首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The osmotic response of system A for neutral amino acid transport has been related to the adaptive response of this transport system to amino acid starvation. In a previous study (Ruiz-Montasell, B., M. Gómez-Angelats, F.J. Casado, A. Felipe, J.D. McGivan, and M. Pastor-Anglada. 1994. Proc. Natl. Acad. Sci. USA. 91:9569-9573), a model was proposed in which both responses were mediated by different mechanisms. The recent cloning of several isoforms of system A as well as the elucidation of a variety of signal transduction pathways involved in stress responses allow to test this model. SAT2 mRNA levels increased after amino acid deprivation but not after hyperosmotic shock. Inhibition of p38 activity or transfection with a dominant negative p38 did not alter the response to amino acid starvation but partially blocked the hypertonicity response. Inhibition of the ERK pathway resulted in full inhibition of the adaptive response of system A and no increase in SAT2 mRNA levels, without modifying the response to hyperosmolarity. Similar results were obtained after transfection with a dominant negative JNK1. The CDK2 inhibitor peptide-II decreased the osmotic response in a dose-dependent manner but did not have any effect on the adaptive response of system A. In summary, the previously proposed model of up-regulation of system A after hypertonic shock or after amino acid starvation by separate mechanisms is now confirmed and the two signal transduction pathways have been identified. The involvement of a CDK-cyclin complex in the osmotic response of system A links the activity of this transporter to the increase in cell volume previous to the entry in a new cell division cycle.  相似文献   

2.
Neutral amino acid transport was characterized in human synovial cells. The amino acids tested are transported by all three major neutral amino acid transport systems, that is, A, L, and ASC. The model amino acid 2-aminoisobutyric acid (AIB) was found to be a strong specific substrate for system A in synovial cells. When cells were starved of amino acids, the activity of AIB transport increased, reaching a maximum within 1 h. The stimulation of transport activity was not blocked by cycloheximide and would thus appear to be related to a release from transinhibition. Similarly, the decrease in the activity of AIB transport observed after the addition of alpha-methyl-aminoisobutyric acid (meAIB) appeared to be related to transinhibition. However, using a different approach, that is, amino acid starvation followed by incubation with 10 mM meAIB and transfer to an amino acid-free medium with or without cycloheximide supplementation, a clear increase in AIB uptake, due both to derepression and a release from transinhibition, was observed. Unlike human fibroblasts, the depression of system A in these synovial cells was not serum-dependent. The process of derepression was observed only after preloading with meAIB. Neither AIB nor alanine produced this phenomenon. Moreover, alanine preloading led to a large increase in AIB transport activity due to a release from transinhibition. These observations indicate that the process of derepression and release from transinhibition are specific to the substrates present in the culture medium prior to amino acid starvation.  相似文献   

3.
The sodium hydrogen exchanger isoform 1 (NHE1) is present in nearly all cells. Regulation of proton flux via the exchanger is a permissive step in cell growth and tumorgenesis and is vital in control of cell volume. The regulation of NHE1 by growth factors involves the Ras-extracellular signal regulated kinase (ERK) pathway, however, the mechanism for G protein-coupled receptor (GPCR) activation of NHE1 is not well established. In this report, the relationship between GPCRs, ERK, and NHE1 in CCL39 cells is investigated. We give evidence that two agonists, the specific alpha(1)-adrenergic agonist, phenylephrine and the water-soluble lipid mitogen, lysophosphatidic acid (LPA) activate NHE1 in CCL39 cells. Activation of ERK by phenylephrine and LPA occurs in a dose- and time-dependent manner. Optimal ERK activation was observed at 10 min and displayed a maximum stimulation at 100 microM phenylephrine and 10 microM LPA. alpha(1)-Adrenergic stimulation also led to a rise in steady-state pH(i) of 0.16+/-0.02 pH units, and incubation with LPA induced a 0.43+/-0.06 pH unit increase in pH(i). Phenylephrine-induced activation of NHE1 transport and ERK activity was inhibited by pretreating the cells with the MEK inhibitor PD98059. While only half of the LPA activatable exchange activity was abolished by PD98059 and U0126. To further demonstrate the specificity of the phenylephrine and LPA regulation of NHE1 and ERK, CCL39 cells were transfected with a kinase inactive MEK. The data indicate that ERK activation is essential for phenylephrine stimulation of NHE1, and that ERK and RhoA are involved in LPA stimulation of NHE1 by more than one mechanism. In addition, evidence of the convergence of these two pathways is shown by the loss of NHE1 activity when both pathways are inhibited and by the partial additivity of the two agonists on ERK and NHE1 activity. These studies indicate a direct involvement of ERK in the alpha(1)-adrenergic activation of NHE1 and a significant role for both ERK and RhoA in LPA stimulation of NHE1 in CCL39 fibroblasts.  相似文献   

