首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
In order to develop statistical models to predict respiratory heat loss in dairy cattle using simple physiological and environmental measurements, 15 Holstein cows were observed under field conditions in a tropical environment, in which the air temperature reached up to 40°C. The measurements of latent and sensible heat loss from the respiratory tract of the animals were made by using a respiratory mask. The results showed that under air temperatures between 10 and 35°C sensible heat loss by convection decreased from 8.24 to 1.09 W m–2, while the latent heat loss by evaporation increased from 1.03 to 56.51 W m–2. The evaporation increased together with the air temperature in almost a linear fashion until 20°C, but it became increasingly high as the air temperature rose above 25°C. Convection was a mechanism of minor importance for respiratory heat transfer. In contrast, respiratory evaporation was an effective means of thermoregulation for Holsteins in a hot environment. Mathematical models were developed to predict both the sensible and latent heat loss from the respiratory tract in Holstein cows under field conditions, based on measurements of the ambient temperature, and other models were developed to predict respiration rate, tidal volume, mass flow rate and expired air temperature as functions of the ambient temperature and other variables.This paper forms part of A. S. Campos Maias doctoral thesis.  相似文献   

2.
Summary The decreasing effect of -adrenergic blockade on skin resistance to vapor diffusion and the onset of cutaneous water evaporation in the pigeon (Columba livia) was investigated. Oral administration of 1, 2.3 and 5 mg propranolol to pigeons (268±53 g) initiated intensive trans-cutaneous water evaporation (CWE) up to 29.1 mg H2O·cm–2·h–1 in resting birds at 30°C air temperature (Ta), but had only a slight effect on CWE of birds exposed to 50 °C Ta.After 7 h of effective -adrenergic blockade (oral administration of 5 mg propranolol), skin and body temperature stabilized at 39.0±0.5 °C and 41.0±0.7 °C, compared to 40.2±0.8 °C and 41.9±0.6 °C in the control group, respectively. A slight hypothermia was accompanied by feather fluffing.Intradermal injection of 0.001, 0.01 and 0.12 mg propranolol also caused intensive CWE. Local -adrenergic blockade in relatively low blocker doses (0.001 and 0.01 mg propranolol) decreased skin resistance from a high value of 44.5 s·cm–1 to about 6.0 s·cm–1, and caused a sharp increase in CWE from a control value of about 4 to a high of 26.4 mg H2O·cm–2·h–1 during the first two hours of exposure to 30°C Ta.The possible role of -adrenergic blockade in regulation of trans-cutaneous water evaporation of latent heat dissipation is discussed.  相似文献   

3.
Summary Using a two-compartment metabolism chamber, we measured oxygen consumption simultaneously with evaporative water loss (EWL) separately from the skin and respiratory tract of pigeons exposed to various air temperatures and humidities. Both respiratory (REWL) and cutaneous (CEWL) water loss increased markedly with increasing air temperature, and latent heat loss through both routes dissipated large fractions of internal heat production during mild heat stress. CEWL as a percentage of total EWL significantly exceeded REWL (60±1.5%) at thermoneutral air temperatures, and was also a substantial fraction of total EWL at lower and higher temperatures. Both REWL and CEWL were inverse functions (apparently linear) of ambient humidity at 20 and 30 °C. These observations verify suggestions by other investigators that CEWL in birds plays a greater role in water balance and in counteracting heat stress than was previously believed.Abbreviations EWL evaporative water loss - CEWL cutaneous EWL - REWL Respiratory EWL - Oxygen consumption (cm3 g–1 h–1) - metabolic heat production per unit external surface area (W/m2) - Water vapor density (g/m3)  相似文献   

