首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the free-swimming veliger of Amphibola is followed from hatching to settlement, and the larval structures compared with those of post-metamorphic juveniles and adult snails. Observations of living specimens and light-microscope sections were combined with scanning electron microscopy to build up a composite picture of veliger structure.
Four stages in the development of veligers are recognized, each being characterized by the appearance of organ systems such as the mantle cavity, larval heart, adult heart and kidney, and larval pallial gland. At or after metamorphosis, the larval systems (heart, kidney and pallial gland) disappear, and the developing adult organs move to the positions characteristic of adult snails.
Organogenesis in Amphibola veligers is compared with that of prosobranch and opisthobranch larvae, and with that of pulmonate larvae with direct development. The closest similarity is seen to be with opisthobranch veligers.  相似文献   

2.
Kano Y 《Journal of morphology》2006,267(9):1120-1136
The early ontogeny of gastropods (i.e., planktotrophic vs. nonplanktotrophic) may be inferable from the morphology of the protoconch in adult shells. The protoconch consists of both embryonic and larval shells in species with planktotrophic development; the embryonic shell forms in the intracapsular period and the succeeding larval shell gradually develops during the larval period. In nonplanktotrophic species, on the other hand, there is no additional growth of the larval shell and the protoconch consists exclusively of a relatively large embryonic shell formed prior to hatching. This "shell apex theory" has been applied to many species of shell-bearing gastropods, but biotic and abiotic erosion of the apex often prevents detailed examination of the protoconch and subsequent inferences about ontogeny. I examined the gastropod operculum to test its utility for predicting developmental mode, drawing on the Neritimorpha as model taxa. Most aquatic members of Neritimorpha were found to bear an operculum with a clearly demarcated nucleus; SEM observations reveal four types of nuclei, which correspond to different types of protoconch morphologies and observed ontogenies for the study species. The nucleus is secreted before metamorphosis, fits into the shell aperture of the larva, and reflects early ontogeny as morphology, as does the protoconch. Moreover, the apparently organic (rather than calcareous) composition of the nucleus makes it nearly invulnerable to erosion and very advantageous, compared to the protoconch, in this ecologically diverse group, whose habitats range from freshwater streams and mangrove swamps to rocky shores and deep-sea hydrothermal vents. The measurements of the nucleus are also valuable for taxonomic purposes, especially in the species identification of veliger larvae and juvenile snails. On the other hand, the opercular nuclei of the Caenogastropoda and Heterobranchia are often eroded away in adult individuals; even if present, the morphology of the nuclei does not seem to clearly reflect early ontogeny in those groups.  相似文献   

3.
Regulatory gene expression during the patterning of molluscan shells has only recently drawn the attention of scientists. We show that several Hox genes are expressed in association with the shell gland and the mantle in the marine vetigastropod Gibbula varia (L.). The expression of Gva-Hox1, Gva-Post2, and Gva-Post1 is initially detected in the trochophore larval stage in the area of the shell field during formation of embryonic shell. Later, during development, these genes are expressed in the mantle demonstrating their continuous role in larval shell formation and differentiation of mantle edge that secretes the adult shell. Gva-Hox4 is expressed only late during the development of the veliger-like larva and may also be involved in the adult shell morphogenesis. Additionally, this gene also seems to be associated with secretion of another extracellular structure, the operculum. Our data provide further support for association of Hox genes with shell formation which suggest that the molecular mechanisms underlying shell synthesis may consist of numerous conserved pattern-formation genes. In cephalopods, the only other molluscan class in which Hox gene expression has been studied, no involvement of Hox genes in shell formation has been reported. Thus, our results suggest that Hox genes are coopted to various functions in molluscs.  相似文献   

