首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transport of water and glycerol in aquaporin 3 is gated by H(+).   总被引:15,自引:0,他引:15  
Aquaporins (AQPs) were expressed in Xenopus laevis oocytes in order to study the effects of external pH and solute structure on permeabilities. For AQP3 the osmotic water permeability, L(p), was abolished at acid pH values with a pK of 6.4 and a Hill coefficient of 3. The L(p) values of AQP0, AQP1, AQP2, AQP4, and AQP5 were independent of pH. For AQP3 the glycerol permeability P(Gl), obtained from [(14)C]glycerol uptake, was abolished at acid pH values with a pK of 6.1 and a Hill coefficient of 6. Consequently, AQP3 acts as a glycerol and water channel at physiological pH, but predominantly as a glycerol channel at pH values around 6.1. The pH effects were reversible. The interactions between fluxes of water and straight chain polyols were inferred from reflection coefficients (sigma). For AQP3, water and glycerol interacted by competing for titratable site(s): sigma(Gl) was 0.15 at neutral pH but doubled at pH 6.4. The sigma values were smaller for polyols in which the -OH groups were free to form hydrogen bonds. The activation energy for the transport processes was around 5 kcal mol(-1). We suggest that water and polyols permeate AQP3 by forming successive hydrogen bonds with titratable sites.  相似文献   

2.
Xenopus laevis oocytes have been extensively used for expression cloning, structure/function relationships, and regulation analysis of transporter proteins. Urea transporters have been expressed in Xenopus oocytes and their properties have been described. In order to establish an alternative system in which urea transporters could be efficiently expressed and studied, we determined the urea transport properties of ovarian oocytes from Bufo arenarum, a toad species common in Argentina. Bufo oocytes presented a high urea permeability of 22.3 x 10(-6) cm/s, which was significantly inhibited by the incubation with phloretin. The urea uptake in these oocytes was also inhibited by mercurial reagents, and high-affinity urea analogues. The urea uptake was not sodium dependent. The activation energy was 3.2 Kcal/mol, suggesting that urea movement across membrane oocytes may be through a facilitated urea transporter. In contrast, Bufo oocytes showed a low permeability for mannitol and glycerol. From these results, we propose that one or several specific urea transporters are present in ovarian oocytes from Bufo arenarum. Therefore, these oocytes cannot be used in expression studies of foreign urea transporters. The importance of Bufo urea transporter is not known but could be implicated in osmotic regulation during the laying of eggs in water.  相似文献   

3.
The microsporidia are a group of obligate intracellular parasitic protists that have been implicated as both human and veterinary pathogens. The infectious process of these organisms is believed to be dependent upon the rapid influx of water into spores, presumably via aquaporins (AQPs), transmembrane channels that facilitate osmosis. An AQP-like sequence of the microsporidium Encephalitozoon cuniculi (EcAQP), when cloned and expressed in oocytes of Xenopus laevis, rendered these oocytes highly permeable to water. No permeability to the solutes glycerol or urea was observed. Pre-treatment of EcAQP-expressing oocytes with HgCl(2) failed to inhibit their osmotic permeability, as predicted from EcAQP's lack of mercury-sensitive cysteine residues near the NPA motifs which line the AQP aqueous pore. EcAQP exhibits sequence identity to AQP A of Dictyostelium discoideum (26%) and human AQP 2 (24%). Further study of AQPs in microsporidia and their potential inhibitors may yield novel therapeutic agents for microsporidian infections.  相似文献   

4.
The water channel protein aquaporin-1 (AQP1) has two asparagine-proline-alanine (NPA) repeats on loops B and E. From recent structural information, these loops are on opposite sides of the membrane and meet to form a pore. We replaced the mercury-sensitive residue cysteine 189 in AQP1 by serine to obtain a mercury-insensitive template (C189S). Subsequently, we substituted three consecutive cysteines for residues 71-73 near the first NPA repeat (76-78) in intracellular loop B, and investigated whether they were accessible to extracellular mercurials. AQP1 and its mutants were expressed in Xenopus laevis oocytes, and the osmotic permeability (P(f)) of the oocytes was determined. C189S had wild-type P(f) but was not sensitive to HgCl(2). Expression of all three C189S cysteine mutants resulted in increased P(f), and all three mutants regained mercurial sensitivity. These results, especially the inhibitions by the large mercurial p-chloromercunbenzene-sulfonic acid (pCMBS) ( approximately 6A wide), suggest that residues 71-73 at the pore are accessible to extracellular mercurials. A 30-ps molecular dynamics simulation (at 300 K) starting with crystallographic coordinates of AQP1 showed that the width of the pore bottleneck (between Connolly surfaces) can vary (w(avg) = 3.9 A, sigma = 0.75; hydrated AQP1). Thus, although the pore width would be > or = 6 A only for 0.0026 of the time, this might suffice for pCMBS to reach residues 71-73. Alternative explanations such as passage of pCMBS across the AQP1 tetramer center or other unspecified transmembrane pathways cannot be excluded.  相似文献   

