首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Xenobiotics are widely used as pesticides. The detoxification of xenobiotics frequently involves conjugation to glutathione prior to compartmentalization and catabolism. In plants, degradation of glutathione-S-conjugates is initiated either by aminoterminal or carboxyterminal amino acid cleavage catalyzed by a γ-glutamyl transpeptidase and phytochelatin synthase, respectively. In order to establish yeast as a model system for the analysis of the plant pathway, we used monochlorobimane as a model xenobiotic in Saccharomyces cerevisiae and mutants thereof. The catabolism of monochlorobimane is initiated by conjugation to form glutathione-S-bimane, which is then turned over into a γ-GluCys-bimane conjugate by the vacuolar serine carboxypeptidases CPC and CPY. Alternatively, the glutathione-S-bimane conjugate is catabolized by the action of the γ-glutamyl transpeptidase Cis2p to a CysGly-conjugate. The turnover of glutathione-S-bimane was impaired in yeast cells deficient in Cis2p and completely abolished by the additional inactivation of CPC and CPY in the corresponding triple knockout. Inducible expression of the Arabidopsis phytochelatin synthase AtPCS1 in the triple knockout resulted in the turnover of glutathione-S-bimane to the γ-GluCys-bimane conjugate as observed in plants. Challenge of AtPCS1-expressing yeast cells with zinc, cadmium, and copper ions, which are known to activate AtPCS1, enhanced γ-GluCys-bimane accumulation. Thus, initial catabolism of glutathione-S-conjugates is similar in plants and yeast, and yeast is a suitable system for a study of enzymes of the plant pathway.  相似文献   

2.
Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells.  相似文献   

3.
植物络合素和植物络合素合酶的研究   总被引:3,自引:0,他引:3  
植物络合素(Phytochelatins,PCs)是由于重金属离子诱导而在植物体内合成的一类小分子多肽,其结构式为(γ-Glu-Cys)n-Gly,(n=2-11);PCs能够螯合重金属,从而起到对对重金属解毒的作用,PCs并非基因的直接产物,而是由植物络合素合酶(phytochelatin syn-thase,PCS),以GSH为底物催化合成的;植物络合素合酶基因的表达是组成型的,重金属离子能够活化PCS,诱导PCs的合成。1989年,人们首次报道得到了部分纯化的PCS,10年后,3个研究小组分别于1999年同时克隆和鉴定了编码PCS的基因,这些结果不仅对于研究PCs的合成途径和模型的建立及植物抗重金属机制的探讨有重要意义,而且在利用基因工程改良植物抗重金属能力和净化环境污染方面有应用前景。  相似文献   

4.
植物螯合肽及其在重金属耐性中的作用   总被引:26,自引:0,他引:26  
综述植物螯合肽的生物合成及其在重金属耐性中的作用.有毒重金属在土壤中的积累不仅影响作物的生长和产量形成,而且严重威胁农产品的安全性.植物对重金属的耐性和积累在种间和基因型之间存在着很大的差异,在重金属胁迫条件下植物螯合肽(PC)的合成是植物对胁迫的一种适应性反应,耐性基因型合成较多的PC谷胱苷肽是合成PC的前体,PC可与重金属螯合,并进一步转运至液泡贮存,使细胞质的重金属浓度降低,从而达到解毒效果.重金属诱导植物合成PC的遗传机理和生化途径有赖于分子生物学的深入研究,cD-敏感型拟南芥突变体Cad1-1(缺失GSH)和Cad2-1(缺失PC合成诱导酶)的分离及相关研究,佐证了PC在Cd-解毒中起关键作用.对PC在重金属污染土壤或水体的植物修复和农作物安全生产中的意义进行了讨论.  相似文献   

5.
微生物表面展示技术是通过基因工程手段,将短的外源肽或蛋白质表达在微生物细胞表面,该技术可以应用于开发活的细菌疫苗、筛选抗体库、生产生物细胞吸附剂以及制备整细胞生物催化剂。通过金属高效结合肽的肽库筛选和微生物展示技术,将金属结合肽直接展示在微生物的表面,用于处理环境中的重金属污染,为环境中重金属污染的防治提供了一条崭新的途径。利用微生物表面展示技术制备整细胞催化剂,用于有毒有机污染物的处理,可以极大地加快污染物的降解速率。简要介绍了微生物表面展示技术及其在重金属污染治理和毒性有机污染物的脱毒等环境生物修复方面的最新研究进展。  相似文献   

