首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzyme-linked immunosorbent assays (ELISA) and bioassays were used to estimate levels of Cry1Ab protein in four species of phytophagous insects after feeding on transgenic Bt-corn plants expressing Cry1Ab protein or artificial diets containing Cry1Ab protein. The level of Cry1Ab in insects feeding on sources containing the Cry1Ab protein was uniformly low but varied with insect species as well as food source. For the corn leaf aphid, Rhopalosiphum maidis (Fitch), feeding on diet solutions containing Cry1Ab protein, the level of the protein in the aphid was 250–500 times less than the original levels in the diet, whereas no Cry1Ab was detected by ELISA in aphids feeding on transgenic Bt-Corn plants. For the lepidopteran insects, Ostrinia nubilalis (Hübner), Helicoverpa zea (Boddie), and Agrotis ipsilon (Hufnagel), levels of Cry1Ab in larvae varied significantly with feeding treatment. When feeding for 24 h on artificial diets containing 20 and 100 ppm of Cry1Ab, the level of Cry1Ab in the larvae was about 57 and 142 times lower, respectively, than the original protein level in the diet for O. nubilalis, 20 and 34 times lower for H. zea, and 10 to 14 times lower for A. ipsilon. Diet incorporation bioassays with a susceptible insect (first instar O. nubilalis) showed significant Cry1Ab bioactivity present within whole body tissues of R. maidis and O. nubilalis that had fed on diet containing a minimum of 20 ppm or higher concentrations (100 or 200 ppm) of Cry1Ab, but no significant bioactivity within the tissues of these insects after feeding on transgenic Bt-corn plants. The relevance of these findings to secondary exposure risk assessment for transgenic Bt crops is discussed.  相似文献   

2.
Comparative substrate-inhibitor analysis of catalytic properties of liver monoamine oxidases (MAO) was performed in the mature males of the American mink Mustela vison and the European mink Mustela lutreola. The action on the MAO activity was studied of alkaloids of the benzo[c]phenanthridine group: sanguinarine and chelidonine, diisoquinoline alkaloid berberine, medication agents Ukrain and Sanguirythrin as well as derivatives of 2-propylamine: deprenyl and clorgylin. The latter turned out to be irreversible inhibitor of the MAO A form, whereas deprehyl--irreversible inhibitor of the MAO B form in both studied mink species. The selectivity of action of each inhibitor on the corresponding liver MAO form for the species M. vison was one order of magnitude stronger than for the species M. lutreola. All studied alkaloids as well medication agents on their basis have been shown to be specific irreversible inhibitors of the intermediate strength of the liver MAO A form of both mink species. They inhibit the enzymatic deamination of serotonin, tyramine, and tryptamine without affecting the deamination reaction of benzylamine and beta-phenylethylamine (at concentrations of 10 mM and lower). Out of the studied five isoquinoline agents, the medication Ukrain and alkaloid chelidonine have the highest inhibitory action; the agent Sanguirythrin and alkaloids berberine and sanguinarine produce the weaker monoamine oxidase effect. The revealed specificity of action of the studied inhibitors is an indirect evidence for the presence in the liver enzymes of both mink species, like in the rat liver enzyme, of several molecular forms.  相似文献   

3.
Comparative substrate-inhibitor analysis of catalytic properties of liver monoamine oxidases (MAO) was performed in the mature males of the American mink Mustela vison and the European mink Mustela lutreola. The action on the MAO activity was studied of alkaloids of the benzo[c]phenanthridine group: sanguinarine and chelidonine, diisoquinoline alkaloid berberine, medicinal agents “Ukrain” and “Sanguirythrin” as well as derivatives of 2-propylamine: deprenyl and chlorgylin. The latter turned out to be irreversible inhibitor of the MAO A form, whereas deprenyl-irreversible inhibitor of the MAO B form in both studied mink species. The selectivity of action of each inhibitor on the corresponding liver MAO form for the species M. vison was one order of magnitude stronger than for the species M. lutreola. All studied alkaloids as well medicinal agents on their basis have been shown to be specific irreversible inhibitors of the intermediate strength of the liver MAO A form of both mink species. They inhibit the enzymatic deamination of serotonin, tyramine, and tryptamine without affecting the deamination reaction of benzylamine and β-phenylethylamine (at concentrations of 10 mM and lower). Out of five studied isoquinoline agents, the medication “Ukrain” and alkaloid chelidonine have the highest inhibitory action; the agent “Sanguirythrin” and alkaloids berberine and sanguinarine produce the weaker monoamine oxidase effect. The revealed specificity of action of the studied inhibitors is an indirect evidence for the presence in the liver enzymes of both mink species, like in the rat liver enzyme, of several molecular forms.  相似文献   