5.
Trypanosoma brucei, causative for African sleeping sickness, relies exclusively on glycolysis for ATP production. Under anaerobic conditions, glucose is converted to equimolar amounts of glycerol and pyruvate, which are both secreted from the parasite. As we have shown previously, glycerol transport in T. brucei occurs via specific membrane proteins (Wille, U., Schade, B., and Duszenko, M. (1998) Eur. J. Biochem. 256, 245-250). Here, we describe cloning and biochemical characterization of the three trypanosomal aquaglyceroporins (AQP; TbAQP1-3), which show a 40-45% identity to mammalian AQP3 and -9. AQPs belong to the major intrinsic protein family and represent channels for small non-ionic molecules. Both TbAQP1 and TbAQP3 contain two highly conserved NPA motifs within the pore-forming region, whereas TbAQP2 contains NSA and NPS motifs instead, which are only occasionally found in AQPs. For functional characterization, all three proteins were heterologously expressed in yeast and Xenopus oocytes. In the yeast fps1Delta mutant, TbAQPs suppressed hypoosmosensitivity and rendered cells to a hyper-osmosensitive phenotype, as expected for unregulated glycerol channels. Under iso- and hyperosmotic conditions, these cells constitutively released glycerol, consistent with a glycerol efflux function of TbAQP proteins. TbAQP expression in Xenopus oocytes increased permeability for water, glycerol and, interestingly, dihydroxyacetone. Except for urea, TbAQPs were virtually impermeable for other polyols; only TbAQP3 transported erythritol and ribitol. Thus, TbAQPs represent mainly water/glycerol/dihydroxyacetone channels involved in osmoregulation and glycerol metabolism in T. brucei. This function and especially the so far not investigated transport of dihydroxyacetone may be pivotal for the survival of the parasite survival under non-aerobic or osmotic stress conditions.  相似文献   

6.
Recently, a new member of aquaporins was reported as AQP10 [Biochem. Biophys. Res. Commun. 287 (2001) 814], which is incompletely spliced to lose the sixth transmembrane domain and has poor water and no glycerol/urea permeabilities. Independently, we identified a similar clone in human. Our AQP10 consists of 301 amino acids with a highly conserved sixth transmembrane domain. AQP10 has higher identity with aquaglyceroporins (50% with AQP9, 48% with AQP3, 42% with AQP7) and lower identity with other aquaporins (32% with AQP1 and AQP8). AQP10 is expressed only in the small intestine with (approximately 2 kb). RNase protection assay revealed the absence of the unspliced form, supporting the authenticity of our clone. When expressed in Xenopus oocytes, AQP10 stimulated osmotic water permeability sixfold in a mercury-sensitive manner. Glycerol and urea uptakes were also stimulated, while adenine uptake was not. The genome structure of AQP10 is similar to those of other aquaglyceroporins (AQP3, AQP7, AQP9) with six exons. We conclude that AQP10 represents a new member of aquaglyceroporins functionally as well as structurally.  相似文献   

7.
Purification and functional characterization of aquaporin-8   总被引:11,自引:0,他引:11  
BACKGROUND INFORMATION: Aquaporins (AQPs) are a family of channels permeable to water and some small solutes. In mammals, 13 members (AQP0-AQP12) have been found. AQP8 is widely distributed in many tissues and organs. Previous studies in frog oocytes suggested that AQP8 was permeable to water, urea and ammonium, but no direct characterization had yet been reported. RESULTS: We expressed recombinant rAQP8, hAQP8 and mAQP8 (rat, human and mouse AQP8 respectively) in yeast, purified the proteins to homogeneity and reconstituted them into proteoliposomes. Although showing high sequence similarity, AQP8 proteins from the three species had to be purified with different detergents prior to reconstitution. In stopped-flow studies, all three AQP8 proteoliposomes showed water permeability, which was inhibited by mercuric chloride and rescued by 2-mercaptoethanol. rAQP8 and hAQP8 proteoliposomes did not transport glycerol or urea but were permeable to formamide, which was also inhibited by mercuric chloride. In the oocyte transport assay, hAQP8-injected oocytes showed significantly higher [14C]methylammonium uptake than water-injected oocytes. CONCLUSIONS: In the present study, we successfully purified rAQP8, hAQP8 and mAQP8 proteins and characterized their biochemical and biophysical properties. All three AQP8 proteins transport water. rAQP8 and hAQP8 are not permeable to urea or glycerol. Moreover, hAQP8 is permeable to ammonium analogues (formamide and methylammonium). Our results suggest that AQP8 may transport ammonium in vivo and physiologically contribute to the acid-base equilibrium.  相似文献   