6.
A major detoxification mechanism involving the binding of excess metals to inorganic, insoluble metalliferous granules occurs in many invertebrates. X-ray microanalysis of granules extracted from the barnacles Elminius modestus Darwin and Semibalanus balanoides (L.) (Crustacea: Cirripedia) indicated that one granule type was predominant. Examples of this granule type usually contained Fe and P, or Zn and S, or a combination of all four elements as major constituents. The predominant form of P in the granules was pyrophosphate, P2O4−7, with oprthophosphate and other polyphosphates present in lower amounts. The S was present as organic S. Biochemical analysis showed high levels of Ca, Fe, Mg, K and Zn in the granules with Cu and Ag present in smaller quantities. Considerable variation was shown between granules.  相似文献   

7.
Cytochrome P450 monooxygenases (P450s) metabolize herbicides to produce mainly non-phytotoxic metabolites. Although rice plants endogenously express multiple P450 enzymes, transgenic plants expressing other P450 isoforms might show improved herbicide resistance or reduce herbicide residues. Mammalian P450s metabolizing xenobiotics are reported to show a broad and overlapping substrate specificity towards lipophilic foreign chemicals, including herbicides. These P450s are ideal for enhancing xenobiotic metabolism in plants. A human P450, CYP1A1, metabolizes various herbicides with different structures and modes of herbicide action. We introduced human CYP1A1 into rice plants, and the transgenic rice plants showed broad cross-resistance towards various herbicides and metabolized them. The introduced CYP1A1 enhanced the metabolism of chlorotoluron and norflurazon. The herbicides were metabolized more rapidly in the transgenic rice plants than in non-transgenic controls. Transgenic rice plants expressing P450 might be useful for reducing concentrations of various chemicals in the environment.  相似文献   

8.
Detoxification of xenobiotic compounds and heavy metals is a pivotal capacity of organisms, in which glutathione (GSH) plays an important role. In plants, electrophilic herbicides are conjugated to the thiol group of GSH, and heavy metal ions form complexes as thiolates with GSH-derived phytochelatins (PCs). In both detoxification processes of plants, phytochelatin synthase (PCS) emerges as a key player. The enzyme is activated by heavy metal ions and catalyzes PC formation from GSH by transferring glutamylcysteinyl residues (gamma-EC) onto GSH. In this study with Arabidopsis, we show that PCS plays a role in the plant-specific catabolism of glutathione conjugates (GS-conjugates). In contrast to animals, breakdown of GS-conjugates in plants can be initiated by cleavage of the carboxyterminal glycine residue that leads to the generation of the corresponding gamma-EC-conjugate. We used the xenobiotic bimane in order to follow GS-conjugate turnover. Functional knockout of the two PCS of Arabidopsis, AtPCS1 and AtPCS2, revealed that AtPCS1 provides a major activity responsible for conversion of the fluorescent bimane-GS-conjugate (GS-bimane) into gamma-EC-bimane. AtPCS1 deficiency resulted in a gamma-EC-bimane deficiency. Transfection of PCS-deficient cells with AtPCS1 recovered gamma-EC-bimane levels. The level of the gamma-EC-bimane conjugate was enhanced several-fold in the presence of Cd2+ ions in the wild type, but not in the PCS-deficient double mutant, consistent with a PCS-catalyzed GS-conjugate turnover. Thus AtPCS1 has two cellular functions: mediating both heavy metal tolerance and GS-conjugate degradation.  相似文献   

9.
R. Edwards  W. J. Owen 《Planta》1988,175(1):99-106
An antiserum to glutathione S-transferase (EC 2.5.1.18) from maize (Zea mays L.) responsible for herbicide detoxification has been raised in rabbit. The antiserum was specific to the Mr 26000 subunit of the enzyme from maize seedlings and suspension-cultured cells, and recognized the isoenzymes active toward both atrazine and metolachlor. When plants were treated for 24 h with the herbicide antidote N,N-diallyl-2-2-dich-loroacetamide (DDCA), enzyme activities toward metolachlor were doubled in the roots and this was associated with a 70% increase in immunodetectable protein. Translation of polysomal RNA in vitro showed that the increase in the transferase in root tissue was brought about by a ninefold increase in mRNA activity encoding the enzyme. Treatment of suspension-cultured cells with cinnamic acid, metolachlor and DDCA raised enzyme activities but did not increase synthesis of glutathione S-transferase. In cultured maize cells, enzyme synthesis was maximal in mid-logarithmic phase, coinciding with the highest levels of enzyme activity. When callus cultures were established from the shoots of a maize line known to conjugate chloro-s-triazines, enzyme activity towards atrazine was lost during primary dedifferentiation. However, levels of total immunodetectable enzyme and activity toward metolachlor were increased in cultured cells compared with the parent shoot tissue.  相似文献   