4.
Animal coat color and radiative heat gain: A re-evaluation   总被引:1,自引:0,他引:1  
Summary Thermal resistance and heat gain from simulated solar radiation were measured over a range of wind velocities in black and white pigeon plumages. Plumage thermal resistance averaged 39% (feathers depressed) or 16% (feathers erected) of that of an equivalent depth of still air. Feather erection increased plumage depth four-fold and increased plumage thermal resistance about 56%. At low wind speeds, black plumages acquired much greater radiative heat loads than did white plumages. However, associated with the greater penetration of radiation into light than dark plumages, the radiative heating of white plumages is affected less by convective cooling than is that of black plumages. Thus, the heat loads of black and white plumages converge as wind speed is increased. This effect is most prominent in erected plumages, where at wind speeds greater than 3 ms–1 black plumages acquire lower radiative heat loads than do white plumages. These results suggest that animals with dark-colored coats may acquire lower heat loads under ecologically realistic conditions than those forms with light-colored coats. Thus, the dark coat colors of a number of desert species and the white coat color of polar forms may be thermally advantageous.These results are used to test a new general model that accounts for effects of radiation penetration into a fur or feather coat upon an animal's heat budget. Even using simplifying assumptions, this model's predictions closely match measured values for plumages with feathers depressed (the typical state). Predictions using simplifying assumptions are less accurate for erected plumages. However, the model closely predicts empirical data for erected white plumages if one assumption is obviated by additional measurements. Data are not sufficient to judge whether this is also the case for erected black plumages.List of Symbols A body surface area (m2) - a L long-wave absorptivity of coat - a s short-wave absorptivity of coat - d characteristic dimension (m) - E evaporative water loss (kg m–2 s–1) - h coat thermal conductance (W m–2 °C–1) - k convection constant (s1/2 m–1) - l coat thickness (m) - L i long-wave irradiance at coat surface (W m–2) - M metabolic heat production (W m–2) - m body mass (kg) - P plumage mass (kg) - p probability per unit coat depth that a penetrating ray will strike a coat element (m–1) - q(Z) radiation absorbed at level z (W m–2) - R abs radiation absorbed by animal (W m–2) - r e external resistance to convective and radiative heat transfer (s m–1) - r Ha boundary layer resistance to convective heat transfer (s m–1) - r Hb whole-body thermal resistance (s m–1) - r Hc coat (plumage) thermal resistance (s m–1) - r Ht tissue thermal resistance (s m–1) - r s apparent resistance to radiative heat transfer (s m–1) - r(Z) thermal resistance from level z to coat surface (s m–1) - S i short-wave irradiance at coat surface (W m–2) - S radiant flux going toward skin surface (W m–2) - S + radiant flux going away from skin surface (W m–2) - T a air temperature (°C) - T b core body temperature (°C) - T e equivalent black-body temperature (°C) - T e air temperature plus temperature increment due to longwave radiation (°C) - u wind velocity (m s–1) - V heat load on animal from short-wave radiation (W m–2) - z depth within coat (m) - short-wave absorptivity of individual hairs or feather elements - emissivity - {ie211-1} - latent heat of vaporization of water (J kg–1) - short-wave reflectivity of individual hairs or feather elements - {ie211-2} short-wave reflectivity of coat - {ie212-1} short-wave reflectivity of skin - c p volumetric specific heat of air (J m–3 °C–1) - Stefan-Boltzmann constant (W m–2 °K–4) - short-wave transmissivity of individual hairs or feather elements - {ie212-2} short-wave transmissivity of coat  相似文献   

