首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activated platelets and phospholipid vesicles promote assembly of the intrinsic factor X (FX) activating complex by presenting high-affinity binding sites for blood coagulation FIXa, FVIIIa, and FX. Previous reports suggest that the second epidermal growth factor (EGF)-like domain of FIXa mediates assembly of the FX activating complex (Ahmad, S. S., Rawala, R., Cheung, W. F., Stafford, D. W., and Walsh, P. N. (1995) Biochem. J. 310, 427-431; Wong, M. Y., Gurr, J. A., and Walsh, P. N. (1999) Biochemistry 38, 8948-8960). To identify important residues, we prepared several chimeric FIXa proteins using homologous sequences from FVII: FIXa(FVIIEGF2) (FIX Delta 88-124,inverted Delta FVII91-127), FIXa(loop1) (FIX Delta 88-99,inverted Delta FVII91-102), FIXa(loop2) (FIX Delta 95-109,inverted Delta FVII98-112), FIXa(loop3) (FIX Delta 111-124,inverted Delta FVII114-127), and point mutants (FIXaR94D and FIXa(loop1)G94R). In the presence and absence of FVIIIa, a 2- to 10-fold reduced V(max) of FX activation (nm FXa min(-1)) was observed for FIXa(FVIIEGF2), FIXa(loop1), FIXa(loop2), and FIXa(loop1)G94R, whereas FIXa(loop3) and FIXaR94D were normal. For all of the FIXa proteins, K(m)((app)) values were normal as were EC(50) values for interactions with FVIIIa. However, K(d)((app)) (in nm) for the FX activating complex assembled on phospholipid vesicles was increased for FIXa(FVIIEGF2) (43.3 +/- 2.70), FIXa(loop1)(10.9 +/- 2.8), FIXa(loop2) (70.5 +/- 1.60), and FIXa(loop1)G94R (17.1 +/- 2.90) relative to FIXa(N) (3.9 +/- 0.11), FIXa(WT) (4.6 +/- 0.17), FIXa(loop3) (4.5 +/- 0.20), and FIXaR94D (2.2 +/- 0.09) suggesting that reduced V(max) is a result of impaired complex assembly. These data indicate that residues 88-109 (but not Arg(94)) are important for normal assembly of the FX activating complex on phospholipid vesicles.  相似文献   

2.
Optimal rates of factor X (FX) activation require occupancy of receptors for factor IXa (FIXa), factor VIII (FVIII), and FX on the activated platelet surface. The presence of FVIII and FX increases 5-fold the affinity of FIXa for the surface of activated platelets, and the presence of FVIII or FVIIIa generates a high affinity, low capacity specific FX-binding site on activated platelets. We have now examined the effects of FX and active site-inhibited FIXa (EGR-FIXa) on the binding of both FVIII and FVIIIa to activated platelets and show the following: (a) von Willebrand factor inhibits FVIII binding (K(i) = 0.54 nM) but not FVIIIa binding; (b) thrombin and the thrombin receptor activation peptide (SFLLRN amide) are the most potent agonists required for FVIII-binding site expression, whereas ADP is inert; (c) FVa does not compete with FVIIIa or FVIII for functional platelet-binding sites; and (d) Annexin V is a potent inhibitor of FVIIIa binding (IC(50) = 10 nM) to activated platelets. The A2 domain of FVIII significantly increases the affinity and stoichiometry of FVIIIa binding to platelets and contributes to the stability of the FX-activating complex. Both FVIII and FVIIIa binding were specific, saturable, and reversible. FVIII binds to specific, high affinity receptors on activated platelets (n = 484 +/- 59; K(d) = 3.7 +/- 0.31 nM) and FVIIIa interacts with an additional 300-500 sites per platelet with enhanced affinity (K(d) = 1.5 +/- 0.11 nM). FVIIIa binding to activated platelets in the presence of FIXa and FX is closely coupled with rates of F-X activation. The presence of EGR-FIXa and FX increases both the number and the affinity of binding sites on activated platelets for both FVIII and FVIIIa, emphasizing the validity of a three-receptor model in the assembly of the F-X-activating complex on the platelet surface.  相似文献   

