首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Primary cultures of rat heart endothelial cells were subjected to simulated conditions of ischemia: hypoxia and glucose deprivation for 4 and 24 hr. Cellular injury was evaluated by measuring changes in viability, total protein, cellular morphology, and leakage of cytoplasmic enzymes from the cells into the culture medium. Deprivation of oxygen and glucose for 4 or 24 hr did not lethally injure the cells as noted by no change in cell viability, morphology, and total protein when compared to controls. However, reversible or nonlethal cellular injury was produced as reflected by a significant release of lactate dehydro-genase (LDH) from the cells into the medium after treatment with hypoxia and glucose deprivation for 4 or 24 hr. When the cultures were deprived of glucose, but were oxygenated, cellular injury was not evident after 24 hr. Deprivation of oxygen but not glucose resulted in significant loss of LDH after 4 or 24 hr. When the cultures were allowed to recover after oxygen and glucose deprivation in complete medium containing 1000 mg glucose per l and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures. This study was supported by Research Grant HL 18647 from the National Heart, Lung, and Blood Institute and by a National Chicano Council on Higher Education Post-Doctoral Fellowship awarded to D. Acosta from the Ford Foundation. Additional support was provided to D. Acosta by a Faculty Research Assignment Award from the University of Texas Research Institute.  相似文献   

2.
D Acosta  C P Li 《In vitro》1979,15(11):929-934
Primary cultures of rat heart endothelial cells were subjected to simulated conditions of ischemia: hyposia and glucose deprivation for 4 and 24 hr. Cellular injury was evaluated by measuring changes in viability, total protein, cellular morphology, and leakage of cytoplasmic enzymes from the cells into the culture medium. Deprivation of oxygen and glucose for 4 or 24 hr did not lethally injure the cells as noted by no change in cell viability, morphology, and total protein when compared to controls. However, reversible or non-lethal cellular injury was produced as reflected by a significant release of lactate dehydrogenase (LDH) from the cells into the medium after treatment with hypoxia and glucose deprivation for 4 or 24 hr. When the cultures were deprived of glucose, but were oxygenated, cellular injury was not evident after 24 hr. Deprivation of oxygen but not glucose resulted in significant loss of LDH after 4 or 24 hr. When the cultures were allowed to recover after oxygen and glucose deprivation in complete medium containing 1000 mg glucose per 1 and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures.  相似文献   

3.
D Acosta  M Puckett 《In vitro》1977,13(12):818-823
An in vitro model of myocardial ischemia has been established with primary monolayer cultures of neonatal rat heart cells. Ischemic conditions were simulated in vitro by subjecting the heart cell cultures to various levels of oxygen and glucose deprivation. After the ischemic treatments, cultures of beating muscle (M) cells were evaluated for functional and morphological changes. The experimental protocol consisted of treatment with 20% or 0% O2 and 1000, 500 or 0 mg glucose per 1 of medium for 4, 12 or 24 hr. Control cultures were treated with 20% O2 and 1000 mg glucose. The morphological alterations induced by the deficiency of O2 and glucose in the medium were the formation of pseudopodia and cytoplasmic vacuoles; increased cytoplasmic granulation; and the formation of abnormal cell shapes, such as long, spindly shaped M cells. There was a time-dependent decrease in beating activity as the M cells were exposed to longer durations of ischemic conditions. However, if the cultures were replenished with complete medium (1000 mg glucose) and 20% O2, the cells regained their ability to beat.  相似文献   

4.
Summary An in vitro model to study myocardial cell injury was developed with primary monolayer cultures of rat myocardial cells. Two important conditions associated with myocardial ischemia were simulated by depriving the cultures of oxygen and glucose for a specified period of time. Cellular injury caused by hypoxia and glucose deprivation resulted in significant leakage of lactate dehydrogenase (LDH) from the cells into the culture medium. The cells were not lethally injured by treatments as reflected by a lack of change in cell viability and protein content when compared to controls. Pretreatment of cultures with methylprednisolone for 24 hr provided protection to the cells when challenged by hypoxia and glucose deprivation. Methylprednisolone exhibited a dose-response effect in reducing LDH leakage in cultures, which were subsequently deprived of oxygen and glucose for 4 hr. Similar pretreatment with hydrocortisone had no effect in limiting cellular injury in hypoxic and glucose-deprived cultures. The research was supported by Grant HL 18647 from the National Heart, Lung, and Blood Institute and by a National Chicano Council on Higher Education Post-Doctoral Fellowship awarded to D. Acosta from the Ford Foundation. Additional support was provided to D. Acosta by a Faculty Research Assignment Award from the University of Texas Research Institute.  相似文献   