8.
A new aquaporin (AQP10) was identified in human small intestine. This gene encoded a 264-amino-acid protein with high sequence identity with AQP3 (53%), 9 (52%), and 7 (43%). These AQPs constitute one subfamily of AQP family that is differentiated from the other subfamily of AQP (AQP0, 1, 2, 4, 5, 6, and 8) by sequence homology. Ribonuclease protection assay and Northern blotting demonstrated almost exclusive expression of AQP10 mRNA in the duodenum and jejunum. In situ hybridization localized it in absorptive jejunal epithelial cells. Xenopus oocytes expressing AQP10 exhibited an increased osmotic water permeability in a mercury-sensitive manner. Although AQP10 belongs to the AQP subfamily, which has been characterized by permeability to water and neutral solutes such as urea and glycerol, it was not permeable to urea nor glycerol. The specific expression of AQP10 suggests its contribution to the water transport in the upper portion of small intestine.  相似文献   

9.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

10.
We have previously cloned and characterized a novel 14-3-3 gene from the euryhaline telost Fundulus heteroclitus, Fh14-3-3a (Kültz et al., 2001). The corresponding gene product is osmoregulated and most highly expressed in gill epithelium of this fish. In the present study we have expressed Fh14-3-3a cRNA in Xenopus laevis oocytes and investigated the survival and electrophysiological parameters of Xenopus oocytes in isosmotic and various hyperosmotic media. Xenopus oocytes expressing Fh14-3-3a show no mortality after a 16 hour exposure to hyperosmolality in the form of elevating medium K(+), Na(+), polyethylene glycol, or sorbitol concentrations up to 444 mosmol/kg. In contrast, 16 hours of the same hyperosmolality caused 100% mortality in control Xenopus oocytes injected with water. As a result of hyperosmolality the Xenopus oocyte membrane potential decreased between 10 and 70% in oocytes expressing Fh14-3-3a whereas it was completely abolished in control oocytes. We report that one potential cause for the osmoprotective effect of Fh14-3-3a on Xenopus oocytes could be its inhibition of an endogenous chloride current. Hyperosmotic urea was not as harmful to Xenopus oocytes as hypertonicity and maybe acting through a different mechanism. Coexpression of Fh14-3-3a with a human calcium channel in Xenopus oocytes did not affect the electrophysiological properties of this exogenous channel. Thus, the osmoprotective effect of Fh14-3-3a may prove a valuable tool for the characterization of exogenous ion channels in Xenopus oocytes exposed to hyperosmotic conditions.  相似文献   

11.
Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel.  相似文献   

12.
Aquaporin 0 (AQP0) is a lens-specific protein comprising more than 30% of lens membrane protein content and is a member of the aquaporin family. Water permeates through AQP0 much more slowly than other aquaporin family members, and other compounds, such as glycerol, also permeate AQP0. In the lens, ascorbic acid (AA) is found at high concentrations, protecting the lens from photochemical events such as photo-oxidation. The aim of the present study was to clarify the function of AQP0. Mouse fibroblast L-cells stably expressing AQP0 were established and incubated in medium containing AA, and intracellular AA levels were measured by high-performance liquid chromatography (HPLC) and 2,6-dichlorophenol-indophenol (DCPIP) analysis. Intracellular AA levels in AQP0-expressing cells quickly rose and reached saturation 10 min after incubation in medium containing 1000 μM AA. In contrast, AA levels in cells slowly decreased when AA was washed out from the medium. Cells overexpressing AQP0 increased the cellular uptake of AA in a time- and concentration-dependent manner. These data suggest that AA as well as water permeates AQP0.AQP0 expression on Xenopus oocyte membranes was achieved by the injection of AQP0 cRNA into oocytes that were incubated in medium containing AA. Intracellular AA levels were then measured by HPLC. AA uptake was demonstrated in the AQP0-expressing oocytes and was shown to quickly reach saturation. Intracellular AA concentration in oocytes increased in a time- and concentration-dependent manner.The data in the present study show that AA permeates AQP0, reveal the role of AQP0 in AA permeability ex vivo, and also indicate that there is a difference between the import and export of AA via AQP0. These findings suggest that AQP0 plays an important role in controlling lens AA content.  相似文献   