4.
The effects of macronutrient balance on nutrient intake and utilization were examined in Manduca sexta larvae parasitized by Cotesia congregata. Insects fed an artificial diet having constant total macronutrient, but with varied ratios of protein and carbohydrate, with altered diet consumption in response to excesses and deficiencies of the individual macronutrients. Bivariate plots of protein and carbohydrate consumption for non-parasitized larvae demonstrated a curvilinear relationship between points of nutrient intake for the various diets, and the larvae grew best on carbohydrate-biased diets. The relationship was linear for parasitized larvae with the growth uniform across diets. On protein-biased diets, the larvae regulated the nitrogen content, containing similar amounts of nitrogen regardless of consumption. Efficiency of nitrogen conversion in non-parasitized larvae was greatest on carbohydrate-biased diets, while nitrogen conversion by parasitized larvae was greatest with intermediate nutrient ratios. Accounting for carbohydrate consumption, the lipid content decreased as dietary carbohydrate increased, but parasitized larvae contained significantly less lipid. The total biomass of parasites developing in individual host larvae was positively correlated with host protein consumption, but the individual parasites were similar in size. Parasitism influences host nutrient consumption in a manner that achieves uniform host growth under diverse nutritional regimes, thereby constraining blood nutrient concentrations within limits suitable for parasite growth and development.  相似文献   

5.
ABSTRACT Final instar nymphs of Locusta migratoria (L.) and larvae of Spodoptera littoralis (Boisduval) were given an artificial diet deficient in either protein or digestible carbohydrate for a single meal during ad libitum feeding, after which they were provided with a choice of two diets, one containing protein but no digestible carbohydrate and the other containing carbohydrate but no protein. Detailed analyses of feeding behaviour showed that locusts exhibited a degree of compensatory dietary selection following the single deficient meal. No such response was evident for the caterpillars, although previous work (Simpson et al. , 1988) has demonstrated that compensatory selection behaviour is marked in this species after periods of 4 h or more on the same deficient diets. These results show that locusts are able to respond extremely rapidly to the nutritional quality of their food by utilizing nutritional feedbacks. This capability may have important implications for the study of foraging strategies in other herbivorous insects.  相似文献   

6.
The non-homeostatic regulation of blood sugar concentration in the insect Manduca sexta L. was affected by nutritional status. Larvae maintained on diets lacking sucrose displayed low concentrations of trehalose, the blood sugar of insects, which varied from 5 to 15 mM with increasing dietary casein level between 12.5 and 75 g/l. These insects were glucogenic, as demonstrated by the selective 13C enrichment of trehalose synthesized from [3-13C]alanine, and de novo synthesis was the sole source of blood sugar. The distribution of 13C in glutamine established that following transamination of the 13C substituted substrate, [3-13C]pyruvate carboxylation rather than decarboxylation was the principal pathway of Pyr metabolism. The mean blood trehalose level was higher in insects maintained on diets with sucrose. At the lowest dietary casein level blood trehalose was approximately 50 mM, and declined to 20 mM at the highest casein level. Gluconeogenesis was detected in insects maintained on sucrose-free diets at the higher protein levels examined, but [3-13C]pyruvate decarboxylation and TCA cycle metabolism was the principal fate of [3-13C]alanine following transamination, and dietary carbohydrate was the principal source of glucose for trehalose synthesis. Feeding studies established a relationship between nutritional status, blood sugar level and dietary self-selection. Insects preconditioned by feeding on diets without sucrose had low blood sugar levels regardless of dietary casein level, and when subsequently given a choice between a sucrose diet or a casein diet, selected the former. Larvae preconditioned on a diet containing sucrose and the lowest level of casein had high blood sugar levels and subsequently selected the casein diet. Larvae maintained on the sucrose diet with the highest casein level had low blood sugar and self-selected the sucrose diet. When preconditioned on diets with sucrose and intermediate levels of casein, insects selected more equally between the sucrose and the casein diets. It is concluded that blood sugar level may be intimately involved in dietary self-selection by M. sexta larvae, and that in the absence of dietary carbohydrate, gluconeogenesis provides sufficient blood sugar to ensure that larvae choose a diet or diets that produce an optimal intake of dietary protein and carbohydrate.  相似文献   