4.
The activity of amino acid transport System A in avian fibroblasts was increased following incubation of the cells in a medium in which most of the NaCl normally present had been isoosmotically replaced by sucrose. This increase was detectable after 2 h of incubation, reached a maximum at about 4 h, and remained constant thereafter. Transfer of treated cells back to a normal medium resulted in decay of the induced transport activity, with a half-life of less than 2 h. Kinetic analysis revealed that the increase in transport activity arose from an increase in Vmax, with little change in Km. This induction of System A activity did not occur if an inhibitor of either RNA or protein synthesis was present in the modified medium. The use of various different solutes as replacements for NaCl in the incubation medium showed that, although each replacement caused a decrease in both cellular Na+ content and protein synthesis, only disaccharides produced the increase in amino acid transport activity. In addition, estimates of cell volume indicated that, even under iso-osmotic conditions, incubation in the sucrose-containing medium caused initial cell shrinkage, followed by swelling. It is concluded that this induction of System A activity is associated with a volume regulatory process and that this process probably accounts for the parallel responses previously observed when cells were incubated in hyperosmolar media. Induction of amino acid transport activity by this process is distinct from adaptive regulation, caused by amino acid starvation; but the two processes are not strictly additive, and so appear to converge at some step.  相似文献   

5.
Chen YL  Lin SZ  Chang WL  Cheng YL  Harn HJ 《Life sciences》2005,76(21):2409-2420
We previously demonstrated that the crude acetone extract of Bupleurum scorzonerifolium (AE-BS) 60 microg/ml has anti-proliferation activity and apoptosis effects to A549 human lung cancer cells. They can also cause tumor cell arrest in G2/M phase. To better understand its target protein in A549 cell, two-dimensional electrophoresis and liquid chromatography-tandem mass spectrometry were applied. The modification of keratin 8 was identified. By immunoblot, the expression of phosphorylated keratin 8 at Ser-73 was increased from 2.0 to 3.0-fold after AE-BS treatment 24 to 48 hr respectively as compared with untreated A549 control cells. Furthermore, the A549 cells were pretreated with 50 microM PD98059, a specific inhibitor of the upstream regulator of ERK1/2, or with the p38 kinase inhibitor 20 microM SB203580 or JNK inhibitor 20 microM SP600125 for 30 min, followed by 24 h of incubation with AE-BS, PD98059 can inhibit K8-Ser-73 hyperphosphorylation and prevented cell apoptosis which was induced by AE-BS significantly. By immunoblot, AE-BS also can induce ERK 1/2 phosphorylation. In conclusion, our data indicate that the AE-BS induced tumor apoptosis in A549 cells was related to ERK 1/2 activation. The molecular mechanism of hyperphosphorylation of K8 on Ser-73 was associated with ERK 1/2 activation rather than JNK and p38 kinase. The apoptosis induced by AE-BS may be related to K8 phosphorylation.  相似文献   

6.
7.
The purpose of this study was to evaluate whether the mitogen-activated protein kinase (MAPK) signaling pathway contributes to 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mononuclear differentiation in the human myeloblastic leukemia ML-1 cells. Upon TPA treatment, the activity of ERK1 and ERK2 rapidly increased, with maximal induction between 1 and 3 h, while ERK2 protein levels remained constant. The activity of JNK1 was also significantly induced, with JNK1 protein levels increasing moderately during exposure to TPA. Treatment of cells with PD98059, a specific inhibitor of mitogen-activated protein kinase kinase (MEK), inhibited TPA-induced ERK2 activity. Furthermore, PD98059 completely blocked the TPA-induced differentiation of ML-1 cells, as assessed by a number of features associated with mononuclear differentiation including changes in morphology, nonspecific esterase activity, phagocytic ability, NADPH oxidase activity, mitochondrial respiration, and c-jun mRNA inducibility. We conclude that activation of the MEK/ERK signaling pathway is necessary for TPA-induced mononuclear cell differentiation.  相似文献   

