首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Labelled fertilizer N applied to winter wheat as Na15NO3 and (15NH4)2SO4 at a total N dressing of 100kg ha−1 was used in a microplot balance study to investigate the fate of each split fraction at three growth stages: end of tillering, heading and beginning of flowering. Results indicated that while the percentage utilization of the applied N by the grain and total crop increased considerably from the first to the third split application, these values diminished steadily in the straw. Grain recovery values for the first, second and third split applications were 34.2%, 51.5% and 55.7% for the NO3 and 32.3%, 48.4% and 52.5% for the NH4 carrier, respectively. The corresponding recovery values for the whole plant were 54.6%, 67.8% and 69.9% for the NO3 and 51.7%, 63.5% and 66.1% for the NH4 carrier. A greater proportion of the fertilizer N applied at the end of tillering stage was found in the vegetative plant components as compared with the grain. The reverse occurred for the N applied at the heading and at the beginning of the flowering stages. The residual fertilizer N found in the soil amounted to 18.0%, 10.4% and 11.6% of the applied NO3−N and to 22.5%, 12.7% and 15.2% of the applied NH4−N for the respective split applications. No differences were found for each split application between the two carriers as far as the unaccounted fertilizer N was concerned. The losses were 26.6%, 22.3% and 18.6% of the applied N for the three split applications, respectively. The application of fertilizer N did not lead to any increase in soil N uptake by the crop.  相似文献   

2.
Summary In pot experiments the NO 3 accumulation and the occurrence of nitrate reductase (NR) capacity of wheat plants were investigated depending on late N applications at tillering, shooting and heading. NO 3 is preferentially accumulated in the stems, while NR dominates in the leaves. NO 3 accumulation is enhanced by late N treatments especially if N supply at seeding is sufficient. NR capacity of the plants is stimulated by late nitrogen supply, but its increment rates decrease with increasing NO 3 accumulation.  相似文献   

3.
Summary A study of the effects of malathion and parathion applied at 10 and 50 g/g of soil on transformations of urea and (NH4)2SO4–N in a sandy loam showed that the insecticides retarded urea hydrolysis as well as nitrification of urea and (NH4)2SO4–N. At 50 parts/106 rate of the insecticides, inhibition of urea hydrolysis ranged from 44 to 61% after 0.5 week and from 7 to 21% after 3 weeks of application. The insecticides inhibited the conversion of NH4 + to NO2 without appreciably affecting the subsequent oxidation of NO2 to NO3 –N. This resulted in accumulation of higher amounts of NH4 +–N in soil samples treated with ammonium sulfate or urea N.The results suggest that transformations of urea and NH4 + fertilizers in soils may be influenced by the amount of organophosphorus insecticide present and this may affect plant nutrition and fertilizer use.  相似文献   

4.
Although the variation in natural 15N abundance in plants and soils is well characterized, mechanisms controlling N isotopic composition of organic matter are still poorly understood. The primary goal of this study was to examine the role of NH3 volatilization from ungulate urine patches in determining 15N abundance in grassland plants and soil in Yellowstone National Park. We additionally used isotopic measurements to explore the pathways that plants in urine patches take up N. Plant, soil, and volatilized NH315N were measured on grassland plots for 10 days following the addition of simulated urine. Simulated urine increased 15N of roots and soil and reduced 15N of shoots. Soil enrichment was due to the volatilization of isotopically light NH3. Acid-trapped NH315N increased from –28 (day 1) to –0.3 (day 10), and was lighter than the original urea-N added (1.2). A mass balance analysis of urea-derived N assimilated by plants indicated that most of the N taken up by plants was in the form of ammonium through roots. However, isotope data also showed that shoots directly absorbed 15N – depleted NH3-N that was volatilized from simulated urine patches. These results indicate that NH3 volatilization from urine patches enriches grassland soil with 15N and shoots are a sink for volatilized NH3, which likely leads to accelerated cycling of excreted N back to herbivores.  相似文献   