7.
Alkaloid extractables of Tylophora asthmatica (Asclepiadaceae) have been tested for the antifeedant activity against Spodoptera litura by incorporating them in semisynthetic and cellulose diets. The alkaloid extractables at 0.01% concentration inhibited feeding of the larvae. Three compounds, tylophorine, tylophorinine and pergularinine, were isolated; and their EC50 values were found to be 2.9, 8.6 and 12.00 ppm, respectively.  相似文献   

8.
Nine alkaloids (acridine, aristolochic acid, atropine, berberine, caffeine, nicotine, scopolamine, sparteine, and strychnine) were evaluated as feeding deterrents for gypsy moth larvae (Lymantria dispar (L.); Lepidoptera: Lymantriidae). Our aim was to determine and compare the taste threshold concentrations, as well as the ED50 values, of the nine alkaloids to determine their potency as feeding deterrents. The alkaloids were applied to disks cut from red oak leaves (Quercus rubra) (L.), a plant species highly favored by larvae of this polyphagous insect species. We used two-choice feeding bioassays to test a broad range of biologically relevant alkaloid concentrations spanning five logarithmic steps. We observed increasing feeding deterrent responses for all the alkaloids tested and found that the alkaloids tested exhibited different deterrency threshold concentrations ranging from 0.1 to 10 mM. In conclusion, it appears that this generalist insect species bears a relatively high sensitivity to these alkaloids, which confirms behavioral observations that it avoids foliage containing alkaloids. Berberine and aristolochic acid were found to have the lowest ED50 values and were the most potent antifeedants. Handling Editor: Joseph Dickens.  相似文献   

9.
A number of tremorogenic beta-carboline alkaloids have been found in common plant-derived foodstuffs, beverages, and inhaled substances. Because of their natural presence in the food chain, there is a growing concern regarding the potential risks of certain essential tremors associated with the long-term, low-level dietary exposure to these alkaloids. The purpose of this study was to develop an effective analytical method to determine blood levels of two major beta-carboline derivatives, harmane and harmine. Human blood was extracted with ethyl acetate and methyl-t-butyl ether (2:98) under an alkaline condition. After evaporation of organic solvent, the samples were reconstructed in methanol. The samples were fractionated on a 250 x 4.6-mm C18 reversed-phase column with an isocratic mobile system consisting of 17.5 mM potassium phosphate buffer (ph 6.5) and methanol (30:70), followed by an on-line fluorescence detection. The method had the detection limit to determine 206 and 81 pg/ml of harmane and harmine, respectively, in 10 ml of human blood. The intraday precision (C.V.) at 25 ng/ml was less than 6.7 and 3.4% for harmane and harmine, respectively. The interday precision was 7.3% for harmane and 5.4% for harmine. The method has proven sensitive, reproducible, and thus useful for both laboratory and clinical studies of beta-carboline toxicities.  相似文献   