8.
We have studied the roles of c-Jun N-terminal protein kinase (JNK) and extracellular signal-regulated protein kinase (ERK) cascade in both the cisplatin-resistant Caov-3 and the cisplatin-sensitive A2780 human ovarian cancer cell lines. Treatment of both cells with cisplatin but not transplatin isomer activates JNK and ERK. Activation of JNK by cisplatin occurred at 30 min, reached a plateau at 3 h, and declined thereafter, whereas activation of ERK by cisplatin showed a biphasic pattern, indicating the different time frame. Activation of JNK by cisplatin was maximal at 1000 microM, whereas activation of ERK was maximal at 100 microM and was less at higher concentrations, indicating the different dose dependence. Cisplatin-induced JNK activation was neither extracellular and intracellular Ca(2+)- nor protein kinase C-dependent, whereas cisplatin-induced ERK activation was extracellular and intracellular Ca(2+)- dependent and protein kinase C-dependent. A mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor, PD98059, had no effect on the cisplatin-induced JNK activity, suggesting an absence of cross-talk between the ERK and JNK cascades. We further examined the effect of each cascade on the viability following cisplatin treatment. Either exogenous expression of dominant negative c-Jun or the treatment by PD98059 induced sensitivity to cisplatin in both cells. Our findings suggest that cisplatin-induced DNA damage differentially activates JNK and ERK cascades and that inhibition of either of these cascades sensitizes ovarian cancer cells to cisplatin.  相似文献   

9.
10.
11.
Tumor necrosis factor-alpha (TNF-alpha) increases adipocyte lipolysis after 6-12 h of incubation. TNF-alpha has been demonstrated to activate mitogen-activated protein (MAP) kinases including extracellular signal-related kinase (ERK) and N-terminal-c-Jun-kinase (JNK) in different cell types. To determine if the MAP kinases have a role in TNF-alpha-induced lipolysis, 3T3-L1 adipocytes were treated with the cytokine (10 ng/ml), in the presence or absence of PD98059 or U0126 (100 micromoles), specific inhibitors of ERK activity. We demonstrated that U0126 or PD98059 blocked TNF-alpha-induced ERK activity and decreased TNF-alpha-induced lipolysis by 65 or 76% respectively. The peroxisome-proliferator-activated receptor gamma (PPARgamma) agonists, rosiglitazone (ros), and 15-deoxy-Delta-(12,14)- prostaglandin J(2) (PGJ2) have been demonstrated to block TNF-alpha-induced lipolysis. Pretreatment of adipocytes with these agents almost totally blocked TNF-alpha-induced ERK activation and reduced lipolysis by greater than 90%. TNF-alpha also stimulated JNK activity, which was not affected by PD98059 or PPARgamma agonist treatment. The expression of perilipin, previously proposed to contribute to the mechanism of lipolysis, is diminished in response to TNF-alpha treatment. Pretreatment of adipocytes with PD98059 or ros significantly blocked the TNF-alpha-induced reduction of perilipin A protein level as determined by Western analysis. These data suggest that activation of the ERK pathway is an early event in the mechanism of TNF-alpha-induced lipolysis.  相似文献   

12.
We investigated the molecular mechanism involved in the adaptive regulation of the amino acid transport system A, a process in which amino acid starvation induces the transport activity. These studies were done with rat C6 glioma cells. System A activity in these cells is mediated exclusively by the system A subtype, amino acid transporter A2 (ATA2). The other two known system A subtypes, ATA1 and ATA3, are not expressed in these cells. Exposure of these cells to an amino acid-free medium induces system A activity. This process consists of an acute phase and a chronic phase. Laser-scanning confocal microscopic immunolocalization of ATA2 reveals that the acute phase is associated with recruitment of preformed ATA2 from an intracellular pool to the plasma membrane. In contrast, the chronic phase is associated with an induction of ata2 gene expression as evidenced from the increase in the steady-state levels of ATA2 mRNA, restoration of the intracellular pool of ATA2 protein, and blockade of the induction by cycloheximide and actinomycin D. The increase in system A activity induced by amino acid starvation is blocked specifically by system A substrates, including the non-metabolizable alpha-(methylamino)isobutyric acid.  相似文献   

13.
14.
Under hypertonic conditions the induction of SLC38A2/SNAT2 leads to the stimulation of transport system A and to the increase in the cell content of amino acids. In hypertonically stressed human fibroblasts transfection with two siRNAs for SNAT2 suppressed the increase in SNAT2 mRNA and the stimulation of system A transport activity. Under the same condition, the expansion of the intracellular amino acid pool was significantly lowered and cell volume recovery markedly delayed. It is concluded that the up-regulation of SNAT2 is essential for the rapid restoration of cell volume after hypertonic stress.  相似文献   