3.
Factors VII, IX, and X play key roles in blood coagulation. Each protein contains an N-terminal gamma-carboxyglutamic acid domain, followed by EGF1 and EGF2 domains, and the C-terminal serine protease domain. Protein C has similar domain structure and functions as an anticoagulant. During physiologic clotting, the factor VIIa-tissue factor (FVIIa*TF) complex activates both factor IX (FIX) and factor X (FX). FVIIa represents the enzyme, and TF represents the membrane-bound cofactor for this reaction. The substrates FIX and FX may utilize multiple domains in binding to the FVIIa*TF complex. To investigate the role of the EGF1 domain in this context, we expressed wild type FIX (FIX(WT)), FIX(Q50P), FIX(PCEGF1) (EGF1 domain replaced with that of protein C), FIX(DeltaEGF1) (EGF1 domain deleted), FX(WT), and FX(PCEGF1). Complexes of FVIIa with TF as well as with soluble TF (sTF) lacking the transmembrane region were prepared, and activations of WT and mutant proteins were monitored by SDS-PAGE and by enzyme assays. FVIIa*TF or FVIIa*sTF activated each mutant significantly more slowly than the FIX(WT) or FX(WT). Importantly, in ligand blot assays, FIX(WT) and FX(WT) bound to sTF, whereas mutants did not; however, all mutants and WT proteins bound to FVIIa. Further experiments revealed that the affinity of the mutants for sTF was reduced 3-10-fold and that the synthetic EGF1 domain (of FIX) inhibited FIX binding to sTF with K(i) of approximately 60 microm. Notably, each FIXa or FXa mutant activated FVII and bound to antithrombin, normally indicating correct folding of each protein. In additional experiments, FIXa with or without FVIIIa activated FX(WT) and FX(PCEGF1) normally, which is interpreted to mean that the EGF1 domain of FX does not play a significant role in its interaction with FVIIIa. Cumulatively, our data reveal that substrates FIX and FX in addition to interacting with FVIIa (enzyme) interact with TF (cofactor) using, in part, the EGF1 domain.  相似文献   

4.
Ahmad SS  Walsh PN 《Biochemistry》2005,44(42):13858-13865
Optimal rates of factor X (FX) activation require binding of factor IXa (FIXa), factor VIII(a) [FVIII(a)], and FX to activated platelet receptors. To define the FVIIIa domains that mediate platelet interactions, albumin density gradient washed, gel-filtered platelets (3.5 x 10(8)/mL) activated by the thrombin receptor peptide, SFLLRN (25 microM), were incubated with 125I-labeled FVIII C2 domain, or 125I-FVIIIa, or 125I-FVIII((LC)), or peptides from the C2 domain region, with or without anti-C2 domain monoclonal antibodies (MoAb), ESH4 or ESH8. FVIIIa (Kd approximately 1.7 nM), FVIII((LC)) (Kd approximately 3 nM), and the C2 domain (Kd approximately 16 nM) all interacted with approximately 700-800 binding sites/platelet. Unlike FVIIIa, the C2 domain did not respond to the presence of excess EGR-FIXa (45 nM) and FX (1.5 microM) with enhanced binding stoichiometry and affinity. Both the MoAb ESH4 and a synthetic peptide corresponding to FVIII residues 2303-2332 (epitope for FVIII MoAb, ESH4) inhibited FVIIIa binding to platelets, whereas MoAb ESH8 and a C2 domain peptide corresponding to residues 2248-2285 (epitope for the FVIII MoAb, ESH8) failed to inhibit FVIIIa binding. Thus, a major platelet-binding site resides within residues 2303-2332 in the C2 domain of FVIIIa, and an additional site within residues 2248-2285 increases the stoichiometry and affinity of FVIIIa binding to activated platelets only in the presence of FIXa and FX but does not directly mediate FVIIIa binding to the platelet surface.  相似文献   