4.
Recent phylogenetic revisions of euthyneuran gastropods (“opisthobranchs” and “pulmonates”) suggest that clades with a planktotrophic larva, the ancestral life history for euthyneurans, are more widely distributed along the trunk of the euthyneuran tree than previously realized. There is some indication that the planktotrophic larva of euthyneurans has distinctive features, but information to date has come mainly from traditional “opisthobranch” groups. Much less is known about planktotrophic “pulmonate” larvae. If planktotrophic larvae of “pulmonates” share unique traits with those of “opisthobranchs,” then a distinctive euthyneuran larval-type has been the developmental starting template for a spectacular amount of evolved morphological and ecological disparity among adult euthyneurans. We studied development of a siphonariid by preparing sections of larval and postmetamorphic stages for histological and ultrastructural analysis, together with 3D reconstructions and data from immunolabeling of the larval apical sensory organ. We also sought a developmental explanation for the unusual arrangement of shell-attached, dorso-ventral muscles relative to the mantle cavity of adult siphonariids. Adult siphonariids (“false limpets”) have a patelliform shell but their C-shaped shell muscle partially embraces a central mantle cavity, which is different from the arrangement of these components in patellogastropods (“true limpets”). It is not obvious how shell muscles extending into the foot become placed anterior to the mantle cavity during siphonariid development from a veliger larva. We found that planktotrophic larvae of Siphonaria denticulata are extremely similar to previously described, planktotrophic “opisthobranch” larvae. To emphasize this point, we update a list of distinctive characteristics of planktotrophic euthyneuran larvae, which can anchor future studies on the impressive evolvability of this larval-type. We also describe how premetamorphic and postmetamorphic morphogenesis of larval mantle fold tissue creates the unusual arrangement of shell-muscles and mantle cavity in siphonariids. This result adds to the known postmetamorphic evolutionary innovations involving mantle fold tissue among euthyneurans.  相似文献   

5.
 Whole-mount technique using fluorescent-labelled phalloidin for actin staining and confocal laser scanning microscopy as well as semi-thin serial sectioning, scanning and transmission electron microscopy were applied to investigate the ontogeny of the various muscular systems during larval development in the limpets Patella vulgata L. and P. caerulea L. In contrast to earlier studies, which described a single or two larval shell muscles, the pretorsional trochophore-like larva shows no less than four different muscle systems, namely the asymmetrical main head/foot larval retractor muscle, an accessory larval retractor with distinct insertion area, a circular prototroch/velar system, and a plexus-like pedal muscle system. In both Patella species only posttorsional larvae are able to retract into the shell and to close the aperture by means of the operculum. Shortly after torsion the two adult shell muscles originate independently in lateral positions, starting with two fine muscle fibres which insert at the operculum and laterally at the shell. During late larval development the main larval retractor and the accessory larval retractor become reduced and the velar muscle system is shed. In contrast, the paired adult shell muscles and the pedal muscle plexus increase in volume, and a new mantle musculature, the tentacular muscle system, and the buccal musculature arise. Because the adult shell muscles are entirely independent from the various larval muscular systems, several current hypotheses on the ontogeny and phylogeny of the early gastropod muscle system have to be reconsidered. Received: 23 June 1998 / Accepted: 25 November 1998  相似文献   

6.
The development of simple, reliable techniques for the laboratory culture of aplysiid gastropods through their complete life cycle, has enabled us to study the larval biology, metamorphosis, and early juvenile development of these animals. Egg masses, duration of the embryonic phase, veligers, and larval growth and development are described for four species of Hawaiian Aplysiidae, namely, Aplysia dactylomela Rang, Aplysia Juliana Quoy and Gaimard, Dolabella auricularia (Lightfoot) and Stylocheilus longicauda (Quoy and Gaimard). Metamorphosis and early juvenile development of A. Juliana are described in detail with additional comments on these processes in the other three species. Length of the embryonic phase and size of the veliger at hatching are a function of the size of the uncleaved egg. All four species develop planktotrophically and have ≈ 30-day larval phases. In each species the larval phase includes a period of rapid shell growth to a species-specific size followed by a non-growth period during which other morphological developments occur to culminate in metamorphic competence. The larvae of each species metamorphose preferentially on a particular species of benthic algae. The events of metamorphosis require 2 to 4 days for completion and transform the planktonic filter-feeding larva into a benthic, radular-feeding juvenile. Postlarval development includes growth of the shell, parapodia, oral tentacles, rhinophores, anal siphon, and structures of the mantle cavity.  相似文献   