5.
In a field experiment performed in microplots, winter wheat was fertilized at two different total N dressings (135 and 180 kg ha–1) split-applied as Na15NO3 in three equal applications at tillering, stem elongation, and flag leaf.No significant differences were found in the percentage recovery values for the entire plant at the three split applications between the two N dressings. The total percentage recovery of fertilizer N by the plant was high and practically equal at both fertilization levels (76.65% and 75.84% for 135 and 180 kg N ha–1, respectively); crop yields were also similar. In contrast, gaseous losses calculated after drawing up the balance sheet were, in absolute values, higher for the tillering and stem elongation split applications when using the 180 kg N ha–1 dressing (7.67 and 4.84 kg N ha–1, respectively) than for the 135 kg N ha–1 dressing (3.45 and 1.26 kg N ha–1, respectively). They were found to be zero at flag leaf at both fertilization levels. The amount of applied fertilizer N did not influence the amount of N taken up from the soil which was about 143 kg ha–1.  相似文献   

6.
Hansen  J.P.  Vinther  F.P. 《Plant and Soil》2001,237(2):257-266
Aiming at estimating the spatial variability in N2 fixation, and to evaluate the appropriateness of the 15N isotope dilution (ID) method and the natural15N abundance (NA) method in reflecting spatial variability under the influence of cattle grazing, the symbiotic N2 fixation in grass–white clover mixture was studied. At the Foulum site, where the ID method was used, differences in the climatic conditions between the two years of investigations caused a considerable difference in plant growth rates and proportion of clover. Consequently, the total N2 fixation in ungrazed reference plots was significantly less in 1998 than in 1997, being 5.9 and 12.5 g N m–2, respectively. In both years there was a wide range in concentration of inorganic N in the soil with coefficients of variance of approximately 60–190% for ammonium and 70–340% for nitrate. Significant negative correlations between pNdfa, determined by the ID method, and the log-transformed values of inorganic N and total N in grass were found. The NA method was applied on three nearby commercial dairy farms. They also showed high coefficients of variation. The coefficient of variance for NO3 -N ranged from 37 to 282% and for NH4 +-N from 29 to 237%. Average estimates of pNdfa values, which in the NA method were calculated using apparent B values ranging from –2.10 to –2.59, were generally lower (0.7–0.87) for these farms than for the Foulum site (0.89–0.95) using the ID method. For the NA method the 15N values, i.e. deviation in 15N concentration from atmospheric N2, ranged from –7.0 to 5.7 for the grass N, which in several cases was lower than for clover N. Due to this high variability of the 15N values, probably caused by deposition and plant assimilation of 15N depleted urinary N in the pastures, the NA method was marginal for accurate determination of pNdfa. Consequently no significant correlation between the pNdfa determined by this method, and the log-transformed values of inorganic N in soil or total N in grass were found.  相似文献   

7.
Choi  Woo-Jung  Lee  Sang-Mo  Ro  Hee-Myong  Kim  Kyoung-Cheol  Yoo  Sun-Ho 《Plant and Soil》2002,245(2):223-232
To investigate the effect of inorganic fertilizer and composted manure amendments on the N isotope composition (delta 15N) of crop and soil, maize (Zea mays L.) was cultivated under greenhouse conditions for 30, 40, 50, 60, and 70 days. Composted pig manure (delta 15N= +13.9) and urea (-2.3) were applied at 0 and 0 kg N ha–1 (C0U0), 0 and 150 kg N ha–1 (C0U2), 150 and 0 kg N ha–1 (C2U0), and 75 and 75 kg N ha–1 (C1U1), respectively. The delta 15N of total soil-N was not affected by both amendments, but delta 15N of NH+ 4 and NO 3 provided some information on the N isotope fractionation in soil. During the early growth stage, significant differences (P < 0.05) in delta 15N among maize subjected to different treatments were observed. After 30 days of growth, the delta 15N values of maize were +6.6 for C0U0, +1.1 for C0U2, +7.7 for C2U0, and +4.5 for C1U1. However, effects of urea and composted manure application on maize delta 15N progressively decreased with increasing growth period, probably due to isotope fractionation accompanying N losses and increased uptake of soil-derived N by maize. After 70 days of growth, delta 15N of leaves and grains of maize amended with composted pig manure were significantly (P < 0.05) higher than those with urea. The temporal variations in delta 15N of maize amended with urea and composted manure indicate that plant delta 15N is generally not a good tracer for N sources applied to field. Our data can be used in validation of delta 15N fractionation models in relation to N source inputs.  相似文献   