5.
Activated platelets promote intrinsic factor X-activating complex assembly by presenting high affinity, saturable binding sites for factor IXa mediated by two disulfide-constrained loop structures (loop 1, Cys88-Cys99; loop 2, Cys95-Cys109) within the second epidermal growth factor (EGF2) domain. To identify amino acids essential for factor X activation complex assembly, recombinant factor IXa point mutants in loop 1 (N89A, I90A, K91A, and R94A) and loop 2 (D104A, N105A, and V107A) were prepared. All seven mutants were similar to the native factor IXa by SDS-PAGE, active site titration, and content of gamma-carboxyglutamic acid residues. Kinetic constants obtained by either titrating factor X or factor VIIIa on SFLLRN-activated platelets or phospholipid vesicles revealed near normal values of Km(app) and Kd(app)FVIIIa for all mutants, indicating normal substrate and cofactor binding. In a factor Xa generation assay in the presence of activated platelets and cofactor factor VIIIa, compared with native factor IXa (Kd(app)FIXa approximately 1.1 nm, Vmax approximately 12 nm min(-1)), N89A displayed an increase of approximately 20-fold in Kd(app)FIXa and a decrease of approximately 20-fold in Vmax; I90A had an increase of approximately 5-fold in Kd(app)FIXa and approximately 10-fold decrease in Vmax; and V107A had an increase of approximately 3-fold in Kd(app)FIXa and approximately 4-fold decrease in Vmax. We conclude that residues Asn89, Ile90, and Val107 within loops 1 and 2 (Cys88-Cys109) of the EGF2 domain of factor IXa are essential for normal interactions with the platelet surface and for the assembly of the factor X-activating complex on activated platelets.  相似文献   

6.
During blood coagulation, factor IXa (FIXa) activates factor X (FX) requiring Ca2+, phospholipid, and factor VIIIa (FVIIIa). The serine protease domain of FIXa contains a Ca2+ site and is predicted to contain a Na+ site. Comparative homology analysis revealed that Na+ in FIXa coordinates to the carbonyl groups of residues 184A, 185, 221A, and 224 (chymotrypsin numbering). Kinetic data obtained at several concentrations of Na+ and Ca2+ with increasing concentrations of a synthetic substrate (CH3-SO2-d-Leu-Gly-Arg-p-nitroanilide) were fit globally, assuming rapid equilibrium conditions. Occupancy by Na+ increased the affinity of FIXa for the synthetic substrate, whereas occupancy by Ca2+ decreased this affinity but increased k(cat) dramatically. Thus, Na+-FIXa-Ca2+ is catalytically more active than free FIXa. FIXa(Y225P), a Na+ site mutant, was severely impaired in Na+ potentiation of its catalytic activity and in binding to p-aminobenzamidine (S1 site probe) validating that substrate binding in FIXa is linked positively to Na+ binding. Moreover, the rate of carbamylation of NH2 of Val16, which forms a salt-bridge with Asp194 in serine proteases, was faster for FIXa(Y225P) and addition of Ca2+ overcame this impairment only partially. Further studies were aimed at delineating the role of the FIXa Na+ site in macromolecular catalysis. In the presence of Ca2+ and phospholipid, with or without saturating FVIIIa, FIXa(Y225P) activated FX with similar K(m) but threefold reduced k(cat). Further, interaction of FVIIIa:FIXa(Y225P) was impaired fourfold. Our previous data revealed that Ca2+ binding to the protease domain increases the affinity of FIXa for FVIIIa approximately 15-fold. The present data indicate that occupancy of the Na+ site further increases the affinity of FIXa for FVIIIa fourfold and k(cat) threefold. Thus, in the presence of Ca2+, phospholipid, and FVIIIa, binding of Na+ to FIXa increases its biologic activity by approximately 12-fold, implicating its role in physiologic coagulation.  相似文献   

