogen-progesterone (EP) primed female rats incubated for 5 h with arginine vasotocin (AVT) and luteinizing hormone-releasing hormone (LRH) compared to corresponding halves incubated with LRH alone. However, AVT alone did not significantly alter the discharge of LH or prolactin from hemipituitaries of EP-treated rats in vitro. Arginine vasopressin, a natural analogue of AVT, inhibited prolactin release using this same model system. Normal male rat hemipituitaries incubated with AVT released significantly more LH and prolactin into the culture medium than did their corresponding halves. A log-dose response curve indicated that any dose from 100 ng to 10 mug AVT significantly promoted prolactin release. However, the terminal tripeptide of AVT, Pro-Arg-Gly(NH2), failed to modify the discharge of LH or prolactin into the culture medium.  相似文献   

5.
Numerous studies have shown that prolactin (PRL) production by GH3 cells grown in serum supplemented media is regulated by several hormones including thyroliberin (TRH). The recent availability of hormonally defined, serum-free media for the growth of GH3 cells has made it possible to determine the effect of TRH in absence of other prolactin regulating hormones. Here we demonstrate that transfer of GH3/B6 cells from serum-supplemented medium to serum-free media results in several important changes: (1) altered growth response to TRH, (2) altered cell attachment and morphology, (3) greatly reduced prolactin production, and (4) greater stimulation of prolactin production by TRH. After 4 days in serum-free medium, TRH stimulates prolactin production by as much as 5-fold instead of approximately 2-fold in serum-supplemented medium. Furthermore, this increased responsiveness to TRH in serum-free medium is accompanied by a 10-fold decrease in the ED50 for TRH (concentration needed for half-maximal response) and paradoxically by a 2-fold reduction in the number of high-affinity TRH binding sites without significant change of their association constant.  相似文献   

6.
K Cheng  W W Chan  R Arias  A Barreto  B Butler 《Life sciences》1992,51(25):1957-1967
In GH3 cells and other clonal rat pituitary tumor cells, TRH has been shown to mediate its effects on prolactin release via a rise of cytosolic Ca2+ and activation of protein kinase C. In this study, we examined the role of protein kinase C in TRH-stimulated prolactin release from female rat primary pituitary cell culture. Both TRH and PMA stimulated prolactin release in a dose-dependent manner. When present together at maximal concentrations, TRH and PMA produced an effect which was slightly less than additive. Pretreatment of rat pituitary cells with 10(-6) M PMA for 24 hrs completely down-regulated protein kinase C, since such PMA-pretreated cells did not release prolactin in response to a second dose of PMA. Interestingly, protein kinase C down-regulation had no effect on TRH-induced prolactin release from rat pituitary cells. In contrast, PMA-pretreated GH3 cells did not respond to a subsequent stimulation by either PMA or TRH. Pretreatment of rat pituitary cells with TRH (10(-7) M, 24 hrs) inhibited the subsequent response to TRH, but not PMA. Forskolin, an adenylate cyclase activator, stimulated prolactin release by itself and in a synergistic manner when incubated together with TRH or PMA. The synergistic effects of forskolin on prolactin release was greater in the presence of PMA than TRH. Down-regulation of protein kinase C by PMA pretreatment abolished the synergistic effect produced by PMA and forskolin but had no effect on those generated by TRH and forskolin. sn-1,2-Dioctanylglycerol (DOG) pretreatment attenuated the subsequent response to DOG and PMA but not TRH. The effect of TRH, but not PMA, on prolactin release required the presence of extracellular Ca2+. In conclusion, the mechanism by which TRH causes prolactin release from rat primary pituitary cells is different from that of GH3 cells; the former is a protein kinase C-independent process whereas the latter is at least partially dependent upon the activation of protein kinase C.  相似文献   

7.
A significant elevation in plasma prolactin was observed 10 min following the intravenous injection of 100 microgram of melatonin into either estrogen-progesterone (EP) primed or into nonsteroid-treated male rats. 60 min postinjection in the EP primed rat, the groups treated with 100 microgram or 10 mg of melatonin had signficantly elevated plasma prolactin levels while no effect was observed with these same doses in the nonsteroid-treated rats. Compared to diluent-treated controls, a significant elevation in plasma prolactin was observed at 10, 20 and 60 min following the intravenous injection of either 1 microgram arginine vasotocin (AVT) or 1 mg melatonin into EP primed male rats. A consistent rise in plasma prolactin was also evident after the injection of 1 microgram of either arginine vasopressin, lysine vasopressin or AVT. Oxytocin had no effect on plasma prolactin values. The intravenous administration of 1 microgram of (deamino-1,6 dicarba, 8-arginine)-vasotocin caused a significant elevation of plasma prolactin 10 and 20 min after injection. However, the injection of another analogue of AVT, (4-leucine, 8-arginine)-vasotocin, had no effect on prolactin release at the time points measured.  相似文献   