8.
The stable isotope15N was added as (15NH4)2SO4 to throughfall water for one year, to study the fate of the deposited nitrogen at different levels of N deposition in two N saturated coniferous forests ecosystems in the Netherlands. The fate of the15N was followed at high-N (44–55 kg N ha–1 yr–1) 1) and low-N (4–6 kg N ha–1 yr–1) deposition in plots established under transparent roofs build under the canopy in a Douglas fir (Pseudotsuga menziesii (Mirb.) Franco.) and Scots pine (Pinus sylvestris L.) forest.The applied15N was detectable in needles and twigs, the soil and soil water leaching below the rooting zone (90 cm depth). Total15N recovery in major ecosystem compartments was 71–100% during two successive growing seasons after the start of a year-round15N application to throughfall-N. Nine months after the year-round15N application, the15N assimilated into tree biomass was 29–33% of the15N added in the Douglas fir stand and less than 17% in the Scots pine stand. At the same time total15N retention in the soil (down to 70 cm) of the high-N plots was about 37% of the deposited15NH4-N, whereas 46% and 65% of the15N was found in the soil of the low-N deposition plots at the Douglas fir and Scots pine stand, respectively. The organic layers accounted for 60% of the15N retained in the soil. The total N deposition exceeded the demand of the vegetation and microbial immobilization. Total15N leaching losses within a year (below 90 cm) were 10–20% in the high-N deposition plots in comparison to 2–6% in the lowered nitrogen input plots. Relative retention in the soil and vegetation increased at lower N-input levels.Species differences in uptake and tree health seem to contribute to lower15N recoveries in the Scots pine trees compared to the Douglas fir trees. The excessive N deposition and resulting N saturation lead to conditions were the health and functioning of biota were negatively influenced. At decreased N deposition, lower leaching losses together with increased soil and plant retention indicated a change in the fate of the15N deposited. This may have resulted from changes in ecosystem processes, and thus a shift along the continuum of N saturation to N limitation.  相似文献   

9.
Clough  T.J.  Ledgard  S.F.  Sprosen  M.S.  Kear  M.J. 《Plant and Soil》1998,199(2):195-203
A field lysimeter experiment was conducted over a 406 day period to determine the effect of different soil types on the fate of synthetic urinary nitrogen (N). Soil types included a sandy loam, silty loam, clay and peat. Synthetic urine was applied at 1000 kg N ha-1, during a winter season, to intact soil cores in lysimeters. Leaching losses, nitrous oxide (N2O) emissions, and plant uptake of N were monitored, with soil 15N content determined upon destructive sampling of the lysimeters. Plant uptake of urine-N ranged from 21.6 to 31.4%. Soil type influenced timing and form of inorganic-N leaching. Macropore flow occurred in the structured silt and clay soils resulting in the leaching of urea. Ammonium (NH 4 + –N), nitrite (NO 2 - –N) and nitrate (NO3 -–N) all occurred in the leachates with maximum concentrations, varying with soil type and ranging from 2.3–31.4 g NH 4 + –N mL-1, 2.4–35.6 g NO 2 - –N mL-1, and 62–102 g NO 3 - –N mL-1, respectively. Leachates from the peat and clay soils contained high concentrations of NO 2 - –N. Gaseous losses of N2O were low (<2% of N applied) over a 112 day measurement period. An associated experiment showed the ratio of N2–N:N2O–N ranged from 6.2 to 33.2. Unrecovered 15N was presumed to have been lost predominantly as gaseous N2. It is postulated that the high levels of NO 2 - –N could have contributed to chemodenitrification mechanisms in the peat soil.  相似文献   

