首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Some aspects of neural and epidermal cell lineages during embryogenesis of Drosophila melanogaster were studied by transplanting horseradish-peroxidase-(HRP-) labelled ectodermal cells from young gastrula donors into host embryos of similar ages. Heterotopic transplantations permitted us to assess the degree of commitment already attained by the transplanted cells. The resulting cell clones showed normal characteristics of cytodifferentiation and cell number. The results indicate that epidermal progenitors perform a maximum of three mitoses during embryonic development, whereas neuroblasts may perform more than ten mitoses. Clone size distribution is in both cases scattered, suggesting either a rather irregular mitotic pattern or cell death. As indicated by heterotopic transplantations, the neurogenic ectoderm for the ventral nervous system exhibits different neurogenic abilities in its different regions, decreasing from medial to lateral; we discuss the hypothesis that some medially located cells of the young gastrulating embryo could be committed towards the neural fate before segregating from the ectoderm. On the other hand, the cells of the dorsal ectodermal regions at the same stage seem to be indifferent with respect to commitment, for they are able to give rise to central neural lineages following their transplantation in the neurogenic region.  相似文献   

2.
During neurogenesis in Drosophila, ectodermal cells are endowed with the capacity to become neuronal precursors. Following their selection, these cells initiate neuronal lineage development and differentiation. The processes of neuronal precursor specification and neuronal lineage development require the activities of several groups of genes functioning in a complex, hierarchical regulatory network. Whereas the proneural genes promote neurogenic potential, neurogenic genes restrict the acquisition of this identity to a subset of ectodermal cells. Following their selection, these cells express the pan neural neuronal precursor genes and a set of neuronal lineage identity genes. While lineage identity genes allow the various lineages to acquire specific identities, neuronal precursor genes presumably regulate functional and developmental characteristics common to all neuronal precursor cells. © 1996 Wiley-Liss, Inc.  相似文献   

3.
During vertebrate development, neural crest cells are exposed to multiple extracellular cues that drive their differentiation into neural and non-neural cell lineages. Insights into the signals potentially involved in neural crest cell fate decisions in vivo have been gained by cell culture experiments that have allowed the identification of instructive growth factors promoting either proliferation of multipotent neural crest cells or acquisition of specific fates. For instance, members of the TGFβ factor family induce neurogenesis and smooth muscle cell formation at the expense of other fates in culture. In vivo, conditional ablation of various TGFβ signaling components resulted in malformations of non-neural derivatives of the neural crest, but it is unclear whether these phenotypes involved aberrant fate decisions. Moreover, it remains to be shown whether neuronal determination indeed requires TGFβ factor activity in vivo. To address these issues, we conditionally deleted Smad4 in the neural crest, thus inactivating all canonical TGFβ factor signaling. Surprisingly, neural crest cell fates were not affected in these mutants, with the exception of sensory neurogenesis in trigeminal ganglia. Rather, Smad4 regulates survival of smooth muscle and proliferation of autonomic and ENS neuronal progenitor cells. Thus, Smad signaling plays multiple, lineage-specific roles in vivo, many of which are elicited only after neural crest cell fate decision.  相似文献   

4.
Cells in the neurectoderm of Drosophila face a choice between neural and epidermal fates. On the notum of the adult fly, neural cells differentiate sensory bristles in a precise pattern. Evidence has accumulated that the bristle pattern arises from the spatial distribution of small groups of cells, proneural clusters, from each of which a single bristle will result. One class of genes, which includes the genes of the achaete-scute complex, is responsible for the correct positioning of the proneural clusters. The cells of a proneural cluster constitute an equivalence group, each of them having the potential to become a neural cell. Only one cell, however, will adopt the primary, dominant, neural fate. This cell is selected by means of cellular interactions between the members of the group, since if the dominant cell is removed, one of the remaining, epidermal, cells will switch fates and become neural. The dominant cell therefore prevents the other cells of the group from becoming neural by a phenomenon known as lateral inhibiton. They, then, adopt the secondary, epidermal, fate. A second class of genes, including the gene shaggy and the neurogenic genes mediate this process. There is some evidence that a proneural cluster is composed of a small number of cells, suggesting a contact-based mechanism of communication. The molecular nature of the protein products of the neurogenic genes is consistent with this idea.  相似文献   