7.
Abstract. Torsion is a process in gastropod ontogenesis where the visceral body portion rotates 180° relative to the head/foot region. We investigated this process in the limpet Patella caerulea by using light microscopy of living larvae, as well as scanning electron microscopy (SEM) of larvae fixed during the torsion process. The completion of the 180° twist takes considerably less time in larvae of Patella caerulea than previously described for other basal gastropod species. At a rearing temperature of 20–22°C, individuals complete ontogenetic torsion in ?2 h. Furthermore, the whole process is monophasic, i.e., carried out at a constant speed, without any evidence of distinct ‘fast” or ‘slow” phases. Both larval shell muscles—the main and the accessory larval retractor—are already fully contractile before the onset of torsion. During the torsion process both retractors perform cramp‐like contractions at ~30 s intervals, which are followed by hydraulic movements of the foot. However, retraction into the embryonic shell occurs only after torsion is completed. The formation of the larval operculum is entirely in‐dependent from ontogenetic torsion and starts before the onset of rotation, as does the mineralization of the embryonic shell. The reported variability regarding the timing (mono‐ versus biphasic; duration) of torsion in basal gastropod species precludes any attempt to interpret these data phylogenetically. The present findings indicate that the torsion process in Patella caerulea, and probably generally in basal gastropods, is primarily caused by contraction of the larval shell muscles in combination with hydraulic activities. In contrast, the adult shell musculature, which is independently formed after torsion is completed, does not contribute to ontogenetic torsion in any way. Thus, fossil data relying on muscle scars of adult shell muscles alone appear inappropriate to prove torted or untorted conditions in early Paleozoic univalved molluses. Therefore, we argue that paleontological studies dealing with gastropod phylogeny require data other than those based on fossilized attachment sites of adult shell muscles.  相似文献   

8.
A number of marine bivalve taxa, including species of the genus Ostrea, have adopted brooding of the young in the mantle cavity as a reproductive mechanism. In spite of the importance of brooding in the reproductive success of such species, little is known about the most important variables influencing the process, including those limiting clutch size. This study addresses the regulation of brood size in the hermaphroditic oyster Ostrea chilensis. During spawning, oysters released all their oocytes into the mantle cavity. No residual oocytes remained in the gonad, so a second spawning during the same brooding season was not possible. There was a weak correlation between the number of embryos incubated during the early phase of brooding and the dry tissue weight of the brooding oyster, and between the number incubated and the shell length of the brooding adult during the later phases of brooding. The number of embryos was also correlated with the area of the labial palps of the brooder during the later stages, suggesting that the loss of veligers observed at this time may be at least partially attributable to a limitation of space around the palps, which manipulate the larvae and with which the larvae are closely associated. The oxygen consumption rate of brooders incubating a normal clutch of embryos was not significantly different from that of oysters in which clutch size had been experimentally reduced by 50%. Experimental increase of the normal clutch size by 100% significantly increased the oxygen consumption of the brooder, suggesting that there is a physiological as well as a spatial limit to brood size. Thus the number of embryos brooded by an oyster is initially dependent on its production of oocytes and secondarily by the high metabolic costs of incubating large numbers of embryos. As development proceeds, space available for brooding apparently becomes a limiting factor as the larvae grow. The fate of the excess larvae is not known at present, but any larvae released prematurely cannot be competent to settle, since development is synchronous and there is a complete release of all pediveligers at the end of the brooding period.  相似文献   

9.
Metamorphosis of the pelagic larvae of benthic marine invertebratesis often a cataclysmic event in which a rapid loss of organsspecialized for larval life occurs simultaneously with the renewalor increased rate of development of potential adult organs.In the nudibranch gastropod Phestilla sibogae this change involvesloss of the velum, shell, operculum, larval kidney, some retractormuscles, and some of the pedal mucous glands. Exit from thelarval shell at metamorphosis is rapid and is correlated withthe spread of epidermis from the larval foot over the visceralmass as the visceral mass emerges from the shell aperature.This spreading of epipodial epidermis to cover the entire bodyhas not been previously reported for other nudibranchs. Neithercell proliferation nor active cell motility are responsiblefor this epidermal migration. Rather it appears that the actionof larval muscles pulls the visceral organs out of the shelland simultaneously causes the epipodial epidermis to cover thevisceral mass. This epidermis becomes the definitive adult epidermis.  相似文献   