10.
Destain  J. P.  Francois  E.  Guiot  J.  Goffart  J. P.  Vandergeten  J. P.  Bodson  B. 《Plant and Soil》1993,155(1):367-370
Since 1986, the fate of fertilizer N (NH4NO3 or NaNO3) applied in field conditions on two main arable crops, winter wheat (Triticum aestivum) and sugar beet (Beta vulgaris), has been studied using 15N. Up to a rate of 200 kg ha-1 of N, mean recovery of fertilizer by winter wheat was 70%, provided it had been split applied. Single application (with or without dicyandiamid) was less effective. For sugar beet, in 1990, 1991 and 1992, 40% of fertilizer N was found in the crop at harvest when NH4NO3 had been broadcast at 100 to 160 kg N ha-1 at sowing time. For the same N rate, recovery was 50% when row applied near the seeds and 60% for 80 kg N ha-1. For the two experimental crops, residual fertilizer N in soil was exclusively organic. It ranged from 15 to 30% of applied N and was located in the 30 cm upper layer. Losses were generally lower with winter wheat (12%) than with sugar beet (20–40%) and could be ascribed to volatilization and denitrification. Soil derived N taken up by the plant was site and year dependent.  相似文献   

11.
A glasshouse experiment was conducted to study the effect of Ni on the growth and nutrients concentration in wheat (Triticum aestivum Cv. WH 291) in the presence and absence of applied N as urea. Responses to N application were observed up to 120 g N g–1 soil. No response to Ni was observed in the dry matter yield of wheat tops (leaves + stem) in the absence of applied N while in the presence of applied N, significant yield increases were obtained at 12.5g Ni g–1 soil. Nickel was not toxic to wheat up to 50g Ni g–1 soil in the presence of 120g N g–1 soil. Nitrogen and Ni concentration in wheat tops and roots increased with increasing levels of applied N and Ni, respectively. Applied Ni had an antagonistic effect on N concentration. Similarly, N reduced the Ni concentration in the wheat tissues. Positive growth responses to Ni were associated with 22 and 15g Ni g–1 in wheat tops, in the presence of applied N at 60 and 120g N g–1 soil, while Ni toxicity was associated with 63, 92.5 and 112.5g Ni g–1 in wheat tops, in the absence and presence of applied N at 60 and 120g N g–1 soil, respectively.  相似文献   

12.
Summary The effects of concentration and source (NH4, NO3, and NO3 plus NH4) of added N on the rate of growth, final yield, and content and rate of intake of N, P, K, Ca, Mg and S by wheat seedlings were evaluated. Rate of growth in dilute liquid cultures differed among the N sources giving yields relative to those of the all-NO3 system of 92 per cent for the all-NH4 system, and of 154 per cent for the NO3 plus NH4 system. At low rates of NH4 intake in the all-NH4 systems growth rates were equal to or slightly better than those of plants supplied equivalent concentrations of NO3. Rates of NH4 intake exceeding 100 mole g–1 h–1 resulted in reduced growth rates and incipient NH4 toxicity. Yields at 95 per cent of maximum resulted with steady-state N concentrations of 80 M in all NO3 systems, 30 M NH4 in all-NH4 systems, and in combined source systems when 200M NO3 plus 30 M NH4 were supplied. The rate of N intake and plant protein content, were maximal when both NO3 and NH4 were supplied. Increasing rates of NO3 intake were associated with increases in the rates of Ca, Mg, and K intake; but with increasing rates of NH4 absorption, intake of Ca and Mg decreased. The yield and growth rate enhancement observed from the addition of low concentrations of NH4 to cultures supplying adequate NO3 is suggested to result from the reduced energy requirement for utilization of NH4, as compared to NO3 in protein synthesis and from the increased photosynthetic capacity of the higher-protein NH4-fed plants. In the all-NH4 systems the maximum attainable growth rate was limited by NH4 toxicity; whereas in the all-NO3 systems the rate of NO3 reduction was limiting.Contribution from the Department of Soils and Plant Nutrition, University of California, Davis, California 95616.  相似文献   