5.
The objective of this study was to compare thermal sensitivity of recipient ooplasm and donor nucleus from Holstein and Taiwan native yellow (TY) cows. Oocytes and cumulus cells from each breed were incubated at 43 °C (heat shock) or 38.5 °C (control) for 1 h prior to nucleus transplantation. Reconstructed embryos cloned by transfer of non-heated Holstein donor cells to heat-shocked Holstein ooplasm (Ho+-Hd) had a lower (P < 0.05) blastocyst rate than those cloned from non-heated Holstein ooplasm receiving heated (Ho-Hd+) or non-heated (Ho-Hd) Holstein donor cells (11.3 vs. 34.3 or 36.8%). Heat-shocked donor cells from either Holstein or TY cows did not significantly affect blastocyst rates of reconstructed embryos produced from Holstein ooplasm (30.6-32.9%). In contrast, blastocyst rates of reconstructed embryos generated with heat-shocked Holstein ooplasm were lower (P < 0.05) than that with heat-shocked TY ooplasm (11.2 vs 45.2%). Without heat shock, embryos reconstructed by transferring donor cells to ooplasm of Holstein or TY cows had similar (P > 0.05) blastocyst rates (28.9-33.3%). Transplantation of reconstructed embryos (n = 30) to recipients (n = 23) resulted in three live calves, derived from embryos cloned with TY ooplasm and donor nuclei from either Holstein (n = 2) or TY cows (n = 1). In conclusion, ooplasm of TY cattle was more resistant to heat stress than that derived from Holsteins; therefore, ooplasm may be a major determinant for thermal sensitivity in bovine oocytes and embryos.  相似文献   

6.
The emu is a large, flightless bird native to Australia. Its habitats range from the high snow country to the arid interior of the continent. Our experiments show that the emu maintains a constant body temperature within the ambient temperature range-5 to 45°C. The males regulate their body temperature about 0.5°C lower than the females. With falling ambient temperature the emu regulates its body temperature initially by reducing conductance and then by increasing heat production. At-5°C the cost of maintaining thermal balance is 2.6 times basal metabolic rate. By sitting down and reducing heat loss from the legs the cost of homeothermy at-5°C is reduced to 1.5 times basal metabolic rate. At high ambient temperatures the emu utilises cutaneous evaporative water loss in addition to panting. At 45°C evaporation is equal to 160% of heat production. Panting accounts for 70% of total evaporation at 45°C. The cost of utilising cutaneous evaporation for the other 30% appears to be an increase in dry conductance.Abbreviations A r Effective radiating surface area - BMR basal metabolic rate - C dry dry conductance - CEWL cutaneous evaporative water loss - EHL evaporative heat loss - EWL evaporative water loss - FECO2 fractional concentration of CO2 in excurrent air - FFH2O water content of chamber excurrent air - FEO2 fractional concentration of O2 in chamber excurrent air - FICO2 fractional concentration of CO2 in incurrent air - FIO2 fractional concentration of O2 in chamber incurrent air - MHP metabolic heat production - MR metabolic rate - REWL respiratory evaporative water loss - RH relative humidity - RQ respiratory quotient ; - SA surface area - SEM standard error of the mean - SNK Student-Newman-Keuls multiple range test - STPD standard temperature and pressure dry - T a ambient temperature(s) - T b body temperature(s) - T e surface temperature(s) - flow rate of air into the chamber - carbon dioxide production - oxygen consumption - vapour pressure of water  相似文献   

7.
Summary As a comparison to the many studies of larger flying insects, we carried out an initial study of heat balance and thermal dependence of flight of a small butterfly (Colias) in a wind tunnel and in the wild.Unlike many larger, or facultatively endothermic insects, Colias do not regulate heat loss by altering hemolymph circulation between thorax and abdomen as a function of body temperature. During flight, thermal excess of the abdomen above ambient temperature is weakly but consistently coupled to that of the thorax. Total heat loss is best expressed as the sum of heat loss from the head and thorex combined plus heat loss from the abdomen because the whole body is not isothermal. Convective cooling is a simple linear function of the square root of air speed from 0.2 to 2.0 m/s in the wind tunnel. Solar heat flux is the main source of heat gain in flight, just as it is the exclusive source for warmup at rest. The balance of heat gain from sunlight versus heat loss from convection and radiation does not appear to change by more than a few percent between the wings-closed basking posture and the variable opening of wings in flight, although several aspects require further study. Heat generation by action of the flight muscles is small (on the order of 100 m W/g tissue) compared to values reported for other strongly flying insects. Colias appears to have only very limited capacity to modulate flight performance. Wing beat frequency varies from 12–19 Hz depending on body mass, air speed, and thoracic temperature. At suboptimal flight temperatures, wing beat frequency increases significantly with thoracic temperature and body mass but is independent of air speed. Within the reported thermal optimum of 35–39°C, wing beat frequency is negatively dependent on air speed at values above 1.5 m/s, but independent of mass and body temperature. Flight preference of butterflies in the wind tunnel is for air speeds of 0.5–1.5 m/s, and no flight occurs at or above 2.5 m/s. Voluntary flight initiation in the wild occurs only at air speeds 1.4 m/s.In the field, Colias fly just above the vegetation at body temperatures of 1–2°C greater than when basking at the top of the vegetation. These measurements are consistent with our findings on low heat gain from muscular activity during flight. Basking temperatures of butterflies sheltered from the wind within the vegetation were 1–2°C greater than flight temperatures at vegetation height.  相似文献   