7.
Jenkins PV  Dill JL  Zhou Q  Fay PJ 《Biochemistry》2004,43(17):5094-5101
Contributions of factor (F) VIIIa subunits to cofactor association with FIXa were evaluated. Steady-state fluorescence resonance energy transfer using an acrylodan-labeled A3-C1-C2 subunit and fluorescein-Phe-Phe-Arg-FIXa yielded K(d) values of 52 +/- 10 and 197 +/- 55 nM in the presence and absence of phospholipid vesicles, respectively. A3-C1-C2 was an effective competitor of FVIIIa binding to FIXa as judged by inhibition of FXa generation performed in the absence of vesicles (K(i) approximately 1.6K(d) for FVIIIa-FIXa). However, the capacity for A3-C1-C2 to inhibit FVIIIa-dependent FXa generation in the presence of phospholipid was poor with a K(i) values (approximately 400 nM) that were approximately 100-fold greater than the K(d) for FVIIIa-FIXa interaction (4.2 +/- 0.6 nM). These results indicated that a significant component of the interprotein affinity is contributed by FVIIIa subunits other than A3-C1-C2 in the membrane-dependent complex. The isolated A2 subunit of FVIIIa interacts weakly with FIXa, and recent modeling studies have implicated a number of residues that potentially contact the FIXa protease domain (Bajaj et al. (2001) J. Biol. Chem. 276, 16302-16309). Site-directed mutagenesis of candidate residues in the A2 domain was performed, and recombinant proteins were stably expressed and purified. Functional affinity determinations demonstrated that one mutant, FVIII/Asp712Ala exhibited an 8-fold increased K(d) (35 +/- 1.5 nM) relative to wild-type suggesting a contribution by this residue of approximately 10% of the FVIIIa-FIXa binding energy. Thus both A2 and A3-C1-C2 subunits contribute to the affinity of FVIIIa for FIXa in the membrane-dependent FXase.  相似文献   

8.
We previously reported that the first epidermal growth factor-like (EGF1) domain in factor X (FX) or factor IX (FIX) plays an important role in the factor VIIa/tissue factor (FVIIa/TF)-induced coagulation. To assess the role of gamma-carboxyglutamic acid (Gla) domains of FX and FIX in FVIIa/TF induced coagulation, we studied four new and two previously described replacement mutants: FX(PCGla) and FIX(PCGla) (Gla domain replaced with that of protein C), FX(PCEGF1) and FIX(PCEGF1) (EGF1 domain replaced with that of protein C), as well as FX(PCGla/EGF1) and FIX(PCGla/EGF1) (both Gla and EGF1 domains replaced with those of protein C). FVIIa/TF activation of each FX mutant and the corresponding reciprocal activation of FVII/TF by each FXa mutant were impaired. In contrast, FVIIa/TF activation of FIX(PCGla) was minimally affected, and the reciprocal activation of FVII/TF by FIXa(PCGla) was normal; however, both reactions were impaired for the FIX(PCEGF1) and FIX(PCGla/EGF1) mutants. Predictably, FXIa activation of FIX(PCEGF1) was normal, whereas it was impaired for the FIX(PCGla) and FIX(PCGla/EGF1) mutants. Molecular models reveal that alternate interactions exist for the Gla domain of protein C such that it is comparable with FIX but not FX in its binding to FVIIa/TF. Further, additional interactions exist for the EGF1 domain of FX, which are not possible for FIX. Importantly, a seven-residue insertion in the EGF1 domain of protein C prevents its interaction with FVIIa/TF. Cumulatively, our data provide a molecular framework demonstrating that the Gla and EGF1 domains of FX interact more strongly with FVIIa/TF than the corresponding domains in FIX.  相似文献   