13.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

14.
Summary The fate of 100 kg N ha–1 applied as15N-urea and its modified forms was followed in 4 successive field-grown wetland rice crops in a vertisol. The first wet season crop recovered about 27 to 36.6% of the applied N depending upon the N source. In subsequent seasons the average uptake was very small and it gradually decreased from 1.4 to 0.5 kg N ha–1 although about 18 to 20, 12 to 17 and 14 to 18 kg ha–1 residual fertilizer N was available in the root zone after harvest of first, second and third crops, respectively. The average uptake of the residual fertilizer N was only 7.6% in the second crop and it decreased to 4.5% in the third and to 3.2% in the fourth crop although all these crops were adequately fertilized with unlabelled urea. The basal application of neem coated urea was more effective in controlling the leaching loss of labelled NH4+NO3–N than split application of uncoated urea. In the first 3 seasons in which15N was detectable, the loss of fertilizer N through leaching as NH4+NO3–N amounted to 0.5 kg ha–1 from neem-coated urea, 1.5 kg from split urea and 4.1 kg from coal tar-coated urea. At the end of 4 crops, most of the labelled fertilizer N (about 69% on average) was located in the upper 0–20 cm soil layer showing very little movement beyond this depth. In the profile sampled upto 60 cm depth, totally about 13.8 kg labelled fertilizer N ha–1 from neem-coated urea, 12.7 kg from coal-tar coated urea, and 11.8 kg from split urea were recovered. The average recovery of labelled urea-N in crops and soil during the entire experimental period ranged between 42 and 51%. After correcting for leaching losses, the remaining 47 to 56% appeared to have been lost through ammonia volatilization and denitrification.  相似文献   

15.
Denitrification was directly estimated in estuarine sediments of Waquoit Bay, Cape Cod, MA by detection of N2 increases above ambient in the water overlying sediment cores. Denitrification rates (–9 to 712 mol N2 m–2 h–1 ) were high compared to previous studies, but compared well with estimates of N loss from mass balance studies. The precision of the estimate depended on the N2/02 flux ratio. The N2/02 flux ratio was lower in Waquoit Bay than previously studied estuaries, and estuaries had lower N2/02 flux ratios than shelf sites. The contribution of temperature-driven solubility changes to estuarine fluxes was estimated by modeling sediment temperature variations and found to be potentially important (43 mol N2 m–2 h–1); however, control incubations indicate the temperature model overestimates solubility driven fluxes. The relatively low fluxes under anaerobic conditions and the low rate of N03 /N02 removal from the overlying water indicates coupled nitrification/denitrification produced the observed N2 fluxes.  相似文献   

16.
Atmospheric CO2 levels are expected to exceed 700 mol mol–1 by the end of the 21st century. The influence of increased CO2 concentration on crop plants is of major concern. This study investigated water- and nitrogen-use efficiency (WUE and NUE, respectively, were defined by the amount of biomass accumulated per unit water or N uptake) of spring wheat (Triticum aestivumL.) grown under two atmospheric CO2 concentrations (350 and 700 mol mol–1), two soil moisture treatments (well-watered and drought) and five nitrogen amendment treatments. Results showed that enriched CO2 concentration increased canopy WUE, and more N supply led to higher WUE under the increased CO2. Canopy WUE was significantly lower in well-watered treatments than in drought treatment, but increased with the increased N supply. Elevated CO2 reduced the apparent recovery fraction of applied N by the plant root system (Nr, defined as the ratio of the increased N uptake to N applied), but increased the NUE and agronomic N efficiency (NAE, defined as the ratio of the increased biomass to N applied). Water limitation and high N application reduced the Nr, NUE and NAE, indicating a poor N efficiency. In addition, there was a close relationship between the root mass ratio and NUE. Canopy WUE was negatively related to the root mass ratio and NUE. Our results indicated that CO2 enrichment enhanced WUE more at high N application, but increased NUE more when N application was less.  相似文献   