8.
The secretion of prolactin in cultured pituitary cells was studied in correlation with the cellular changes induced by stimulatory or inhibitory agents. The techniques used in this study were: radioimmunoassay, immunocytochemistry, scanning (SEM) as well as transmission (TEM) electron microscopy. Prolactin secretion was stimulated by 17 beta-estradiol (10 nM) as well as thyrotropin- releasing hormone (TRH) (3 nM) and inhibited by 2-Br-alpha-ergocryptine (CB-154) (1 muM). The total prolactin (release and cell content) increased between 2 and 8 d of estradiol treatment, indicating an increase of both synthesis and release of prolactin. This finding was in agreement with TEM observations because, in estradiol-treated prolactin cells, the Golgi saccules were distended and Golgi elements were increased, thus indicating increased synthetic activity of these cells. The addition of TRH over a 4-h period resulted in a significant degranulation of prolactin cells. In contrast, prolactin secretory granules became accumulated in the cells after CB-154 treatment for a period ranging from 4 to 24 h. In agreement, light microscope immunocytochemistry showed an increased reaction for prolactin after short-term (< 24 h) incubation with CB-154. Because prolactin cells represent approximately 70% of the glandular cell population as revealed by immunocytochemistry, it was then possible to observe the changes of cell surface by SEM. In most cells, estradiol and TRH led to an increase in the number and prominence of microvilli and blebs, whereas CB-154 treatment resulted in a slightly decreased number of microvilli and an increased occurrence of membrane foldings. This report thus provides morphological evidence for the stimulatory effects of estradiol and TRH, and the inhibitory effects of CB-154 on prolactin secretion in pituitary cells in primary culture. These data, moreover, show that acute changes in secretory activity of prolactin-secreting cells are accompanied by marked changes of their morphological characteristics.  相似文献   

9.
10.
The objectives of this study were to determine: 1) if lactotropes from old rats, compared to those from young rats, secrete a greater amount of prolactin (PRL) per cell, 2) if the percentage of pituitary cells secreting PRL changes with age; and 3) how estradiol (E2), dopamine (DA), or thyrotropin-releasing hormone (TRH), or the combination of these factors influences both of these parameters in old rats. To meet these objectives we used the reverse hemolytic plaque assay (RHPA), because this method allows us to determine both the percentage of pituitary cells secreting prolactin during the experimental period and the amount of hormone released by each secreting pituitary cell. These parameters were measured in young (2-3 mo old) or old (17-19 mo old) female Sprague-Dawley rats. Animals were ovariectomized (OVX) for 10 days or OVX for 1 wk and then treated with E2 for 3 days. Rats were killed, anterior pituitaries were removed, and cells were enzymatically dispersed and prepared for use in the RHPA. Pituitary cells were treated in vitro with vehicle, DA, or PRL, old OVX and E2-treated rats exhibited a greater percentage of secretory cells than young at both 1 and 2 h of incubation. Administration of E2 increased the percentage of cells secreting PRL in both young and old rats. DA reduced the percentage of cells secreting PRL at the highest dose tested (10(-5) M) regardless of age or E2 status following incubation for 1 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
GH(4)C(1) cells are a clonal strain of rat pituitary cells that synthesize and secrete prolactin and growth hormone. Chronic treatment (longer than 24 h) of GH(4)C(1) cells with epidermal growth factor (EGF) (10(-8) M) decreased by 30-40 percent both the rate of cell proliferation and the plateau density reached by cultures. Inhibition of cell proliferation was accompanied by a change in cellular morphology from a spherical appearance to an elongated flattened shape and by a 40-60 percent increase in cell volume. These actions of EGF were qualitatively similar to those of the hypothalamic tripeptide thyrotropin-releasing hormone (TRH) (10(-7) M) which decreased the rate of cell proliferation by 10-20 percent and caused a 15 percent increase in cell volume. The presence of supramaximal concentrations of both EGF (10(-8)M) and TRH (10(-7)M) resulted in greater effects on cell volume and cell multiplication than either peptide alone. EGF also altered hormone production by GH(4)C(1) cells in the same manner as TRH. Treatment of cultures with 10(-8) M EGF for 2-6 d increased prolactin synthesis five- to ninefold compared to a two- to threefold stimulation by 10(-7) M TRH. Growth hormone production by the same cultures was inhibited 40 percent by EGF and 15 percent by TRH. The half- maximal effect of EGF to increase prolactin synthesis, decrease growth hormone production, and inhibit cell proliferation occurred at a concentration of 5 x 10 (-11) M. Insulin and multiplication stimulating activity, two other growth factors tested, did not alter cell proliferation, cell morphology, or hormone production by GH(4)C(1) cells, indicating the specificity of the EGF effect. Fibroblast growth factor, however, had effects similar to those of EGF and TRH. Of five pituitary cell strains tested, all but one responded to chronic EGF treatment with specifically altered hormone production. Acute chronic EGF treatment with specifically altered hormone production. Acute treatment (30 min) of GH(4)C(1) cells with 10(-8) M EGF caused a 30 percent enhancement of prolactin release compared to a greater than twofold increase caused by 10(-7) M TRH. Therefore, although EGF and TRH have qualitatively similar effects on GH(4)C(1) cells, their powers to affect hormone release acutely or hormone synthesis and cell proliferation chronically are distinct.  相似文献   