9.
Fribourg C  Meijer AB  Mertens K 《Biochemistry》2006,45(35):10777-10785
The light chain of activated factor IX (FIXa) is involved in a number of functional properties, including FIXa enzymatic activity. This suggests the existence of a functional link between the FIXa light chain and the catalytic domain. The FIXa structure includes a few putative interactions between EGF2 and the protease domain. The role thereof has been addressed in this study. Recombinant FIX variants FIX-N92A, FIX-N92H, FIX-Y295A, and FIX-F299A were produced in 293 cells. After activation, the purified mutants were analyzed for a variety of functional parameters. None of these substitutions had a major effect on the interaction with antithrombin or the cleavage of the chromogenic substrate CH(3)SO(2)-d-CHG-Gly-Arg-p-nitroanilide. All FIXa mutants, however, exhibited a reduced level of factor X (FX) activation. Defective proteolytic activity occurred both in the absence and in the presence of activated factor VIII (FVIIIa). All mutants also exhibited a reduced level of FX activation in the absence of phospholipids. This suggests that putative interdomain contacts involving residues Asn(92), Tyr(295), and Phe(299) affect reactivity toward FX. Detailed kinetic studies in the presence of phospholipids and FVIIIa revealed substrate inhibition, particularly for mutants FIXa-N92A and FIXa-N92H. Surface plasmon resonance demonstrated that the same replacements weaken the association with the isolated factor VIII (FVIII) A2 domain and the FVIII light chain. This implies a defect in the formation of the FX-activating complex that is membrane-independent. We conclude that contacts between EGF2 and the protease domain of FIXa are crucial for FIXa enzymatic activity and for the assembly of the FX-activating complex.  相似文献   

10.
Prothrombin is proteolytically activated by the prothrombinase complex comprising the serine protease Factor (F) Xa complexed with its cofactor, FVa. Based on inhibition of the prothrombinase complex by synthetic peptides, FVa residues 493-506 were proposed as a FXa binding site. FVa is homologous to FVIIIa, the cofactor for the FIXa protease, in the FX-activating complex, and FVIIIa residues 555-561 (homologous to FVa residues 499-506) are recognized as a FIXa binding sequence. To test the hypothesis that FVa residues 499-505 contribute to FXa binding, we created the FVa loop swap mutant (designated 499-505(VIII) FV) with residues 499-505 replaced by residues 555-561 of FVIIIa, which differ at five of seven positions. Based on kinetic measurements and spectroscopic titrations, this FVa loop swap mutant had significantly reduced affinity for FXa. The fully formed prothrombinase complex containing this FVa mutant had fairly normal kinetic parameters (k(cat) and K(m)) for cleavage of prothrombin at Arg-320. However, small changes in both Arg-320 and Arg-271 cleavage rates result together in a moderate change in the pathway of prothrombin activation. Although residues 499-505 directly precede the Arg-506 cleavage site for activated protein C (APC), the 499-505(VIII) FVa mutant was inactivated entirely normally by APC. These results suggest that this A2 domain sequence of the FVa and FVIIIa cofactors evolved to have different specificity for binding FXa and FIXa while retaining compatibility as substrate for APC. In an updated three-dimensional model for the FVa structure, residues 499-505, along with Arg-506, Arg-306, and other previously suggested FXa binding sequences, delineate a continuous surface on the A2 domain that is strongly implicated as an extended FXa binding surface in the prothrombinase complex.  相似文献   