5.
The neuroectoderm of insects contains an initially indifferent population of cells which during later development will give rise to the progenitor cells of the neural and epidermal lineages. Experimental evidence indicates that cellular interactions determine which cells will adopt each one of these fates. Transplantation experiments suggest that a signal with neuralising character is required to stabilize the primary neural fate in 25% of all the neuroectodermal cells, which will develop as neuroblasts, and that an epidermalising signal contributes to suppress the neural fate in the remaining 75% of the cells, allowing in this way their development as epidermal progenitor cells. The invoked cell interactions are assumed to be mediated by the products of several genes forming a complex, not yet well understood network of interrelationships. Elements of this network are the proteins encoded by Delta and Notch, which appear to convey the regulatory signals between the cells; the proteins encoded by the achaete-scute gene complex, which regulate neural development; and the proteins encoded by the Enhancer of split gene complex, which give neuroectodermal cells access to epidermal development. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The molecular genetics of early neurogenesis in Drosophila melanogaster   总被引:2,自引:0,他引:2  
The extent of neurogenesis in Drosophila is under the control of the so-called neurogenic genes, named for their mutant phenotype of causing neural hyperplasia. Their wild-type products appear to be responsible for a signal chain that decides the fate of ectodermal cells in the embryo. Various kinds of data, from cell transplantation experiments as well as from genetic and molecular analyses, suggest that the proteins encoded by the genes Notch and Delta may act at the membrane of the signal-transmitting cells to provide a ligand to a still unknown receptor molecule; in contrast, the locus of Enhancer of split codes for several functions related to the transduction and further processing of the signal.  相似文献   

7.
8.
9.
10.
Functional interactions of neurogenic genes of Drosophila melanogaster   总被引:14,自引:6,他引:8  
The neurogenic genes of Drosophila melanogaster are involved in the decision of ectodermal cells to take on a neural or an epidermal fate. We present evidence in support of the notion that six of the neurogenic genes are functionally related. We studied the phenotype of embryos lacking one of the neurogenic genes in the presence of an increased dosage of the wild-type allele of another neurogenic gene. Our analysis also included the Hairless locus, whose function is related to that of the neurogenic genes, as well as to many other genes. The effects observed were asymmetric in that triploidy for a given gene modified the phenotype of loss of the function of another gene, but triploidy of the latter gene did not modify the phenotype of loss of the function of the former gene. These asymmetries allowed us to establish a polarity of gene interactions, as well as to order the genes according to the assumed ability of some of them to modify the activity of others. In this sequence, almondex is the first link and Enhancer of split the last one. Our evidence suggests that the function of big brain is independent of the function of the other six. The consequences of this arrangement for the commitment of ectodermal cells are discussed.  相似文献   

11.
D. F. Lyman  B. Yedvobnick 《Genetics》1995,141(4):1491-1505
The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H(+) transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H(+) transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.  相似文献   

12.
Only a subset of cleavage stage blastomeres in the Xenopus embryo is competent to contribute cells to the retina; ventral vegetal blastomeres do not form retina even when provided with neuralizing factors or transplanted to the most retinogenic position of the embryo. These results suggest that endogenous maternal factors in the vegetal region repress the ability of blastomeres to form retina. Herein we provide three lines of evidence that two vegetal-enriched maternal factors (VegT, Vg1), which are known to promote endo-mesodermal fates, negatively regulate which cells are competent to express anterior neural and retinal fates. First, both molecules can repress the ability of dorsal-animal retinogenic blastomeres to form retina, converting the lineage from neural/retinal to non-neural ectodermal and endo-mesodermal fates. Second, reducing the endogenous levels of either factor in dorsal-animal retinogenic blastomeres expands expression of neural/retinal genes and enlarges the retina. The dorsal-animal repression of neural/retinal fates by VegT and Vg1 is likely mediated by Sox17alpha and Derriere but not by XNr1. VegT and Vg1 likely exert their effects on neural/retinal fates through at least partially independent pathways because Notch1 can reverse the effects of VegT and Derriere but not those of Vg1 or XNr1. Third, reduction of endogenous VegT and/or Vg1 in ventral vegetal blastomeres can induce a neural fate, but only allows expression of a retinal fate when both BMP and Wnt signaling pathways are concomitantly repressed.  相似文献   