8.
Three cyanobacterial strains originating from different habitats were subjected to temperature shift exposures and monitored for levels of proline, thiol and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thermophile Mastigocladus laminosus (growth optimum, 40 °C), raised the proline level 4.2-fold at low temperature (20 °C), for the psychrophile Nostoc 593 (growth optimum, 20 °C), it was raised 8-fold at 40 °C while in the mesophile Nostoc muscorum (growth optimum, 30 °C), the imino acid level increased 2.3-fold during temperature shiftdown to 20 °C or 3.5-fold in sets facing shiftup (40 °C). Alterations in thiol levels in the above strains were in line with proline. It is suggested that such fluctuations reflect metabolic shifts as a response to stress. Interestingly, GAPDH activity was maximum at the respective growth temperature optimum of M. laminosus (122 nmol NADPH oxidized min –1 mg –1 protein) and Nostoc 593 (141 nmol NADPH oxidized min –1 mg –1 protein) while in N. muscorum, it increased at 40 °C (101 nmol NADPH oxidized min –1 mg –1 protein) and to 93.3 nmol NADPH oxidized min –1 mg –1 protein (20 °C) relative to 86 nmol NADPH oxidized min –1 mg –1 protein at 30 °C. It seems that extremophiles maintain the GAPDH activity/level during growth at their respective temperatures optimal while the mesophile increases it in order to cope up with temperature-stress.  相似文献   

9.
Venezuelan river tetra, Astyanax bimaculatus juveniles of 34.1–36.7mm standard length and 0.83–1.0g wet weight were acclimated for four weeks to 24–33°C, which are approximate average minimum and maximum river temperatures throughout the year. The fish acclimated to 24, 27, 30, and 33°C were exposed for 10000 minutes at 35, 36, 37, 38, and 39°C to determine individual heat resistance times. To determine acclimation rates, the juveniles acclimated to 24 and 30°C were tested for individual heat resistance times at 39°C by changing acclimation temperatures. The individual heat resistance times were increased in accordance with an increase in acclimation temperature and a decrease in test temperature, indicating that acclimation level has a great influence on thermal resistance of the fish tested. As the fish were transferred from 24 to 30°C (upward acclimation), they completed their acclimation level in a few days, while those transferred from 30 to 24°C (downward acclimation) required about 14 days. It has reaffirmed the following general behavior: the rate of gain in thermal resistance is fast and the loss in heat tolerance is very slow. This physiological phenomenon is very important for tropical fish, which acclimates rapidly in rising temperature during the hot day and does not lose this level in decreasing temperature during the cool night. Consequently, a tropical fish can maintain its maximum resistance level, adapt well in thermally fluctuating tropical waters, and survive in lethally high temperatures caused by a sudden increase in temperature during hot day.  相似文献   