11.
Protein Z-dependent protease inhibitor (ZPI) is a serpin inhibitor of coagulation factor (F) Xa dependent on protein Z, Ca2+, and phospholipids. In new studies, ZPI inhibited FIXa in the FXase complex. Since this observation could merely represent inhibition of the FXa product whose activity was measured, inhibition of FIXa was investigated five ways. 1) FXase incubation mixtures with/without ZPI/protein Z were diluted in EDTA; FXa activity was measured after reversal of its inhibition. 2) FXase incubation mixtures were immunoblotted for FXa product. 3) FX activation peptide region was 3H-labeled; release of 3H was used to measure FXase activity. 4) Activity was monitored in a FIXa-based clotting assay. 5) FIXa amidolytic activity was measured. In all cases, FIXa was inhibited by subphysiologic levels of ZPI. Unlike inhibition of FXa, inhibition of FIXa did not strictly require protein Z. Low concentrations of FVIIIa increased the efficiency of ZPI inhibition of FIXa; FVIIIa in molar excess was not protective of FIXa unless FIXa/FVIIIa interacted prior to ZPI exposure. Unusual time courses were observed for inhibition of both FIXa in the FXase complex and FXa in the prothrombinase complex. Activity loss stabilized in <100 s at a level dependent on ZPI concentration, suggesting equilibrium interactions rather than typical covalent serpin-protease interactions. Surface plasmon resonance binding experiments revealed binding and dissociation of ZPI/FIXa with Kd (app) of 9-12 nm, similar to the concentration of ZPI needed for 50% inhibition. ZPI may be an unusual physiologic regulator of both the intrinsic FXase and the prothrombinase complexes.  相似文献   

12.
Coagulation factor X (FX) zymogen activation by factor IXa (FIXa) enzyme plays a critical role in the middle-phase of coagulation cascade. The activation process is catalytically inert and requires FIXa binding and complex formation with co-factor VIIIa (FVIIIa). In order to understand the structural details of the FVIIIa:FIXa complex, we employed knowledge-driven protein–protein docking and aqueous-phase MD refinement methods to develop a stable structural complex between FVIIIa and FIXa. The model shows that all four domains of FIXa wrap across FVIIIa that spans the co-factor binding surface of A2, A3 and C1 domains. The region surrounding the 558-helix of the A2-domain of FVIIIa is predicted to be the key interaction site with the helical segments of Lys293–Lys301 and Asp332–Arg338 residues of the serine-protease domain of FIXa. The hydrophobic helical stack between the GLA and EGF1 domains of FIXa is predicted to be primary interacting region with the A3–C2 domain interface of FVIIIa.  相似文献   

13.
Factor X (FX) has high structure homology with other proteins of blood coagulation such as factor IX (FIX) and factor VII (FVII). These proteins present at their amino-terminal extremity a gamma-carboxyglutamic acid containing domain (Gla domain), followed by two epidermal growth factor-like (EGF1 and EGF2) domains, an activation peptide, and a serine protease domain. After vascular damage, the tissue factor-FVIIa (TF-FVIIa) complex activates both FX and FIX. FXa interacts stoichiometrically with tissue pathway inhibitor (TFPI), regulating TF-FVIIa activity by forming the TF-FVIIa-TFPI-FXa quaternary complex. Conversely, FXa boosts coagulation by its association with its cofactor, factor Va (FVa). To investigate the contribution of the Gla and EGF1 domains of FX in these complexes, FX chimeras were produced in which FIX Gla and EGF1 domains substituted the corresponding domains of FX. The affinity of the two chimeras, FX/FIX(Gla) and FX/FIX(EGF1), for the TF-FVIIa complex was markedly reduced compared with that of wild-type-FX (wt-FX) independently of the presence of phospholipids. Furthermore, the association rate constants of preformed FX/FIX(Gla)-TFPI and FX/FIX(EGF1)-TFPI complexes with TF-FVIIa were, respectively, 10- and 5-fold slower than that of wt-FXa-TFPI complex. Finally, the apparent affinity of FVa was 2-fold higher for the chimeras than for wt-FX in the presence of phospholipids and equal in their absence. These data demonstrate that FX Gla and EGF1 domains contain residues, which interact with TF-FVIIa exosites contributing to the formation of the TF-FVIIa-FX and TF-FVIIa-TFPI-FXa complexes. On the opposite, FXa Gla and EGF1 domains are not directly involved in FVa binding.  相似文献   