10.
The possible roles of phytochelatin (PC) and glutathione (GSH) in the heavy metal detoxification in plants were examined using two varieties (CSG-8962 and C-235) of chickpea (Cicer arietinum L.). The seedlings were grown for 5 days and the roots were treated with 0–20 μM CdSO4 for 3 days. The CSG-8962 seedlings exhibited more Cd-tolerant characteristics than did the C-235, where the roots, rather than shoots, suffered from more toxic effects by Cd. Both the seedlings synthesized the large amounts of PCs and homo-phytochelatins (hPCs) in roots, but only a little in shoots in response to Cd. The Cd treatments also caused a marked increase in the levels of GSH and cysteine in both the root and shoot tissues, suggesting that Cd may activate the GSH biosynthesis and, hence, enhance PC synthesis in the plants. Such a Cd-sensitive PC synthesis in chickpea plants does not explain the difference in Cd sensitivity in the varieties, but can be used as a biochemical indicator for Cd contamination in various environments. In the chickpea plants, possible PC-dependent and independent mechanisms for Cd tolerance are discussed. Electronic Publication  相似文献   

11.
Levopimaradiene synthase, which catalyzes the initial cyclization step in ginkgolide biosynthesis, was cloned and functionally characterized. A Ginkgo biloba cDNA library was prepared from seedling roots and a probe was amplified using primers corresponding to conserved gymnosperm terpene synthase sequences. Colony hybridization and rapid amplification of cDNA ends yielded a full-length clone encoding a predicted protein (873 amino acids, 100,289 Da) similar to known gymnosperm diterpene synthases. The sequence includes a putative N-terminal plastid transit peptide and three aspartate-rich regions. The full-length protein expressed in Escherichia coli cyclized geranylgeranyl diphosphate to levopimaradiene, which was identical to a synthetic standard by GC/MS analysis. Removing 60 or 79 N-terminal residues increased levopimaradiene production, but a 128-residue N-terminal deletion lacked detectable activity. This is the first cloned ginkgolide biosynthetic gene and the first in vitro observation of an isolated ginkgolide biosynthetic enzyme.  相似文献   

12.
The effect of glutathione on the influences of heavy metals affecting rubisco and rubisco activase was studied in tobacco plants grown in vitro where the shoot explants of the tobacco plant cultured on MS medium under aseptic conditions and two explants were placed in the control, 0.1 mM GSH, 1 mM GSH, 0.2 mM Cd, 0.2 mM Cu, 0.2 mM Zn, and a mixture of Cd and GSH, Cu and GSH, Zn and GSH, respectively. The effect of GSH on the growth of the tobacco plant was minimal, but the heavy metals clearly retarded its growth. GSH recovered the growth retarded by heavy metals, and the concentration of GSH required to recover the growth differed depending on the heavy metals. The content of chlorophyll in the plant increased through GSH and Zn, and decreased through Cd and Cu. The chlorophyll content which decreased due to Cd and Cu was recovered by GSH, and the content which increased due to Zn was decreased by 1 mM GSH. The content of rubisco decreased due to GSH and heavy metals, and the content which decreased due to heavy metals was recovered by GSH, and when GSH was treated with Zn, the increased rate was maximum compared to other heavy metals. The activity of rubisco was increased due to GSH and heavy metals, and the activity increased by Cd and Zn decreased through GSH. In the case of Cu, the activity of GSH increased even more. There was no effect of GSH on the influences of heavy metals on the content and activity of rubisco activase. The activity of rubisco decreased by thiourea among six denaturing agents, and increased by l-cysteine, and in most cases the activity level was recorded as high. The activity of rubisco activase all decreased as a result of six denaturing agents, and the effect caused by EDTA and guanidine-HCl was the greatest, while the effect caused by l-cysteine and urea was minimal.  相似文献   

13.
14.
15.
The biosynthetic pathways that produce anthocyanins, the principal pigments for flower and leaf coloration in plants, have been extensively investigated. As a result, many of the enzymes involved in these pathways have been identified. Here, we make use of an inducible Arabidopsis thaliana system and demonstrate that the final step in the formation of the major anthocyanin molecule occurs via a glucosylation step catalyzed by acyl-glucose-dependent anthocyanin glucosyltransferase (AAGT). The glucosylation occurs at the 4-coumarate moiety of the anthocyanin molecule cyanidin 3-O-[2″-O-(2′″-O-(sinapoyl) xylosyl) 6″-O-(p-coumaroyl) glucoside] 5-O-[6″″-O-(malonyl) glucoside] leading to completion of the main anthocyanin structure, a reaction that has not previously been identified in studies of Arabidopsis anthocyanins. Earlier studies on flower AAGTs showed that they conjugate a glucose directly to the basic skeleton of anthocyanin. The present study provides the first evidence that an AAGT of Arabidopsis can conjugate a glucose to an acyl moiety of an anthocyanin modified with sugars and organic acids. The results from analyses of gene expression and of anthocyanin composition in a knock-out (KO) mutant and from a complementation test indicate that AtBGLU10 might encode this AAGT.  相似文献   