10.
Induction of gluconeogenesis is accelerated in larvae of the insect Manduca sexta L. parasitized by Cotesia congregata (Say), maintaining the concentration of the blood sugar trehalose, an important nutrient for parasite development. Investigation has demonstrated that when host larvae are offered a choice of diets with varying levels of sucrose and casein, parasitized insects consume a different balance of these nutrients, principally due to a decrease in protein consumption. The result is metabolic homeostasis, with normal unparasitized and parasitized larvae exhibiting similar levels of gluconeogenesis and blood sugar level. In the present study, normal unparasitized and parasitized larvae were maintained on individual chemically defined diets having the balance of protein and carbohydrate consumed by each when offered a dietary choice. Total dietary nutrient, the sum of carbohydrate and protein, was provided at six levels, composed of three pairs of diets. Each diet pair consisting of diets having equivalent overall nutrient ratios of 2:1 and 1:1 casein/sucrose. Host growth and diet consumption were significantly affected by dietary nutrient level and the magnitude of these effects was influenced by parasitism. Due to the effects of dietary nutrient level on diet consumption, none of the unparasitized and parasitized larvae within any of the three diet pairs consumed protein and carbohydrate at the levels predicted by the earlier choice experiments. Among insects on all of the diets, however, two groups of unparasitized and parasitized larvae consumed the expected levels of protein and carbohydrate. In each case, gluconeogenesis, as measured by 13C nuclear magnetic resonance spectroscopy (NMR) analysis of pyruvate cycling and trehalose synthesis from [2-13C]pyruvate, was evident in unparasitized and parasitized insects, confirming the conclusions of the earlier experiments. Generally, all larvae that consumed less than approximately 250 mg of sucrose over the 3-day feeding period, were gluconeogenic, regardless of diet. Differential carbohydrate consumption, therefore, was an important factor in inducing gluconeogenesis in both unparasitized and parasitized insects. The selective 13C enrichment in trehalose displayed by non-gluconeogenic larvae on some diets demonstrated trehalose formation from [2]pyruvate. The absence of net carbohydrate synthesis in these insects was likely due to an elevation of glycolysis. There was no significant effect of diet consumption or parasitism on blood trehalose level. Parasitized larvae displayed higher levels of gluconeogenesis than did unparasitized insects, a finding consistent with the conclusion that blood sugar is rapidly sequestered by developing parasites. The parasite burden, the total number of parasites developing within host larvae, as well as the number of parasites emerging from host larvae to complete development, was significantly less at the lowest dietary nutrient level, but was otherwise similar at all dietary nutrient levels. Moreover, the number of parasites that emerged increased with increasing diet consumption as reflected by host final weight.  相似文献   

11.
Lepidopteran insects like Helicoverpa zea and Agrotis ipsilon produce STI-insensitive trypsins in the midgut following ingestion of dietary plant proteinase inhibitors like STI [Broadway, R. M., J. Insect Physiol. 43(9) (1997) 855-874]. In this paper, the effects of dietary STI on a related family of midgut serine proteinases, the chymotrypsins, were investigated. STI-insensitive midgut chymotrypsins were detected in larvae of H. zea and A. ipsilon feeding on diets containing 1% STI while STI-sensitive chymotrypsins were present in larvae feeding on diets containing 0% STI. These chymotrypsins were unaffected by TPCK, a diagnostic inhibitor of mammalian chymotrypsins but were fully inhibited by chymostatin. Four midgut cDNA libraries were constructed from larvae of each species fed either 0% STI or 1% STI diets. Six full-length cDNAs(1) encoding diverse preprochymotrypsins were isolated (three from H. zea and three from A. ipsilon) with certain sequence motifs that set them apart from their mammalian counterparts. Northern blots showed that some chymotrypsin mRNA were detected at higher levels while others were down-regulated when comparing insects reared on 0% STI and 1% STI diets. Southern hybridizations suggested that (like mammals) both species contained several chymotrypsin genes. A full-length chymotrypsin gene(1) from H. zea was sequenced for the first time and the presence of four introns was deduced. A first time comparison of 5' upstream regions(1) from three chymotrypsin genes and two trypsin genes of A. ipsilon indicated the presence of putative TATA boxes and regulatory elements. However a lack of consensus motifs in these upstream regions suggested the likelihood of multiple trans factors for regulation of genes encoding digestive proteinases and a complex response mechanism linked to ingestion of proteinase inhibitors.  相似文献   