10.
Lady beetles (Coleoptera: Coccinellidae) are important polyphagous predators in maize, Zea mays L., fields. Transgenic Cry3Bb1 maize hybrids express a coleopteran-specific insecticidal protein derived from Bacillus thuringiensis (Berliner) subsp. kumamotoensis that is targeted at corn rootworm larvae. This study evaluated impacts of Cry3Bb1 protein-expressing maize, tefluthrin-treated maize, and untreated controls on lady beetle abundance at preanthesis, anthesis, and postanthesis maize-developmental periods near Brookings in eastern South Dakota during 2001 and 2002. The dominant lady beetle species captured on Pherocon AM sticky traps was Coleomegilla maculata De Geer. It comprised 73.5 and 69.9% of all adult Coccinellidae caught in 2001 and 2002, respectively. Numbers of C. maculata captured in Cry3Bb1 maize were not significantly different from those in untreated plots during preanthesis, and adults were more abundant in Cry3Bb1 maize than in tefluthrin-treated and untreated plots during anthesis and postanthesis. Whole-plant sampling confirmed C. maculata predominance with the species representing 89.2 and 91.4% of all adult lady beetles observed in 2001 and 2002, respectively. Whole-plant sampling also indicated a lack of negative effects from Cry3Bb1 maize on abundance of lady beetle eggs, larvae, pupae, or adults. Overall, these findings indicate that Cry3Bb1-expressing hybrids are not likely to impose harmful effects on C. maculata, a species common to maize production systems in the northern Great Plains. This research further suggests that Cry3Bb1 maize has the potential for conservation of these beneficial coccinellids in maize production systems.  相似文献   

11.
We studied life history responses of larvae of three coccinellid species, Coleomegilla maculata (DeGeer), Hippodamia convergens Guerin-Meneville, and Harmonia axyridis (Pallas), when deprived of food for different periods of time during the fourth stadium. The coccinellid species did not differ in starvation resistance when larvae were starved throughout the stadium; however, for larvae fed only on day 1 of the stadium, H. convergens had the highest starvation resistance, followed by H. axyridis and then C. maculata. Percentage weight loss of larvae was affected by food deprivation period and coccinellid species. Both C. maculata and H. axyridis lost significantly more weight than H. convergens when starved throughout the fourth stadium. When deprived of food for 4 d of the stadium, C. maculata lost a higher percentage of initial body weight than H. axyridis. Percentage weight loss of H. convergens did not differ from that of C. maculata or H. axyridis. The weight of fourth instars and adults declined in an accelerating pattern as food deprivation period increased. However, food deprivation period had no significant effect on pupal development time for any of the three species or on larval development time for C. maculata and H. convergens. The increase in H. axyridis larval development time as a result of an increase in food deprivation period was curvilinear. Based on this laboratory study, it would seem that H. convergens is better able to cope with acute nutritional stress than either C. maculata or H. axyridis.  相似文献   

12.
Shell-anchored muscles that extend into the cephalopodium of five species of planktotrophic nudibranch larvae were studied by ultrastructural examination of sequential larval developmental stages. All species, regardless of larval shell type (inflated or non-inflated), showed a similar basic pattern of shell muscles. The larval retractor muscle (LRM) differentiates prior to hatching and its fibres insert on epithelia of the velum, apical plate, stomodeal region, or mantle fold. Many fibres also connect with subepithelial intrinsic muscles of the cephalopodium. Most but not all LRM fibres Project to left-sided targets and are innervated from the left cerebral ganglion. Two pedal muscles, which are innervated from the pedal ganglia, differentiate during the post-hatching larval stage and both insert primarily on pedal epithelium attached to the operculum. The left pedal muscle is anchored to the shell immediately adjacent to the attachment plaque of the LRM and consists of basal and distal tiers of muscle cells. The right pedal muscle arises on the ventral rim of the shell aperture and consists of a single tier of muscle cells. Ontogenic changes in larval retraction behaviour correlate with developmental change in the muscle effectors. Although some interspecific differences were noted, the presence of a common ground plan for larval shell muscles in these five species contrasts with previous indications of marked variability for nudibranch larval shell muscles.  相似文献   