16.
Phytochelatins are glutathione-derived, non-translationally synthesized peptides essential for cadmium and arsenic detoxification in plant, fungal and nematode model systems. Recent sequencing programs have revealed the existence of phytochelatin synthase-related genes in a wide range of organisms that have not been reported yet to produce phytochelatins. Among those are several cyanobacteria. We have studied one of the encoded proteins (alr0975 from Nostoc sp. strain PCC 7120) and demonstrate here that it does not possess phytochelatin synthase activity. Instead, this protein catalyzes the conversion of glutathione to gamma-glutamylcysteine. The thiol spectrum of yeast cells expressing alr0975 shows the disappearance of glutathione and the formation of a compound that by LC-MSMS analysis was unequivocally identified as gamma-glutamylcysteine. Purified recombinant protein catalyzes the respective reaction. Unlike phytochelatin synthesis, the conversion of glutathione to gamma-glutamylcysteine is not dependent on activation by metal cations. No evidence was found for the accumulation of phytochelatins in cyanobacteria even after prolonged exposure to toxic Cd2+ concentrations. Expression of alr0975 was detected in Nostoc sp. cells with an antiserum raised against the protein. No indication for a responsiveness of expression to toxic metal exposure was found. Taken together, these data provide further evidence for possible additional functions of phytochelatin synthase-related proteins in glutathione metabolism and provide a lead as to the evolutionary history of phytochelatin synthesis.  相似文献   

17.
18.
Summary The tissue distribution of Cu, Cd, Pb, Zn, and Ca in the earthworm Lumbricus rubellus living in non-polluted and heavy-metal polluted soils was investigated. Cd, Pb and Zn were primarily accumulated within the posterior alimentary canal. As the whole-worm Pb burden increased, the proportion of the metal accumulated within this tissue fraction increased. A similar pattern was found for Zn. By contrast, 70%–76% of the Cd burden was found in the posterior alimentary canal, irrespective of the whole-worm Cd content. The accumulation of Cd, Pb and Zn primarily in the posterior alimentary canal prevents dissemination of large concentrations of these metals into other earthworm tissues, and may thus represent a dextoxification strategy based on accumulative immobilisation. Cu was distributed fairly evenly in the tissue fractions investigated. There was no evidence of sequestration of this metal. The apparent lack of a detoxification strategy may contribute to the well-known susceptibility of earthworms to low environmental Cu concentrations. Indeed, earthworms from the site of highest soil Cu (Ecton) were markedly smaller than those from the other sites sampled. The highest Ca concentrations were found in the anterior alimentary canal, and were related to calciferous gland activity. A large proportion of Ca was also stored as a physiologically available pool in the posterior alimentary canal. Despite huge variations in soil Ca concentrations, the body wall Ca levels were fairly similar in L. rubellus from all the study sites. Thus, L. rubellus may become physiologically adapted to soils of exceptionally low Ca concentration. The observations are discussed in the context of the merits of analysing specific tissues, rather than whole organisms, for the purpose of monitoring metal bioaccumulation.  相似文献   

19.
An ATPase has been purified from the membrane fraction of human liver which catalyzes ATP in the presence of bilirubin ditaurate, lithocholic acid 3-O-sulfate and lithocholic acid 3-O-glucuronide as well as dinitrophenylglutathione and other glutathione conjugates. Its subunit Mr value (38,000) and immunological properties are similar to dinitrophenylglutathione ATPase of human erythrocytes. Kinetic constants of the enzyme for the conjugates of glutathione, bile acids and bilirubin are comparable indicating that this ATPase may mediate active transport of all these anionic conjugates in liver.  相似文献   

20.
Plants experience oxidative stress upon exposure to heavy metals that leads to cellular damage. In addition, plants accumulate metal ions that disturb cellular ionic homeostasis. To minimize the detrimental effects of heavy metal exposure and their accumulation, plants have evolved detoxification mechanisms. Such mechanisms are mainly based on chelation and subcellular compartmentalization. Chelation of heavy metals is a ubiquitous detoxification strategy described in wide variety of plants. A principal class of heavy metal chelator known in plants is phytochelatins (PCs), a family of Cys-rich peptides. PCs are synthesized non-translationally from reduced glutathione (GSH) in a transpeptidation reaction catalyzed by the enzyme phytochelatin synthase (PCS). Therefore, availability of glutathione is very essential for PCs synthesis in plants at least during their exposure to heavy metals. Here, I reviewed on effect of heavy metals exposure to plants and role of GSH and PCs in heavy metal stress tolerance. Further, genetic manipulations of GSH and PCs levels that help plants to ameliorate toxic effects of heavy metals have been presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号