14.
Factor VIII (FVIII, other clotting factors are named similarly) is a glycoprotein that circulates in the plasma bound to von Willebrand factor. During the blood coagulation cascade, activated FVIII (FVIIIa) binds to FIXa and activates FX in the presence of calcium ions and phospholipid membranes. The C1 and C2 domains mediate membrane binding that is essential for activation of the FVIIIa–FIXa complex. Here, 1H, 13C, and 15N backbone chemical shift assignments are reported for the C2 domain of FVIII, including assignments for the residues in solvent-exposed loops. The NMR resonance assignments, along with further structural studies of membrane-bound FVIII, will advance understanding of blood-clotting protein interactions.  相似文献   

15.
Factor (F) VIII functions as a cofactor in FXase, markedly accelerating the rate of FIXa-catalyzed activation of FX. Earlier work identified a FX-binding site having μM affinity within the COOH-terminal region of the FVIIIa A1 subunit. In the present study, surface plasmon resonance (SPR), ELISA-based binding assays, and chemical cross-linking were employed to assess an interaction between FX and the FVIII light chain (A3C1C2 domains). SPR and ELISA-based assays showed that FVIII LC bound to immobilized FX (K(d) = 165 and 370 nM, respectively). Furthermore, active site-modified activated protein C (DEGR-APC) effectively competed with FX in binding FVIII LC (apparent K(i) = 82.7 nM). Western blotting revealed that the APC-catalyzed cleavage rate at Arg(336) was inhibited by FX in a concentration-dependent manner. A synthetic peptide comprising FVIII residues 2007-2016 representing a portion of an APC-binding site blocked the interaction of FX and FVIII LC (apparent K(i) = 152 μM) and directly bound to FX (K(d) = 7.7 μM) as judged by SPR and chemical cross-linking. Ala-scanning mutagenesis of this sequence revealed that the A3C1C2 subunit derived from FVIII variants Thr2012Ala and Phe2014Ala showed 1.5- and 1.8-fold increases in K(d) for FX, whereas this value using the A3C1C2 subunit from a Thr2012Ala/Leu2013Ala/Phe2014Ala triple mutant was increased >4-fold. FXase formed using this LC triple mutant demonstrated an ~4-fold increase in the K(m) for FX. These results identify a relatively high affinity and functional FX site within the FVIIIa A3C1C2 subunit and show a contribution of residues Thr2012 and Phe2014 to this interaction.  相似文献   

16.
Factor (F) VIIIa forms a number of contacts with FIXa in assembling the FXase enzyme complex. Surface plasmon resonance was used to examine the interaction between immobilized biotinylated active site-modified FIXa, and FVIII and FVIIIa subunits. The FVIIIa A2 subunit bound FIXa with high affinity (Kd = 3.9 ± 1.6 nm) that was similar to the A3C1C2 subunit (Kd = 3.6 ± 0.6 nm). This approach was used to evaluate a series of baculovirus-expressed, isolated A2 domain (bA2) variants where alanine substitutions were made for individual residues within the sequence 707-714, the C-terminal region of A2 thought to be FIXa interactive. Three of six bA2 variants examined displayed 2- to 4-fold decreased affinity for FIXa as compared with WT bA2. The variant bA2 proteins were also tested in two reconstitution systems to determine activity and affinity parameters in forming FXase and FVIIIa. Vmax values for all variants were similar to the WT values, indicating that these residues do not affect cofactor function. All variants showed substantially greater increases in apparent Kd relative to WT in reconstituting the FXase complex (8- to 26-fold) compared with reconstituting FVIIIa (1.3- to 6-fold) suggesting that the mutations altered interaction with FIXa. bA2 domain variants with Ala replacing Lys707, Asp712, and Lys713 demonstrated the greatest increases in apparent Kd (17- to 26-fold). These results indicate a high affinity interaction between the FVIIIa A2 subunit and FIXa and show a contribution of several residues within the 707-714 sequence to this binding.  相似文献   

17.
A recent chemical footprinting study in our laboratory suggested that region 1803–1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803–1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803–1810 and 1811–1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811–1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811–1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803–1810 and FVIII/FV 1811–1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811–1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811–1818 contributes to FIXa binding. Both regions 1803–1810 and 1811–1818 contribute to FVIIIa stability.  相似文献   