10.
32 West African dwarf goats were exposed in respiration chambers to temperature treatments of 20, 25, 30, 35, 35, 35, 30, 25, 20°C. Each treatment lasted three days. 16 goats were kept in individual pens (I); the others in two group pens of eight animals each (G). During each treatment, heat production and activity were recorded continuously over 48 hours. In addition, feed and water intake, rectal temperature, skin temperature and respiratory rate were measured during each treatment.Compared to 20°C, at 35°C rectal temperature increased from 39.0°C to 39.9°C, respiratory rate from 30 to 260 times. min–1 and skin temperature from 37.1°C to 39.5°C. Hay intake decreased by 40%; concentrates (30 g. kg–0.75. d–1) were always completely consumed. Heat production was higher for the G animals at 20°C and higher for the I animals at 35°C. These differences in heat production between the two groups were reflected in differences in rectal and skin temperature and in respiratory rate but only very slightly in differences in hay intake.Tissue insulation was 0.014 K. m2. W–1 at 30°C and 35°C and 0.022 K. m2. W–1 at 20°C.It is concluded that the reactions of these dwarf goats to high ambient temperatures are not different in principle from those of other domestic ruminants and that they do not exhibit a specific suitability or unsuitability for ambient temperatures as prevailing in West Africa.  相似文献   

11.
12.
During the Norwegian Antarctic Expedition of 1984–1985, land parties worked in the area of Mühlig-Hofmannfjella and Gjelsvikfjella in Queen Maud Land (5° 20E, 1° 37W, 1000–1600 m a.s.l.). The nunataks in this area, which represents one of the climatic limits for terrestrial life on earth, is among those areas absorbing the highest quantity of shortwave radiation during a period of 24 h in summer. In spite of this the air temperature never, or very seldom, exceeds 0° C. The limiting factor for photosynthesis over most of the summer was water availability. Melt-water plays an important role in spring. During rest of the growth season, water from condensation is probably the most important water source for plants. On calm nights the rate of condensation during 6 h may reach 0.5 mm, which constitutes only 10%–30% of daily potential evapotranspiration. Plants situated in narrow clefts or shielded by stone blocks have the highest rate of potential photosynthesis. These locations are shielded from direct solar radiation most of the time, but the radiation from surrounding stone surfaces is higher than from the atmosphere and heat loss by turbulence is smaller than for exposed locations. These locations also probably have the highest rate of actual photosynthesis.  相似文献   

13.
We examined the effect of low temperature treatment(12°C), followed by transfer to highertemperature (25°C), on resting egg formation ofthe rotifer Brachionus plicatilis, Kamiurastrain. This strain has been mass cultured as livefeed at Kamiura Station (Japan Sea FarmingAssociation) for 9 years at 20°C without theappearance of sexual reproductive stages.After preculture in 20 l of 27 seawater at 12°C for 0, 10, 20, and 30 days,rotifers were inoculated into 0.5 l mass cultures andcultured at 25°C for 7–9 days. The inoculationdensities were changed from 20 to 400 ind. ml–1,depending on mixis rate. Condensed and frozen Nannochloropsis oculata was fed to rotifers at thefeeding rate of 0.14 µg (dry weight)rotifer–1day–1. The control was cultured at12°C for the entire 36 day experiment. No mixisappeared and no resting eggs were produced when thelow temperature treatment was 0 or 10 days. However,mixis rates reached 50-60% after 20 or 30 days ofexposure to 12°C. The number of resting eggsproduced in these treatments reached 25,500 about 13 times higher than the control. Our resultssuggest that low temperature stimulated mictic femaleproduction and the transfer to the high temperatureaccelerated resting egg formation. This method may beuseful for producing resting eggs of rotifer strainsthat lack sexual reproduction in the common culturecondition at larval rearing facilities.  相似文献   