15.
Wang Y  Li XM  Wang HY 《生理学报》2002,54(3):244-250
为探讨细胞内丝裂素原活化蛋白激酶(MAPK)家族各亚类信号转导通路在炎症性细胞因子白介素-1β(IL-1β)对大鼠肾系膜细胞(rMC)表型标志物α-平滑肌肌动蛋白(α-SMA)表达及其分布中的调控作用,以IL-1β(10ng/ml)刺激体外培养的rMC,用电穿孔基因转染及免疫杂交法观察IL-1β对α-SMA基因启动子活性及蛋白表达的作用,并用共聚焦荧光显微镜及透射电镜观察IL-1β刺激前后细胞内α-SMA及微丝的分布变化。通过应用PD98059和SB203580特异阻断ERK和p38通路、共转染显性失活JNKK基因特异阻断JNK通路,观察阻断对IL-1β刺激所致α-SMA表达或启动子活性的影响。结果显示,IL-1β刺激6h可明显上调α-SMA启动子活性,在1-2d内显著促进其蛋白合成;IL-1β刺激24h后,细胞内α-SMA及微丝在细胞核周的分布增加。阻断ERK通路对IL-1β诱导的α-SMA表达无明显影响;阻断JNK及p38通路均可使IL-1β诱导的α-SMA表达明显受抑;阻断p38通路的作用比阻断JNK通路更强,而且对基础状态的α-SMA表达也有抑制作用。上述结果提示,IL-1β可刺激rMC发生表型转化,其表型标志物α-SMA可通过基因转录增强而增加蛋白表达,在细胞内的分布向核周转位积聚。JNK及p38通路是介导IL-1β刺激rMC α-SMA表达的主要信号转导途径,而ERK通路不影响IL-1β的这一作用。  相似文献   

16.
17.
The 5-HT1A receptor is a prototypical member of the large and diverse serotonin receptor family. One key role of this receptor is to stimulate cell proliferation and differentiation via the extracellular signal regulated protein kinase (ERK) mitogen activated protein (MAP) kinase. There are few reports on the ability of the 5-HT1A receptor to modulate other MAP kinases such as c-Jun N-terminal kinase (JNK), which is activated by various extracellular stimuli, resulting in cell growth, differentiation, and programmed cell death. We report here for the first time that the 5-HT1A receptor stimulates JNK. JNK stimulation was Pertussis toxin-sensitive and was mediated by Rho family low molecular weight GTPases. The 5-HT1A receptor also increased apoptosis, which was mimicked by the MEK inhibitor PD98059, and blocked by the JNK inhibitor SP600125. These results suggest that the 5-HT1A receptor stimulates both ERK-dependent anti-apoptotic pathways and JNK-dependent pro-apoptotic pathways in CHO cells.  相似文献   

18.
19.
20.
Hypoxia has been shown to act as a proliferative stimulus for adventitial fibroblasts of the pulmonary artery. The signaling pathways involved in this growth response, however, remain unclear. We tested the hypothesis that hypoxia-induced proliferation of fibroblasts would be dependent on distinct (compared with serum) activation and utilization patterns of mitogen-activated protein (MAP) kinases initiated by Galpha(i/o) proteins. We found that hypoxia stimulated increases in DNA synthesis and growth of quiescent fibroblasts in the absence of exogenous mitogens and also markedly augmented serum-stimulated growth responses. Hypoxia caused a transient activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), the time course and pattern of which was somewhat similar to that induced by serum but which was of lesser magnitude. On the other hand, hypoxia-induced activation of p38 MAP kinase was biphasic, whereas serum-stimulated activation of p38 MAP kinase was transient, and the magnitude of activation was greater for hypoxia compared with that of serum stimulation. ERK1/2, JNK1, and p38 MAP kinase but not JNK2 were necessary for hypoxia-induced proliferation because PD98059, SB202190, and JNK1 antisense oligonucleotides nearly ablated the growth response. JNK2 appeared to act as a negative modulator of hypoxia-induced growth because JNK2 antisense oligonucleotides led to an increase in DNA synthesis. In serum-stimulated cells, antisense JNK1 oligonucleotides and PD98059 had inhibitory effects on proliferation, whereas SB202190 led to an increase in DNA synthesis. Pertussis toxin, which blocks Galpha(i/o)-mediated signaling, markedly attenuated hypoxia-induced DNA synthesis and activation of ERK and JNK but not p38 MAP kinase. We conclude that hypoxia itself can act as a growth promoting stimulus for subsets of bovine neonatal adventitial fibroblasts largely through Galpha(i/o)-mediated activation of a complex network of MAP kinases whose specific contributions to hypoxia-induced proliferation differ from traditional serum-induced growth signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号