12.
The dietary effects of boric acid (BA) on the protein profiles of greater wax moth, Galleria mellonella (L.), were investigated in hemolymph and fat body of final instar (VIIth) and pupae. The insects were reared from first-instar larvae on an artificial diets containing 156, 620, 1250 or 2500 ppm of BA. We detected many undetermined protein fractions (6.5-260 kDa) in addition to well-defined protein fractions such as lipophorins and storage proteins in the tissues by using sodium dodecyl-sulphate polyacrylamide gradient gel electrophoresis. A marked quantitative change in the 45 kDa protein fraction of the hemolymph was observed in the VIIth instar larvae reared on 2500 ppm dietary BA.  相似文献   

13.
Manduca sexta L. larvae exhibit broad food acceptance with regard to nutrient content during the first 3 days of the last stadium. Larvae fed diets with a constant combined level of casein and sucrose, but variable ratios, display a linear relationship between protein and carbohydrate intake. Larvae grow best on a diet with equal nutrients, but will consume an excess of one nutrient in order to obtain an adequate amount of the other, as nutrient ratio shifts. Parasitized larvae feed similarly, but the nutrient ratio does not affect growth. Unparasitized larvae regulate intake of protein and carbohydrate when offered choices of protein-biased and carbohydrate-biased diets having combined nutrient levels of 120 g/l, but with variable ratios. Larvae normally consume equal amounts of nutrients, regardless of ratio, and grow similarly. As combined nutrient level is reduced in one diet, larvae abandon regulation and feed randomly. Parasitized larvae offered choice diets with 120 g/l combined nutrients do not regulate nutrient intake. Consumption of nutrients varies widely, but growth is unaffected. Larvae offered choices of diets having equal amounts of casein and sucrose but variable fat (corn oil), fail to regulate fat intake, although both unparasitized and parasitized larvae prefer a diet containing higher fat.  相似文献   

14.
The Mediterranean fruit fly [Ceratitis capitata Wiedemann (Diptera: Tephritidae)], or medfly, is mass produced in many facilities throughout the world to supply sterile flies for sterile insect technique programs. Production of sterile males requires large amounts of larval and adult diets. Larval diets comprise the largest economic burdens in the mass production of sterile flies, and are one of the main areas where production costs could be reduced without affecting quality and efficacy. The present study investigated the effect of manipulating diet constituents on larval development and performance. Medfly larvae were reared on diets differing in the proportions of brewer's yeast and sucrose. We studied the effect of such diets on the ability of pupating larvae to accumulate protein and lipids, and on other developmental indicators. Except for diets with a very low proportion of brewer's yeast (e.g., 4%), pupation and adult emergence rates were in general high and satisfactory. The ability of pupating larvae to accumulate lipid reserves and proteins was significantly affected by the sucrose and yeast in the diet, and by the proportion of protein to carbohydrates (P/C). In contrast to previous nutritional studies conducted with other insects, low P/C in medfly larval diets (with excess dietary carbohydrates) resulted in pupating medfly larvae having a relatively reduced load of lipids; medfly larvae protein contents in these diets were, as expected, relatively low. Similarly, high P/C ratios in the diet produced larvae with high protein and lipid contents. Differences with other insects may be due to differential post‐ingestion regulation where a high dietary carbohydrate diet reduces the lipogenic activity of the larvae, and induces a shift from lipid to glucose oxidation. Larvae reared on low P/C diets spent more time foraging in the diet than larvae maintained on a high P/C diet, suggesting a compensatory mechanism to complement nutrient intake. The results suggest that the content of brewer's yeast, the most expensive diet component, could be fine‐tuned without apparently affecting fly quality.  相似文献   