18.
Recent evidence supports a role for vitamin K-dependent coagulation zymogens in adenovirus serotype 5 (Ad5, subgroup C) infection of hepatocytes. Here, we assessed the effect of virus-zymogen interaction on cellular transduction using a panel of fiber (f)-pseudotyped viruses derived from subgroup D (f47, f33, f24, f45, f17, f30). Each virus directly bound factor X (FX) as determined by surface plasmon resonance, resulting in enhanced cell surface binding. Infection of HepG2 cells was promoted by FX but not by FVII or FIX, while transduction of CHO cells was blocked in heparan sulfate proteoglycan-deficient cells. This suggests a broad role for FX in adenovirus infectivity.  相似文献   

19.
There is evidence that high plasma levels of factor (F) VIII, FIX, FXI and fibrinogen are independent risk factors for venous thromboembolism. AIM: To determine the plasma concentrations of several coagulation factors and C4b-binding protein (C4BP) in a group of patients with non-metastatic colorectal cancer in order to investigate some aspects of cancer-acquired thrombophilia. METHODS: Plasma fibrinogen, FII, FV, FVII, FVIII, FIX, FX, FXI and FXII activity levels and C4BP concentrations were determined in 73 patients with non-metastatic colorectal cancer (48 colon and 25 rectum) and in 67 matched control subjects. No one in either group had had previous thrombotic events. RESULTS: Mean plasma concentrations of fibrinogen (functional and antigen), FVIII, FIX, FV and C4BP were significantly higher in colorectal cancer patients than in control subjects, while FVII and FXII levels were significantly decreased. Several correlations were found between the increased coagulation factors and C4BP concentrations, while FVII was highly correlated with FXII. CONCLUSIONS: In colorectal cancer patients high plasma fibrinogen, FVIII and FIX levels might represent further risk factors for venous thrombotic complications in the immediate post-surgery period, while decreased FVII and FXII concentrations may be an index of intravascular coagulation activation, still in a subclinical phase.  相似文献   

20.
BackgroundFactor (F)VIII functions as a cofactor in the tenase complex responsible for conversion of FX to FXa by FIXa. Earlier studies indicated that one of the FIXa-binding sites is located in residues 1811–1818 (crucially F1816) of the FVIII A3 domain. A putative, three-dimensional structure model of the FVIIIa molecule suggested that residues 1790–1798 form a V-shaped loop, and juxtapose residues 1811–1818 on the extended surface of FVIIIa.AimTo examine FIXa molecular interactions in the clustered acidic sites of FVIII including residues 1790–1798.Methods and resultsSpecific ELISA's demonstrated that the synthetic peptides, encompassing residues 1790–1798 and 1811–1818, competitively inhibited the binding of FVIII light chain to active-site-blocked Glu-Gly-Arg-FIXa (EGR-FIXa) (IC50; 19.2 and 42.9 μM, respectively), in keeping with a possible role for the 1790–1798 in FIXa interactions. Surface plasmon resonance-based analyses demonstrated that variants of FVIII, in which the clustered acidic residues (E1793/E1794/D1793) or F1816 contained substituted alanine, bound to immobilized biotin labeled-Phe-Pro-Arg-FIXa (bFPR-FIXa) with a 1.5–2.2-fold greater KD compared to wild-type FVIII (WT). Similarly, FXa generation assays indicated that E1793A/E1794A/D1795A and F1816A mutants increased the Km by 1.6–2.8-fold relative to WT. Furthermore, E1793A/E1794A/D1795A/F1816A mutant showed that the Km was increased by 3.4-fold and the Vmax was decreased by 0.75-fold, compared to WT. Molecular dynamics simulation analyses revealed the subtle changes between WT and E1793A/E1794A/D1795A mutant, supportive of the contribution of these residues for FIXa interaction.ConclusionThe 1790–1798 region in the A3 domain, especially clustered acidic residues E1793/E1794/D1795, contains a FIXa-interactive site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号