13.
The orphan transporter hORCTL3 (human organic cation transporter like 3; SLC22A13) is highly expressed in kidneys and to a weaker extent in brain, heart, and intestine. hORCTL3-expressing Xenopus laevis oocytes showed uptake of [(3)H]nicotinate, [(3)H]p-aminohippurate, and [(14)C]urate. Hence, hORCTL3 is an organic anion transporter, and we renamed it hOAT10. [(3)H]Nicotinate transport by hOAT10 into X. laevis oocytes and into Caco-2 cells was saturable with Michaelis constants (K(m)) of 22 and 44 microm, respectively, suggesting that hOAT10 may be the molecular equivalent of the postulated high affinity nicotinate transporter in kidneys and intestine. The pH dependence of hOAT10 suggests p-aminohippurate(-)/OH(-), urate(-)/OH(-), and nicotinate(-)/OH(-) exchange as possible transport modes. Urate inhibited [(3)H]nicotinate transport by hOAT10 with an IC(50) value of 759 microm, assuming that hOAT10 represents a low affinity urate transporter. hOAT10-mediated [(14)C]urate uptake was elevated by an exchange with l -lactate, pyrazinoate, and nicotinate. Surprisingly, we have detected urate(-)/glutathione exchange by hOAT10, consistent with an involvement of hOAT10 in the renal glutathione cycle. Uricosurics, diuretics, and cyclosporine A showed substantial interactions with hOAT10, of which cyclosporine A enhanced [(14)C]urate uptake, providing the first molecular evidence for cyclosporine A-induced hyperuricemia.  相似文献   

14.
EAAC1-mediated glutamate transport concentrates glutamate across plasma membranes of brain neurons and epithelia. In brain, EAAC1 provides a presynaptic uptake mechanism to terminate the excitatory action of released glutamate and to keep its extracellular concentration below toxic levels. Here we report the effect of well known anxiolytic compounds, benzodiazepines, on glutamate transport in EAAC1-stably transfected Chinese hamster ovary (CHO) cells and in EAAC1-expressing Xenopus laevis oocytes. Functional properties of EAAC1 agreed well with already reported characteristics of the neuronal high-affinity glutamate transporter (Km D-Asp,CHO cells: 2.23+/-0.15 microM; Km D-Asp,oocytes: 17.01+/-3.42 microM). In both expression systems, low drug concentrations (10-100 microM) activated substrate uptake (up to 200% of control), whereas concentrations in the millimolar range inhibited (up to 50%). Furthermore, the activation was more pronounced at low substrate concentrations (1 microM), and the inhibition was attenuated. The activity of other sodium cotransporters such as the sodium/D-glucose cotransporter SGLT1, stably transfected in CHO cells, was not affected by benzodiazepines. In electrophysiological studies, these drugs also failed to change the membrane potential of EAAC1-expressing Xenopus laevis oocytes. These results suggest a direct action on the glutamate transporter itself without modifying the general driving forces. Thus, in vivo low concentrations of benzodiazepines may reduce synaptic glutamate concentrations by increased uptake, providing an additional mechanism to modulate neuronal excitability.  相似文献   

15.
The mRNA that encodes a serotonin transporter was expressed using the Xenopus laevis oocyte expression system. Poly(A)+ RNA isolated from mouse brainstem was injected into Xenopus laevis oocytes, and the ability of oocytes to take up serotonin was measured 3 days postinjection. RNA-dependent serotonin uptake was sensitive to citalopram, a specific inhibitor of serotonin uptake, whereas background levels of serotonin uptake were not citalopram sensitive. Two RNA size fractions, 4.0 and 4.5 kb, were most efficient in stimulating uptake. Injection into Xenopus laevis oocytes of the 4.5-kb size fraction of mouse brainstem RNA resulted in threefold more serotonin uptake than did injection of unfractionated poly(A)+ RNA.  相似文献   