15.
Tracer feeding experiments with (14)C-labeled senecionine and senecionine N-oxide were carried out to identify the biochemical mechanisms of pyrrolizidine alkaloid sequestration in the alkaloid-adapted leaf beetle Oreina cacaliae (Chrysomelidae). The taxonomically closely related mint beetle (Chrysolina coerulans) which in its life history never faces pyrrolizidine alkaloids was chosen as a 'biochemically naive' control. In C. coerulans ingestion of the two tracers resulted in a transient occurrence of low levels of radioactivity in the hemolymph (1-5% of radioactivity fed). With both tracers, up to 90% of the radioactivity recovered from the hemolymph was senecionine. This indicates reduction of the alkaloid N-oxide in the gut. Adults and larvae of O. cacaliae sequester ingested senecionine N-oxide almost unchanged in their bodies (up to 95% of sequestered total radioactivity), whereas the tertiary alkaloid is converted into a polar metabolite (up to 90% of total sequestered radioactivity). This polar metabolite, which accumulates in the hemolymph and body, was identified by LC/MS analysis as an alkaloid glycoside, most likely senecionine O-glucoside. The following mechanism of alkaloid sequestration in O. cacaliae is suggested to have developed during the evolutionary adaptation of O. cacaliae to its alkaloid containing host plant: (i) suppression of the gut specific reduction of the alkaloid N-oxides, (ii) efficient uptake of the alkaloid N-oxides, and (iii) detoxification of the tertiary alkaloids by O-glucosylation. The biochemical mechanisms of sequestration of pyrrolizidine alkaloid N-oxides in Chysomelidae leaf beetles and Lepidoptera are compared with respect to toxicity, safe storage and defensive role of the alkaloids.  相似文献   

16.
It has been shown that the major alkaloids from plants Chelidonium majus L. and Macleaya (Bocconia) cordata and microcarpa, namely, berberine, sanguinarine, chelidonine, and drugs "Ukrain" (thiophosphoric acid derivative of a sum of the alkaloids isolated from Ch. majus L.) and "Sanguirythrine" (a mixture of the alkaloids sanguinarine and chelerythrine, w/w 3:7, isolated from Macleaya), are irreversible inhibitors of oxidative deamination reaction of serotonin and tyramine as substrates, catalyzed by rat liver mitochondrial monoamine oxidase (MAO). At the same time these substances do not influence the oxidative deamination reaction of benzylamine as substrate (in concentration 1 mM or less). The substrate specificity of this inhibition manifests that mainly the oxidative deamination reactions catalyzed by MAO form A are inhibited by the agents studied. Among the examined agents, alkaloid chelidonine and drug "Ukrain" are the strongest inhibitors of the reaction. Alkaloids berberine and sanguinarine and drug "Sanguirythrine" exhibit a weaker action. Judging from the data obtained, sanguinarine and chelerythrine appear to exert similar inhibitory effects in this reaction, since sanguinarine and "Sanguirythrine" have similar values of bimolecular rate constants of their interaction with mitochondrial MAO. As it is well known, the MAO inhibitors appear to be, as a rule, pronounced antidepressants. The combination of malignotoxicity and antidepressive activity in drug "Ukrain" seems to be favourable for its clinical applications.  相似文献   

17.
We evaluated tritrophic level interactions among fungal endophytes (Acremonium spp.) of fescue grasses (Festuca spp.), the root-feeding Japanese beetlePopillia japonica Newman larvae, and the entomopathogenic nematodeHeterorhabditis bacteriophora Poinar. Third-instarP. japonica larvae were introduced into pots containing endophyteinfected or endophyte-free plants of tall fescueFestuca arundinacea Schreber (cultivars Kentucky 31 and Georgia Jesup Improved) and the Chewings fescueFestuca rubra commutata Guad. (cultivars F-93 and Jamestown II). After two weeks, the surviving larvae were recovered, and their susceptibility to nematodes was evaluated in sand columns. Endophytes enhanced the rate of nematode-induced mortality in all cultivars except Georgia Jesup Improved, and increased the proportion of dead larvae with nematodes in all cultivars except Jamestown II. Endophytes in the cultivar Kentucky 31 were associated with improved nematode establishment in the larvae. No effect on nematode reproduction was found. Since endophytes produce biologically active alkaloids, we tested the effects of an ergot alkaloid, ergotamine tartrate, on the feeding behavior and weight ofP. japonica larvae in agar medium. The alkaloid caused feeding deterrence, and reduced the consumption of medium by the larvae, resulting in weight loss. These larvae were more susceptible toH. bacteriophora than the untreated larvae. Unfed ‘starved’ larvae were more susceptible to nematodes than those fed on untreated agar. Our results support the hypothesis that endophyte-induced starvation ofP. japonica would reduce larval vigor, and render them more susceptible to entomopathogenic nematodes.  相似文献   