17.
Sutton  M.A.  Milford  C.  Nemitz  E.  Theobald  M.R.  Hill  P.W.  Fowler  D.  Schjoerring  J.K.  Mattsson  M.E.  Nielsen  K.H.  Husted  S.  Erisman  J.W.  Otjes  R.  Hensen  A.  Mosquera  J.  Cellier  P.  Loubet  B.  David  M.  Genermont  S.  Neftel  A.  Blatter  A.  Herrmann  B.  Jones  S.K.  Horvath  L.  Führer  E.C.  Mantzanas  K.  Koukoura  Z.  Gallagher  M.  Williams  P.  Flynn  M.  Riedo  M. 《Plant and Soil》2001,228(1):131-145
A new study to address the biosphere-atmosphere exchange of ammonia (NH3) with grasslands is applying a European transect to interpret NH3 fluxes in relation to atmospheric conditions, grassland management and soil chemistry. Micrometeorological measurements using the aerodynamic gradient method (AGM) with continuous NH3 detectors are supported by bioassays of the NH3 `stomatal compensation point' (s). Relaxed eddy accumulation (REA) is also applied to enable flux measurements at one height; this is relevant to help address flux divergence due to gas-particle inter-conversion or the presence of local sources in a landscape.Continuous measurements that contrast intensively managed grasslands with semi-natural grasslands allow a scaling up from 15 min values to seasonal means. The measurements demonstrate the bi-directional nature of NH3 fluxes, with typically daytime emission and small nocturnal deposition. They confirm the existence of enhanced NH3 emissions (e.g. 30 g N ha–1 d–1) following cutting of intensively managed swards. Further increased emissions follow fertilization with NH4NO3 (typically 70 g N ha–1 d–1). Measurements using REA support these patterns, but require a greater analytical precision than with the AGM.The results are being used to develop models of NH3 exchange. `Canopy compensation point' resistance models reproduce bi-directional diurnal patterns, but currently lack a mechanistic basis to predict changes in relation to grassland phenology. An advance proposal here is the coupling of s to dynamic models of grassland C–N cycling, and a relationship with modelled plant substrate-N is shown. Applications of the work include incorporation of the resistance models in NH3 dispersion modelling and assessment of global change scenarios.  相似文献   