12.
The general aim of these in-vitro experiments was to determine whether ghrelin controls the secretory activity of chicken ovarian cells and whether its action is mediated by TK-, MAPK-, CDK- or PKA-dependent intracellular mechanisms. We postulated that particular protein kinases could be considered as mediators of ghrelin action (a) if they are controlled by ghrelin, and (b) if blockers of these kinases modify the action of ghrelin. In our in-vitro experiments we investigated whether ghrelin altered the accumulation of TK, MAPK, CDK and PKA in chicken ovarian cells and whether ghrelin, with or without blockers of MAPK, CDK and PKA, affected the secretion of progesterone (P4), testosterone (T), estradiol (E2) or arginine-vasotocin (AVT). In the first series of experiments, the influence of a ghrelin 1-18 analogue (1, 10 or 100 ng/mL) was studied on the expression of TK, MAPK and PKA in cultured chicken ovarian granulosa cells. The percentage of cells containing TK/phosphotyrosine MAPK/ERK1, 2 and PKA was determined using immunocytochemistry. Ghrelin increased the expression of both TK and MAPK. The low concentration of ghrelin (1 ng/mL) increased the accumulation of PKA in ovarian cells whilst the high concentration (100 ng/mL) decreased it. The 10 ng/mL concentration had no effect. In the second series of experiments, the effects of the ghrelin analogue combined with an MAPK blocker (PD98059; 100 ng/mL), a CDK blocker (olomoucine; 1 microg/mL), or a PKA blocker (KT5720; 100 ng/mL), were tested for their effects on the secretion of hormones by cultured fragments of chicken ovarian follicular wall. P4, T, E2 and AVT secretions were measured using RIA and EIA. Ghrelin increased T and decreased E2, but did not affect P4 or AVT secretion. The PKA blocker promoted P4 secretion and suppressed E2 and AVT, but did not affect T secretion. It prevented or even reversed the effect of ghrelin on T and E2, but did not modify its effect on AVT secretion. The MAPK blocker enhanced P4 and T and reduced AVT, but did not affect E2 secretion. It was able to prevent or reverse the effect of ghrelin on T and E, and it induced a stimulatory effect of ghrelin on AVT secretion. The CDK blocker reduced the secretion of AVT, but had no effect on steroid hormone secretion. It induced the stimulatory influence of ghrelin on the secretion of P4 and AVT, but did not modify the effect of ghrelin on other hormones. These observations clearly demonstrate that ghrelin is a potent regulator of the secretory activity of ovarian cells and of TK, MAPK and PKA. Furthermore, they suggest that MAPK-, CDK- and PKA-dependent intracellular mechanisms are involved in the control of ovarian secretion and that they mediate the effects of ghrelin on these processes.  相似文献   

13.
We examined whether mitogen-activated protein (MAP) kinase is activated by thyrotropin-releasing hormone (TRH) in GH3 cells, and whether MAP kinase activation is involved in secretion of prolactin from these cells. Protein kinase inhibitors--such as PD098059, calphostin C, and genistein--and removal of extracellular Ca2+ inhibited MAP kinase activation by TRH. A cAMP analogue activated MAP kinase in these cells. Effects of cAMP on MAP kinase activation were inhibited by PD098059. TRH-induced prolactin secretion was not inhibited by levels of PD098059 sufficient to i activation but was inhibited by wortmannin (1 microM) and KN93. Treatment of GH3 cells with either TRH or cAMP significantly inhibited DNA synthesis and induced morphological changes. The effects stimulated by TRH were reversed by PD098059 treatment, but the same effects stimulated by cAMP were not. Treatment of GH3 cells with TRH for 48 h significantly increased the prolactin content in GH3 cells and decreased growth hormone content. The increase in prolactin was completely abolished by PD098059, but the decrease in growth hormone was not. These results suggest that TRH-induced MAP kinase activation is involved in prolactin synthesis and differentiation of GH3 cells, but not in prolactin secretion.  相似文献   