13.
The apical sensory organ in veliger larvae of a patellogastropod, a basal clade of gastropod molluscs, was studied using ultrastructural and immunohistochemical techniques. Immediately before veligers of Tectura scutum undergo ontogenetic torsion, the apical sensory organ consists of three large cells that generate a very long apical ciliary tuft, two cells that generate a bilateral pair of shorter ciliary tufts, and a neural ganglion (apical ganglion). Putative sensory neurons forming the ganglion give rise to dendrites that extend to the apical surface of the larva and to basal neurites that contribute to a neuropil. The ganglion includes only one ampullary neuron, a distinctive neuronal type found in the apical ganglion of other gastropod veligers. Serotonin immunoreactivity is expressed by a medial and two lateral neurons, all having an apical dendrite, and also by neurites within the neuropil and by peripheral neurites that run beneath the ciliated prototrochal cells that power larval swimming. The three cells generating the long apical ciliary tuft are lost soon after ontogenetic torsion, and the medial serotonergic cell stops expressing serotonin antigenicity in late-stage veligers. The lateral ciliary tuft cells of T. scutum may be homologs of lateral ciliary tuft cells in planktotrophic opisthobranch veligers. A tripartite arrangement of sensory dendrites, as described previously for veligers of other gastropod clades, can be recognized in T. scutum after loss of the apical ciliary tuft cells.  相似文献   

14.
The abundance dynamics of adult dreissenids (Dreissena polymorpha (Pallas) and D. bugensis Andrusov) and of their larvae and the spatial distribution of the abundance of veligers and their role in the functioning of the plankton community have been analyzed on the basis of the data of original long-term monitoring (2004–2013) in Rybinsk Reservoir. The dreissenid veligers are most abundant in the summer time (July to August) when their number is comparable to that of the filter-feeding crustaceans and their biomass is close to that of rotifers. Before 2010 the production of veligers during the vegetation season comprised about 5% of the production of metazooplankton and the food consumption was about 1% of the primary production of phytoplankton. Pelagic invertebrate predators consumed about 90% of the production of veligers for the vegetation period. After 2010, the abundance of dreissenid larvae and their functional characteristics decreased by a factor of 5–6. Trophic relationships between zooplankton and veligers are discussed.  相似文献   

15.
The larval morphology of the gastropod Cryptonatica janthostoma inhabiting the Northwest Pacific was described for the first time. Hatched planktotrophic veligers of C. janthostoma had shells 250 μm in height with 0.8 whorls, a bilobate velum with a dark brown pigmentation band shaped along its edge, pair of eye spots, tentacles and statocysts. The surface of the embryonal shell (protoconch 1) was covered with fine granules extended at the dorsal side and rounded at lateral surfaces. Concentric crests and growth lines occurred on part of the shell of late free-swimming larvae (protoconch 2) The velum of the C. janthostoma larvae remained bilobate during the pelagic stage of development, whereas it was divided in 4 lobes during larval development in most of the other species of the Naticidae family. The veliger of C. janthostoma was similar to that of Natica montagu from Danish waters [16] by its shape, pigmentation, shell sculpture and velum structure.  相似文献   

16.
Although invaders come in all shapes and sizes, several mollusks have recently achieved notoriety as both economically and ecologically costly invaders. Applesnails of the genus Pomacea get their name from reaching the size of an apple. Native to South America, the species P. insularum has recently established reproducing, and potentially invasive, populations in Texas, Alabama, Georgia, and Florida. In contrast to the widely invasive golden applesnail (P. canaliculata), few studies of the channeled species P. insularum exist. In studying similar invasive applesnail species, scientists use several methods of measurement. We have explored the relationships among shell height, operculum width, and weight among juvenile and adult P. insularum and tested their inter-measurer reliability. We also investigated the use of shell height, shell length, and operculum width measurements in P. canaliculata studies and observed whether or not those studies defined their measurements. We found that operculum width served as a significantly more reliable measure among researchers. Furthermore, operculum width better predicted weight than shell height. The majority of articles that measured P. canaliculata did not define their measurements, which may cause problems when comparing studies between native and exotic populations or when comparing the two species. We recommend that future studies of P. insularum use operculum width to measure snails and explore a possible sex dimorphism in the operculum width of adult P. insularum.  相似文献   