13.
Summary Mutations previously known to affect early neurogenesis inDrosophila melanogaster have been found also to affect the development of the peripheral nervous system. Anti-HRP antibody staining has shown that larval epidermal sensilla of homozygous mutant embryos occur in increased numbers, which depend on the allele considered. This increase is apparently due to the development into sensory organs of cells which in the wild-type would have developed as non-sensory epidermis. Thus, neurogenic genes act whenever developing cells have to decide between neurogenic and epidermogenic fates, both in central and peripheral nervous systems. Different regions of the ectodermal germ layer are distinguished with respect to their neurogenic abilities.  相似文献   

14.
Inhibitory control of neural differentiation in mammalian cells   总被引:2,自引:0,他引:2  
 In Xenopus embryos, a truncated type II activin receptor (Δ1XAR1), capable of blocking signals by several transforming growth factor (TGF)-β family members, can induce neural tissue suggesting neural fate is under inhibitory control. Activin and bone morphogenetic protein 4 (BMP4) can act as neural inhibitors but only BMP4 can induce epidermis in Xenopus ectodermal cells. We have used the pluripotent mouse embryonal carcinoma cell line P19 to examine whether the mechanisms of ectodermal cell fate decisions are conserved among vertebrates. We show that a P19 cell line expressing Δ1XAR1 will differentiate into neurons. In addition, BMP4 inhibits retinoic acid (RA)-induced neural differentiation of P19 cells and induces keratin expression. These results suggest that in mammals as in amphibians neural fate is under inhibitory control and BMP4 can alter ectodermal differentiation. Received: 23 September 1996 / Accepted: 8 January 1997  相似文献   

15.
16.
17.
Neurons of cranial sensory ganglia are derived from the neural crest and ectodermal placodes, but the mechanisms that control the relative contributions of each are not understood. Crest cells of the second branchial arch generate few facial ganglion neurons and no vestibuloacoustic ganglion neurons, but crest cells in other branchial arches generate many sensory neurons. Here we report that the facial ganglia of Hoxa2 mutant mice contain a large population of crest-derived neurons, suggesting that Hoxa2 normally represses the neurogenic potential of second arch crest cells. This may represent an anterior transformation of second arch neural crest cells toward a fate resembling that of first arch neural crest cells, which normally do not express Hoxa2 or any other Hox gene. We additionally found that overexpressing Hoxa2 in cultures of P19 embryonal carcinoma cells reduced the frequency of spontaneous neuronal differentiation, but only in the presence of cotransfected Pbx and Meis Hox cofactors. Finally, expression of Hoxa2 and the cofactors in chick neural crest cells populating the trigeminal ganglion also reduced the frequency of neurogenesis in the intact embryo. These data suggest an unanticipated role for Hox genes in controlling the neurogenic potential of at least some cranial neural crest cells.  相似文献   

18.
H Ruohola  K A Bremer  D Baker  J R Swedlow  L Y Jan  Y N Jan 《Cell》1991,66(3):433-449
Oogenesis in Drosophila involves specification of both germ cells and the surrounding somatic follicle cells, as well as the determination of oocyte polarity. We found that two neurogenic genes, Notch and Delta, are required in oogenesis. These genes encode membrane proteins with epidermal growth factor repeats and are essential in the decision of an embryonic ectodermal cell to take on the fate of neuroblast or epidermoblast. In oogenesis, mutation in either gene leads to an excess of posterior follicle cells, a cell fate change reminiscent of the hyperplasia of neuroblasts seen in neurogenic mutant embryos. Furthermore, the Notch mutation in somatic cells causes mislocalization of bicoid in the oocyte. These results suggest that the neurogenic genes Notch and Delta are involved in both follicle cell development and the establishment of anterior-posterior polarity in the oocyte.  相似文献   

19.
20.
Specifying multiple cell types from a population of initially equivalent cells is a fundamental process in the development of all multicellular organisms. Neural development in the fruit fly Drosophila melanogaster provides an excellent venue in which to examine mechanisms of cell fate specification. Inhibitory cell–cell interactions mediated by genes of the Notch-Delta signaling pathway govern the selection of neural and epidermal fates among cells with equivalent developmental potential in a process termed lateral inhibition. Recent data on the roles of genes such as Notch, Delta, and kuzbanian warrant a rethinking of the lateral inhibition model. Furthermore, evidence for a positive signaling pathway promoting the neural fate among equivalent cells suggests that this mechanism acts in addition to lateral inhibition to specify cell fate. A balance of opposing signals may be necessary to correctly partition cells of different types from an initially homogeneous population of cells. BioEssays 20 :209-214, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号