16.
A procedure was developed for studying vitellogenin (VTG) incorporation by vitellogenic oocytes of Fundulus heteroclitus in vitro. Since homologous VTG can be obtained from this animal only with great difficulty, the use of [32P]VTG from Xenopus laevis was explored as an alternative. Vitellogenic as well as maturational-stage oocytes were found to sequester X. laevis [32P]VTG from the medium, and incorporation was found to be linear with time for at least up to 12 hr. Once incorporated into the oocyte, [32P]VTG did not appear to undergo turnover. The effect of different [32P]VTG concentrations on incorporation indicated that the uptake mechanism was saturable. Unlabeled F. heteroclitus VTG and X. laevis VTG were also found to compete effectively with X. laevis [32P]VTG, whereas bovine serum albumin did not. These results represent the first documentation of a successful culture system for receptor-mediated VTG incorporation by teleost oocytes.  相似文献   

17.
18.
19.
Kuwahara M  Shinbo I  Sato K  Terada Y  Marumo F  Sasaki S 《Biochemistry》1999,38(49):16340-16346
Aquaporin-2 (AQP2), a vasopressin-regulated water channel, plays a major role in urinary concentration. AQP2 and the major intrinsic protein (MIP) of lens fiber are highly homologous (58% amino acid identity) and share a topology of six transmembrane helices connected by five loops (loops A-E). Despite the similarities of these proteins, however, the water channel activity of AQP2 is much higher than that of MIP. To determine the site responsible for this gain of activity in AQP2, several parts of MIP were replaced with the corresponding parts of AQP2. When expressed in Xenopus oocytes, the osmotic water permeability (P(f)) of MIP and AQP2 was 48 and 245 x 10(-)(4) cm/s, respectively. Substitutions in loops B-D failed to increase P(f), whereas substitution of loop E significantly increased P(f) 1.5-fold. A similar increase in P(f) was observed with the substitution of the front half of loop E. P(f) measurements taken in a yeast vesicle expression system also confirmed that loop E had a complementary effect, whereas loops B-D did not. However, P(f) values of the loop E chimeras were only approximately 30% of that of AQP2. Simultaneous exchanges of loop E and a distal half of transmembrane helix 5 just proximal to loop E increased P(f) to the level of that of AQP2. Replacement of helix 5 alone stimulated P(f) 2.7-fold. Conversely, P(f) was decreased by 73% when helix 5 of AQP2 was replaced with that of MIP. Moreover, P(f) was stimulated 2.6- and 3.3-fold after helix 5 of AQP1 and AQP4 was spliced into MIP, respectively. Our findings suggested that the distal half of helix 5 is necessary for maximum water channel activity in AQP. We speculate that this portion contributes to the formation of the aqueous pore and the determination of the flux rate.  相似文献   

20.
Arsenic trioxide uptake by human and rat aquaglyceroporins   总被引:9,自引:0,他引:9  
Aquaglyceroporins are channels that allow downhill movement of uncharged solutes such as glycerol and urea. Arsenic trioxide has recently been shown to be translocated by mouse mAQP7 and rat rAQP9. In this study we examined the ability of the four known human members of the aquaglyceroporin family, hAQP3, hAQP7, hAQP9, and hAQP10, to facilitate As(OH)(3) movement in Xenopus oocytes. The order of effectiveness as an As(III) transporter was found to be hAQP9 > hAQP7, with little or no transport by hAQP3 or hAQP10. From comparison with the crystal structure of the bacterial homologue GlpF and the bovine erythrocyte water channel bAQP1, AQP9 residues Phe-64 and Arg-219 are predicted to serve as part of the selectivity filter. The requirement for Phe-64 and Arg-219 in arsenic trioxide translocation was examined by site-directed mutagenesis of rAQP9, taking advantage of the fact that rat AQP9 catalyzes (73)As(OH)(3) uptake in Saccharomyces cerevisiae and in oocytes. R219A, R219K, F64A, F64T, and F64W were expressed in both yeast and oocytes, and permeability of arsenic trioxide and glycerol was measured. A lysine but not an alanine residue could substitute for the highly conserved Arg-219, indicating that a positive charge is required at the entry to the channel. In contrast, the phenylalanine residue, which is believed to position substrates near the conserved arginine, was not required for either arsenic trioxide or glycerol uptake. The results support the hypothesis that arsenic trioxide and glycerol use the same translocation pathway in AQP9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号