14.
Thyrotropin-releasing hormone (TRH) stimulates the prolactin (PRL) release from normal lactotrophs or tumoral cell line GH3. This effect is not observed in many patients with PRL-secreting tumors. We examined in vitro the PRL response to TRH on cultured human PRL-secreting tumor cells (n = 10) maintained on an extracellular matrix in a minimum medium (DME + insulin, transferrin, selenium). Addition of 10(-8) M TRH to 4 X 10(4) cells produced either no stimulation of PRL release (n = 6) or a mild PRL rise of 32 +/- (SE) 11% (n = 4) when measured 1, 2 and 24 h after TRH addition. When tumor cells were preincubated for 24 h with 5 X 10(-11) M bromocriptine, a 47 +/- 4% inhibition of PRL release was obtained. When TRH (10(-8) M) was added, 24 h after bromocriptine, it produced a 85 +/- 25% increase of PRL release (n = 8). This stimulation of PRL release was evident when measured 1 h after TRH addition and persisted for 48 h. The half maximal stimulatory effect of TRH was 2 X 10(-10) M and the maximal effect was achieved at 10(-9) M TRH. When tumor cells were pretreated with various concentrations of triiodothyronine (T3), the PRL release was inhibited by 50% with 5 X 10(-11) M T3 and by 80% with 10(-9) M T3. Successive addition of TRH (10(-8) M) was unable to stimulate PRL release at any concentration of T3. The addition of 10(-8) M estradiol for up to 16 days either stimulated or had no effect upon the PRL basal release according to the cases. In all cases tested (n = 4), preincubation of the tumor cells with estradiol (10(-8) M) modified the inhibition of PRL release induced by bromocriptine with a half-inhibitory concentration displaced from 3 X 10(-11) M (control) to 3 X 10(-10) M (estradiol). These data demonstrate that the absence of TRH effect observed in some human prolactinomas is not linked to the absence of TRH receptor in such tumor cells. TRH responsiveness is always restored in the presence of dopamine (DA) at appropriate concentration. This TRH/DA interaction seems specific while not observed under T3 inhibition of PRL. Furthermore, estrogens, while presenting a variable stimulatory effect upon basal PRL, antagonize the dopaminergic inhibition of PRL release.  相似文献   

15.
Abstract

Substance P and the two other mammalian tachykinins, neurokinin A and B, are accepted to have direct regulating effects at the anterior pituitary level. We have examined the effects of substance P (SP) and neurokinin B (NKB), alone and in combination, on prolactin release from cultured anterior pituitary cells grown on collagen-coated micro beads and placed in a perfusion system. Prolactin (Prl) secretion was observed within 25 s after exposure to either secretagogue and reached a maximum within 60-80 s. Furthermore, the prolactin response induced by SP and NKB was dose-dependent. Prl secretion remained constant for up to 4 h when SP or NKB were perifused and then fell gradually towards basal levels. Simultaneous addition of submaximal concentrations of SP and NKB resulted in an additive response compared with the responses of either secretagogue alone. Continuous (8 h) perifusion with SP did not prevent a normal prolactin response by NKB or TRH. These results indicate that the tachykinins, substance P and neurokinin B, release Prl from perifused female rat anterior pituitary cells by interaction with two different receptors, possibly the NK1 and NK3 tachykinin receptor subtypes.  相似文献   

16.
Changes in pituitary prolactin responsiveness to TRH during pregnancy   总被引:1,自引:0,他引:1  
Prolactin plasma concentration during pregnancy was determined in rats treated with thyrotropin-releasing hormone (TRH). Day 0 of pregnancy was defined as the day sperm were first found in the vagina. All blood samples were obtained in unanesthetized rats which had previously received a cannula in the right common carotid. On Day 8 of pregnancy, plasma prolactin concentrations reached a peak between 2400 and 0800 hr (lights on from 0600 to 1800 hr). Injection of TRH (1 microgram/kg body wt) via the carotid artery increased plasma prolactin levels within 5 min. The largest increase occurred when TRH was given during the prolactin surge, whereas much smaller effects were found when TRH was given at the beginning or after the end of the surge period. Thus, the sensitivity of the prolactin cell to TRH appears to be the greatest when the secretory activity of the cell is high. It was then determined whether there was any change in the sensitivity of the prolactin cell to TRH after the prolactin surges had disappeared at midpregnancy. Injection of TRH between 1100 and 1200 hr increased prolactin less on Day 12 than on Day 8 of pregnancy. Since placental lactogen (PL) levels in the plasma are high on Day 12 compared to Day 8, and are inhibitory to prolactin secretion, it was reasoned that PL may be the factor which caused the reduced sensitivity to TRH. However, hysterectomy on Day 11 failed to increase the pituitary responsiveness to TRH the next day. In summary, these data indicate that the pituitary responsiveness to factors that stimulate prolactin, such as TRH, varies with relation to the time of pregnancy or presence of the nocturnal surge. What cellular mechanism is responsible for these sensitivity changes is not known.  相似文献   