18.
The effects of chronic administration of clorgyline and pargyline on rat brain monoamine metabolism have been examined. The inhibitory selectivity of these drugs towards serotonin deamina-tion (MAO type A) and phenylethylamine deamination (MAO type B) can be maintained over a 21-day period by proper selection of low doses of these drugs (0.5-1.0 mg/kg/24h). The results are consistent with MAO type A catalyzing the deamination of serotonin and norepinephrine and with MAO type B having little effect on these monoamines. Dopamine appears to be dcaminated in vivo principally by MAO type A. Clorgyline administration during a 3-week period was accompanied by persistent elevations in brain norepinephrine concentrations; serotonin levels were also increased during the first 2 weeks, but returned towards control levels by the third week of treatment. Low doses of pargyline did not increase brain monoamine concentrations, but treatment with higher doses for 3 weeks led to elevations in brain norepinephrine and 5-hydroxytryptamine; at this time significant MAO-A inhibition had developed. The changes in monoamine metabolism seen at the end of the chronic clorgyline regimen are not due to alterations in tryptophan hydroxylase activity. At this time tyrosine hydroxylase activity was also unaffected.  相似文献   

19.
Plant–herbivore interactions are often mediated by plant microorganisms, and the “defensive mutualism” of epichloid fungal endophytes of grasses is an example. These endophytes synthesize bioactive alkaloids that generally have detrimental effects on the performance of insect herbivores, but the underlying mechanisms are not well understood. Our objective was to determine whether changes in the physiology and/or behavior of aphids explain the changes in performance of insects feeding on endophytic plants. We studied the interaction between the aphid Rhopalosiphum padi and the annual ryegrass Lolium multiflorum symbiotic (E+) or not symbiotic (E?) with the fungus Epichloë occultans that can synthesize loline alkaloids. We hypothesized that aphids feeding on E+ plants have higher energetic demands for detoxification of fungal alkaloids, thereby negatively impacting the individual performance, population growth, and structure. Aphids growing on E+ plants had lower values in morphometric and functional variables of individual performance, displayed lower birth rate, smaller population size, and dramatic structural changes. However, aphids exhibited lower values of standard metabolic rate (SMR) on E+ plants, which suggests no high costs of detoxification. Behavioral variables during the first 8 h of feeding showed that aphids did not change the phloem sap ingestion with the presence of fungal endophytes. We hypothesize that aphids may maintain phloem sap ingestion according to their fungal alkaloid tolerance capacity. In other words, when alkaloid concentrations overcome tolerance threshold, ingestion of phloem should decrease, which may explain the observed lower values of SMR in E+ feeding aphids.  相似文献   

20.
This study examined the effects of dietary casein and sucrose levels on nutrient intake, and distinguished the effects of carbohydrate and protein consumption on growth, fat content, pyruvate metabolism and blood trehalose level of 5th instar Manduca sexta larvae. Growth increased with increasing casein consumption but was unaffected by carbohydrate intake. Fat content also increased with carbohydrate consumption, but on carbohydrate-free diets fat content increased with increased protein consumption. Blood trehalose level and pyruvate metabolism were examined by nuclear magnetic resonance spectroscopy analysis of blood following administration of (3-(13)C)pyruvate. On diets containing sucrose, blood trehalose increased with increasing carbohydrate intake, and on most diets trehalose was synthesized entirely from dietary sucrose. Pyruvate cycling, indicated by the alanine C2/C3 (13)C enrichment ratio, increased with carbohydrate consumption reflecting increased glycolysis, and pyruvate decarboxylation exceeded carboxylation on all sucrose diets. Larvae that consumed <75 mg/day sucrose were gluconeogenic, based on the [2 (trehalose C6)(Glx C3/C2)]/alanine C2] (13)C enrichment ratio. On carbohydrate-free diets, blood trehalose levels were low and maintained entirely by gluconeogenesis. Blood trehalose level increased with increasing protein intake. Pyruvate cycling was very low, although many insects displayed higher levels of pyruvate decarboxylation than carboxylation. All gluconeogenic larvae displayed alanine (13)C enrichment ratios <0.35 and had blood trehalose levels <50 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号