18.
Four-year-old saplings of Scots pine (Pinus sylvestris) (L.) were exposed for 11 weeks in controlled-environment chambers to charcoad-filtered air, or to charcoal-filtered air supplemented with NH3 (40 g m–3), O3 (110 g m–3 during day/ 40 g m–3 during night) or NH3+O3. All treatments were carried out at ambient (259 L L–1) and at elevated CO2 concentration (700 L L–1). Total tree biomass, mycorrhizal infection, net CO2 assimilation (Pn), stomatal conductance (gs), transpiration of the shoots and NH3 metabolization of the needles were measured. In ambient CO2 (1) gaseous NH3 decreased mycorrhizal infection, without significantly affecting tree biomass or N concentration and it enhanced the activity of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in one-year-old needles; (2) ozone decreased mycorrhizal infection and the acitivity of GS in the needles, while it increased the activity og GDH; (3) exposure to NH3+O3 lessened the effects of single exposures to NH3 and O3 on reduction of mycorrhizal infection and on increase in GDH activity. Similar lessing effects on mycorrhizal infection as observed in trees exposed to NH3+O3 at ambient CO2, were measured in trees exposed to NH3+O3 at elevated CO2. Exposure to elevated CO2 without pollutants did not significantly affect any of the parameters studied, except for a decrease in the concentration of soluble proteins in the needles. Elevated CO2 _NH3 strongly decreased root branching and mycorrhizal infection and temporarily stimulated Pn and gs. The exposure to elevated CO2+NH3+O3 also transiently stimulated Pn. The possible mechanisms underlying and integrating these effects are discussed. Elevated CO2 clearly did not alleviate the negative effects of NH3 and O3 mycoorhiral infection. The significant reduction of mycorrhizal infection after exposure to NH3 or O3, observed before significant changes in gas exchange or growth occurred, suggest the use of mycorrhizal infection as an early indicator for NH3 and O3 induced stress.Abbreviations DW dry weight - FA filtered air - FAa filtered air at ambient CO2 - FAe filtered air at elevated CO2 - FW fresh weight - GDH glutamate dehydrogenase - GS glutamine synthetase - gs stomatal conductance - Pn net CO2 assimilation - RWR root weight ratio - SRL specific root length  相似文献   

19.
The measurement of natural 15N abundance is a well-established technique for the identification and quantification of biological N2 fixation in plants. Associative N2 fixing bacteria have been isolated from sugarcane and reported to contribute potentially significant amounts of N to plant growth and development. It has not been established whether Australian commercial sugarcane receives significant input from biological N2 fixation, even though high populations of N2 fixing bacteria have been isolated from Australian commercial sugarcane fields and plants. In this study, 15N measurements were used as a primary measure to identify whether Australian commercial sugarcane was obtaining significant inputs of N via biological N2 fixation. Quantification of N input, via biological N2 fixation, was not possible since suitable non-N2 fixing reference plants were not present in commercial cane fields. The survey of Australian commercially grown sugarcane crops showed the majority had positive leaf 15N values (73% >3.00, 63% of which were >5.00), which was not indicative of biological N2 fixation being the major source of N for these crops. However, a small number of sites had low or negative leaf 15N values. These crops had received high N fertiliser applications in the weeks prior to sampling. Two possible pathways that could result in low 15N values for sugarcane leaves (other than N2 fixation) are proposed; high external N concentrations and foliar uptake of volatilised NH3. The leaf 15N value of sugarcane grown in aerated solution culture was shown to decrease by approximately 5 with increasing external N concentration (0.5–8.0 mM), with both NO3 and NH4 + nitrogen forms. Foliar uptake of atmospheric NH3 has been shown to result in depleted leaf 15N values in many plant species. Acid traps collected atmospheric N with negative 15N value (–24.45±0.90) from above a field recently surface fertilised with urea. The 15N of leaves of sugarcane plants either growing directly in the soil or isolated from soil in pots dropped by 3.00 in the same field after the fertiliser application. Both the high concentration of external N in the root zone (following the application of N-fertilisers) and/or subsequent foliar uptake of volatilised NH3 could have caused the depleted leaf 15N values measured in the sugarcane crops at these sites.  相似文献   

20.
Respiration, ammonia and phosphate excretion experiments were performed with planula larvae ofAurelia aurita (Scyphozoa) from Kiel Fjord, Baltic Sea, in summer 1983. The mean respiration measured was 3.22 nl O2 ind–1 h–1 (at 20 °C). Excretion experiments revealed average values of 11.41 pM NH4-N ind–1, and 0.92 pM PO4-P ind–1h–1, respectively. The atomic C:N:P ratio of excretion products was 133:10:1. The O:N ratio of 25:1 and O:P ratio of 313:1 point to a lipid-carbohydrate-oriented catabolism of theAurelia larvae. On the basis of experimental results and of biomass determinations, the maximal survival period of the non-feeding free swimming planula stage was calculated. Typically, the value lies in the range of some days to one week.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号