17.
Cyclo(Histidyl-Proline) is a metabolite of thyrotropin-releasing hormone. It has been suggested that this peptide plays a role in regulating prolactin secretion in GH cells. An investigation of the effect of cyclo(His-Pro) on GH cells indicated that it does not affect basal prolactin release or accumulation or the levels stimulated by TRH. cAMP levels in GH cells are elevated by TRH or VIP, but not influenced by cyclo(His-Pro). cGMP levels in GH cells are not affected by either TRH or cyclo(His-Pro). While there is specific binding of TRH to receptors in GH cells, no such receptors for cyclo(His-Pro) are detectable. It is suggested that GH cells are unresponsive to cyclo(His-Pro).  相似文献   

18.
The osmolality and concentrations of Na, K, Cl and the hormones arginine vasotocin (AVT), prolactin, aldosterone and corticosterone were measured in plasma as functions of time in relation to oviposition, changing NaCl content of the diet, and feeding-inanition. AVT was significantly increased immediately after oviposition (but not during the hour before) with a calculated average value of 38.0 +/- 4.1 pg/ml at oviposition. A moderate increase in concentrations of prolactin and corticosterone were observed immediately after oviposition. Oviposition was not associated with detectable changes in plasma osmolality (and electrolyte concentrations) nor with the concentration of aldosterone. After a sudden change from a high NaCl diet to a low NaCl diet the plasma osmolality and concentrations of NaCl, AVT and prolactin reached new stable levels in 24 hr, whereas the plasma aldosterone concentration required more than 4 days to reach a steady level. After resalination plasma aldosterone was suppressed in less than 8 hr. Both osmolality and concentrations of AVT and prolactin showed transient overshoots during the first 24 hr. NaCl depletion resulted in a transient increase of corticosterone.  相似文献   

19.
The effects of pertussis toxin on the responses of rat pituitary-tumour (GH) cells to thyrotropin-releasing hormone (thyroliberin, TRH) were examined. Treatment of cells with pertussis toxin did not alter the affinity or concentration of TRH receptors, or the sensitivity of the TRH receptor to inhibition by guanine nucleotides. TRH caused an increase in low-Km GTPase activity in membrane-containing fractions from both control and pertussis-toxin-treated cells. TRH stimulation of inositol phosphate formation was insensitive to pertussis toxin. TRH caused a biphasic increase in the concentrations of cytosolic free Ca2+ as monitored by intracellularly trapped Quin 2, and this increase was the same in control and toxin-treated cultures. The toxin did not alter the increase in prolactin and growth-hormone (somatotropin) release stimulated by TRH or shift the TRH dose-response curve, and it did not affect the TRH-induced rise in prolactin synthesis measured over 24 h. However, pertussis toxin did block the ability of somatostatin and muscarinic agonists to inhibit prolactin and growth-hormone secretion stimulated by vasoactive intestinal peptide when analysed under the same conditions as those in which the TRH system was unaffected. These data indicate that the guanine nucleotide effects on TRH binding and activity are not mediated by Ni, but possibly by another member of the family of guanine-nucleotide-dependent regulatory proteins.  相似文献   

20.
GH3/B6 pituitary cells release prolactin (PRL) in response to thyrotropin releasing hormone (TRH). Electrophysiological assays of individual GH3 cells with sharp high-resistance microelectrodes have revealed complex effects of TRH on membrane excitability consisting of a transient hyperpolarization (1), which is thought to result from activation of Ca-dependent K+ conductance (2), followed by a prolonged phase of spontaneous, Ca-dependent action potential activity (3). Using the whole-cell patch recording (WCR) technique (4), we have found that these TRH actions on GH3 excitability rapidly rundown following patch recording. When the supernatant from osmotically lysed GH3 cells was added to the WCR patch pipette, the K+ conductance response was not only promoted but well-maintained. The results indicate that diffusible factors mediate these TRH actions and further, that the WCR technique should be useful in identifying different second messengers and elucidating their roles in membrane excitability and PRL secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号