17.
Despite the use of acoustic communication, many species of toads (family Bufonidae) have lost parts of the tympanic middle ear, representing at least 12 independent evolutionary occurrences of trait loss. The comparative development of the tympanic middle ear in toads is poorly understood. Here, we compared middle ear development among two pairs of closely related toad species in the genera Atelopus and Rhinella that have (eared) or lack (earless) middle ear structures. We bred toads in Peru and Ecuador, preserved developmental series from tadpoles to juveniles, and examined ontogenetic timing and volume of the otic capsule, oval window, operculum, opercularis muscle, columella (stapes), and extracolumella in three‐dimensional histological reconstructions. All species had similar ontogenesis of the otic capsule, oval window, operculum, and opercularis muscle. Moreover, cell clusters of primordial columella in the oval window appeared just before metamorphosis in both eared and earless lineages. However, in earless lineages, the cell clusters either remained as small nubbins or cell buds in the location of the columella footplate within the oval window or disappeared by juvenile and adult stages. Thus, columella growth began around metamorphosis in all species but was truncated and/or degenerated after metamorphosis in earless species, leaving earless adults with morphology typical of metamorphic anurans. Shifts in the timing or expression of biochemical pathways that regulate the extension or differentiation of the columella after metamorphosis may be the developmental mechanism underlying convergent trait loss among toad lineages.  相似文献   

18.
Effects of food availability on the larval survival and development of Crepidula onyx were studied in four experiments by feeding the larvae with different concentrations of the chrysophyte Isochrysis galbana and by starving the larvae for different periods of time. Food concentration had a clear impact on the survival, growth and development time of C. onyx veligers. Larval development occurred only at 104 cells ml−1 and higher algal concentrations. No shell increment was detected in the veligers cultured for 12 days at 102 cells ml−1I. galbana or the blank control. At 103 cells ml−1, there was only a slight increase in shell length over 12 days. At 104 cells ml−1, about 40% of the larvae became competent in 18 days. At 105 and 106 cells ml−1, more than 90% of the larvae reached competence in 7 days. Initial starvation negatively affected the larval development, but the sensitivity differed among parameters measured on day 5: lower survivorship was detected only for larvae that had suffered 3 days or longer initial starvation, whereas one-day initial starvation caused shorter shells and lower percentage of competent larvae. Three days of continuous feeding was required for 50% of the larvae to reach competence. After feeding for 3 days, most larvae could become competent to metamorphose even under starvation. The time of starvation was also critical: larvae that suffered 1-day food deprivation in the first 2 days of larval release had shorter shells and lowered percent competent larvae than those that suffered the same length of food deprivation in later stages of development. Our study thus indicates that both food concentration and short-term starvation have detrimental effects on the larval development of this species, and that once the larva has consumed certain amount of food, starvation may induce metamorphosis.  相似文献   

19.
Na?ve adults and larvae of the native lady beetles Coleomegilla maculata (DeGeer), Cycloneda munda (Say), Hippodamia convergens Guérin-Méneville, Olla v-nigrum (Mulsant), and the exotic lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) were tested for their initial response to eggs of these five lady beetle species and for egg consumption on first contact and after 3 h. Additionally, field-collected O. v-nigrum and H. axyridis adults were tested. C. maculata, H. axyridis, and O. v-nigrum adults responded similarly to all egg species on first contact. Higher numbers of C. munda adults did not eat C. maculata, H. convergens, and O. v-nigrum eggs on first contact compared with numbers that did eat C. munda and H. axyridis eggs. H. convergens adults always ate C. munda eggs but hardly ate H. axyridis eggs on first contact. Results showed that over the 3-h interval, egg predation by those predators feeding on first contact was always higher, except for adults and larvae of C. maculata, than for those that did not feed on first contact. Thus, acceptance of eggs on initial contact does impact egg survival. It is likely that eggs of all native species tested (i.e., C. maculata, C. munda, H. convergens, and O. v-nigrum), but not exotic H. axyridis eggs, are suitable food for C. maculata, H. convergens, and O. v-nigrum, whereas only C. munda eggs serve as suitable food for C. munda. In direct contrast, all egg species tested would likely serve as suitable food for the exotic H. axyridis.  相似文献   

20.
The planktonic period of planktotrophic veliger larvae from the nudibranch Dendronotus frondosus was characterized by laboratory culture methods. Larvae in culture successfully metamorphosed at 73–86 days after hatching. These veligers have Type 2 (Thompson) larval shells that significantly increased in length over the first 7–14 days after hatching. Direct observations of the development of nudibranch larvae with Type 2 protoconchs are limited, and these data help clarify previous attempts to correlate shell type and growth with minimum planktonic periods. Although these are not absolute values for the planktonic period of D. frondosus larvae, these data show the potential for extended larval dispersal and may help explain reports of an extensive geographic range in north-temperate waters for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号