14.
The life cycle of Laminaria abyssalis (Laminariales,Phaeophyta) in culture   总被引:2,自引:2,他引:0  
Laminaria abyssalis occurs in deep water in tropical latitudes of the Brazilian coast (19° 23 S, 38° 28 W to 22° 54 S, 42° 13 09 W). Its life cycle has been completed in the laboratory in seven months using different conditions of light and temperature. The gametophytic stage required for growth the low photon flux density of 1.2 ± 0.3 µmol m–2 s–1 and 18 °C, while the juvenile and adult sporophytes needed 15 µmol m–2 s–1 and 18 °C. The sporophytes became fertile at 23 °C. Our results showed that light and temperature are the main factors regulating the growth and life history of this species under the culture conditions tested.  相似文献   

15.
An alkaline 5-phosphodiesterase (5-PDE) from barley (Hordeum distichum) malt sprouts was partially purified by thermal treatment and acetone precipitation to diminish phosphomonoesterase (PME) activity. 5-PDE was purified 40-fold to a specific activity of 30 U mg–1 protein with a final yield of about 32%. With synthetic substrate, the enzyme had an optimum pH of 8.9, maximum activity at 70 °C over 10 min, and a Km of 0.26 mM. The partially purified enzyme was activated by 10 mM Mg2+ up to 168% of the original activity, while Zn2+, Mn2+ and Cu2+ ions, chelating agent (EDTA) and NaN3 (1–10 mM), and 5-ribonucleotides (1–5 mM) were inhibitory. Final enzyme preparation was stable over 8 d at 4 °C), at 70 °C for up to 120 min and without loss of activity over 90 d at –18 °C.  相似文献   

16.
Elevated temperatures experienced by harvested fruit can modulate theirripening. Moreover, heat treatments can be applied to reduce susceptibility tolow temperature disorders and to help control pests and diseases. Theethylene-binding inhibitor 1-methylcyclopropene (1-MCP) was used to investigatethe ethylene-mediated softening response of banana fruit exposed to elevatedtemperatures. A preliminary experiment was conducted to determine levels ofhightemperature (30–50°C) imposed for a short periodof time that did not cause skin scald. The softening response of Williamsbananafruit treated with 1-MCP at various temperatures and durations wascharacterisedin subsequent experiments. Exposure of fruit to hot air for 60 minat 45°C or for 30 min at50°Ccaused 30–40% peel scald. The peel was not visibly damaged forfruit treated at 40°C for up to 60 min.Softening of fruit treated with 1-MCP for 12 h at25°Cand then held for 7 days at 30, 35 or 40°C wasinhibited in proportion to increasing concentration over the range 0.01–1l/l 1-MCP. However, softening was progressively enhanced withincreasing holding temperatures from 30–40°Cand/or time from 1–7 days, although fruit treated with the higher 1-MCPconcentrations of 1 and 10 l/l were comparatively lessresponsive to heat. Although banana fruit held at30–40°Cdid not de-green, their increased softening at elevated temperatures andinhibition of this response by 1-MCP suggest that heat enhances synthesis ofnewethylene sites which mediated banana fruit softening.  相似文献   

17.
Rotifer cultures of Brachionus plicatilis (SINTEF-strain, length 250 m) rich in 3 fatty acids were starved for > 5 days at variable temperature (0–18 °C). The net specific loss rate of rotifer numbers were 0.04 day–1 (range 0–0.08 day–1) at 5–18 °C, but reached values up to 0.25 day–1 at 0–3 °C. The loss rate was independent on culture density (range 40–1000 ind ml–1), but was to some extent dependent on the initial physiological state of the rotifers (i.e., egg ratio).The loss rate of lipids was 0.02–0.05 day–1 below 10 °C, where the potential growth rate of the rotifer is low (0–0.09 day–1). The loss rate of lipids increased rapidly for higher temperatures where the rotifer can maintain positive growth, and reached 0.19 day–1 at 18 °C. The Q10 for the lipid loss rate versus temperature was higher than the Q10 for respiration found in other strains. This may suggest that other processes than respiration were involved in lipid catabolism. The content of 3 fatty acids became reduced somewhat faster than the lipids (i.e. in particular 22:6 3), but the fatty acid per cent distribution remained remarkably unaffected by the temperature during starvation.The results showed that rotifer cultures could be starved for up to 4 days at 5–8 °C without essential quantitative losses of lipids, 3 fatty acids, and rotifers. The rotifers exhausted their endogenous lipids through reproduction (anabolism) and respiration (including enhanced locomotion) at higher temperatures. At lower temperatures, the mortality rate became very high.  相似文献   

18.
Inactivation of urease (25 nM) in aqueous solutions (pH 5.0–6.0) treated with low-frequency ultrasound (LFUS; 27 kHz, 60 W/cm2, 36–56°C) or high-frequency ultrasound (HFUS; 2.64 MHz, 1 W/cm2, 36 or 56°C) has been characterized quantitatively, using first-order rate constants: k in, total inactivation; k in *, thermal inactivation; and k in(us), ultrasonic inactivation. Within the range from 1 nM to 10 M, propyl gallate (PG) decreases by approximately threefold the rate of LFUS-induced inactivation of urease (56°C), whereas resorcinol poly-2-disulfide stops this process at 1 nM or higher concentrations. PG completely inhibits HFUS-induced inactivation of urease at 1 nM (36°C) or 10 nM (56°C). At 0.2–1.0 M, human serum albumin (HSA) increases the resistance of urease treated with HFUS to temperature- and cavitation-induced inactivation. Complexes of gallic acid polydisulfide (GAPDS) with HSA (GAPDS–HSA), formed by conjugation of 1.0 nM GAPDS with 0.33 nM HSA, prevent HFUS-induced urease inactivation (56°C).  相似文献   

19.
Summary Lactate concentration was measured in the abdominal muscle of the shrimpPalaemon serratus. Rapid and seasonal temperature changes result in an increase of the lactate content of approximately 3–4 fold.Lactate dehydrogenase from the abdominal muscle exhibits a temperature dependent pyruvate inhibition with pyruvate as substrate.The kinetic parameters of lactate dehydrogenase fromPalaemon serratus are found to vary during rapid temperature changes: Vmax increases with temperature from 0.06 mol min–1 (mg protein)–1 at 10°C to 0.28 mol min–1 (mg protein)–1 at 30°C with lactate as substrate, and from 5.5 mol min–1 (mg protein)–1 at 10°C to 26.2 mol min–1 (mg protein)–1 at 30°C, with pyruvate (Table 1). The Hill coefficientn H, decreases with temperature from 2.2 to 1.2 when the pyruvate reduction is examined, but remains near 1.2 when the activity is measured with lactate as substrate (Table 1). The S0.5 values for lactate show a tendency to increase below 30 °C (18.9 mM l–1 at 20 °C) whereas the S0.5 for pyruvate is found to increase greatly with temperature (0.004 mM l–1 at 10 °C and 0.06 mM l–1 at 20 °C).Long term temperature changes involve variations of lactate dehydrogenase activity leading to inverse thermal compensation (Table 2).Activation energy (about 56 kJ both with pyruvate and lactate) does not vary during the year, suggesting that temperature adaptation does not induce important catalytic changes (Table 3).Abbreviation LDH lactate dehydrogenase  相似文献   

20.
A model is presented for the respiratory heat loss in sheep, considering both the sensible heat lost by convection ( C(R)) and the latent heat eliminated by evaporation ( E(R)). A practical method is described for the estimation of the tidal volume as a function of the respiratory rate. Equations for C(R) and E(R) are developed and the relative importance of both heat transfer mechanisms is discussed. At air temperatures up to 30 degrees C sheep have the least respiratory heat loss at air vapour pressures above 1.6 kPa. At an ambient temperature of 40 degrees C respiratory loss of sensible heat can be nil; for higher temperatures the transfer by convection is negative and thus heat is gained. Convection is a mechanism of minor importance for the respiratory heat transfer in sheep at environmental temperatures above 30 degrees C. These observations show the importance of respiratory latent heat loss for thermoregulation of sheep in hot climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号