5.
One hour incubation of rat cortical slices in a medium without oxygen and glucose (oxygen–glucose deprivation, OGD) increased S100B release to 6.53 ± 0.3 ng/ml/mg protein from its control value of 3.61 ± 0.2 ng/ml/mg protein. When these slices were then transferred to a medium containing oxygen and glucose (reoxygenation, REO), S100B release rose to 344 % of its control value. REO also caused 192 % increase in lactate dehydrogenase (LDH) leakage. Glutamate added at millimolar concentration into the medium decreased OGD or REO-induced S100B release and REO-induced LDH leakage. Alpha-ketoglutarate, a metabolic product of glutamate, was found to be as effective as glutamate in decreasing the S100B and LDH outputs. Similarly lactate, 2-ketobutyrate and ethyl pyruvate, a lipophilic derivative of pyruvate, also exerted a glutamate-like effect on S100B and LDH outputs. Preincubation with menadione, which produces H2O2 intracellularly, significantly increased S100B and LDH levels in normoxic medium. All drugs tested in the present study, with the exception of pyruvate, showed a complete protection against menadione preincubation. Additionally, each OGD–REO, menadione or H2O2-induced mitochondrial energy impairments determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining and OGD–REO or menadione-induced increases in reactive oxygen substances (ROS) determined by 2,7-dichlorofluorescin diacetate (DCFH-DA) were also recovered by glutamate. Interestingly, H2O2-induced increase in fluorescence intensity derived from DCFH-DA in a slice-free physiological medium was attenuated significantly by glutamate and alpha-keto acids. All these drug actions support the conclusion that high glutamate, such as alpha-ketoglutarate and other keto acids, protects the slices against OGD- and REO-induced S100B and LDH outputs probably by scavenging ROS in addition to its energy substrate metabolite property.  相似文献   

6.
缺血预处理对缺血/再灌注离体心脏的保护作用   总被引:2,自引:0,他引:2  
目的:探讨连续多次短暂缺血预处理对缺血/再灌注损伤心肌的保护作用及机制。方法:采用大鼠离体心脏Lan-gendorff灌流模型,观察缺血预处理对心肌缺血/再灌注后不同时间点冠脉流出液中AST、CPK、UDH及冠脉流量,心肌组织中SOD、LPO以及再灌注性心律失常的影响。结果:缺血预处理可以减少缺血/再灌注损伤的心肌冠脉流出液中AST、CPK、LDH的含量,提高心肌SOD活性,降低LPO水平,并且抑制再灌注性心律失常的发生,提高再灌注期间的冠脉流量。结论:缺血预处理对心肌缺血/再灌注损伤具有一定保护作用。  相似文献   

7.
Three indexes of partial oxygen deprivation, i.e. hypoxanthine, alpha HBDH and CK, were investigated in rat heart cell cultures, 7 day-old. Enzyme release in the medium and hypoxanthine uptake by the cells pointed out both oxygen and glucose deprivation, which modelized ischemia. Conversely, hypoxanthine release pointed out oxygen deprivation, in the presence of glucose however, which modelized hypoxia, whereas there was no enzyme leakage in the latter condition.  相似文献   

8.
Summary. Ischemic incubation significantly increased amino acid release from rat striatal slices. Reoxygenation (REO) of the ischemic slices, however, enhanced only taurine and citrulline levels in the medium. Ischemia-induced increases in glutamate, taurine and GABA outputs were accompanied with a similar amount of decline in their tissue levels. Tissue final aspartic acid level, however, was doubled by ischemia. Lactate dehydrogenase (LDH) leakage was not altered by ischemia, but enhanced during REO. Presence of tetrodotoxine (TTX) during ischemic period caused significant decline in ischemia-induced glutamate output, but not altered REO-induced LDH leakage. Although omission of extracellular calcium ions from the medium during ischemic period protected the slices against REO-induced LDH leakage, this treatment failed to alter ischemia-induced glutamate and GABA outputs. The release of other amino acids, however, declined 50% in calcium-free medium. Blockade of the glutamate uptake transporter by L-trans-PDC, on the other hand, doubled ischemia induced glutamate and aspartic acid outputs. These results indicate that more than one mechanisms probably support the ischemia-evoked accumulation of glutamate and other amino acids in the extracellular space. Although LDH leakage enhanced during REO, processes involved in this increment were found to be dependent on extracellular calcium ions during ischemia but not REO period.  相似文献   

9.
Accelerated degradation of membrane phospholipids characterizes the reaction of rat liver and myocardial cells to ischemia. A similar disturbance in phospholipid metabolism was sought in anoxic hepatocytes. Primary cultures of adult rat hepatocytes were made anoxic by evacuation of the CO2O2 atmosphere with N2. The resulting loss of ATP was reversible upon reoxygenation after periods of anoxia up to 2 h. With 3–4 h of anoxia, the cells were incapable of regenerating ATP levels. Loss of viability was also indicated by the inability of over 90% of the cells after 3–4 h to exclude trypan blue. The baseline rate of turnover of [14C]-ethanolamine or glycerol prelabeled phospholipids was then established. A constant rate of turnover was found for, at least, the first 3 days the cells were in culture. No loss of total phospholipid occurred during this time. Anoxia induced very significant differences in the fate of prelabeled phospholipids. With [14C]-ethanolamine there was a 30% loss of total cellular radioactivity within 4 h. Total phospholipids determined as lipid phosphate decreased by 20%. This depletion of cellular phospholipids was paralleled by an accumulation of hydrophilic degradation products in the culture medium. Phosphorylethanolamine accounted for 50% of these, with equal amounts of glycerophosphorylethanolamine and ethanolamine the other 50%. A similar accumulation in the medium occurred with [14C]-glycerol- and [14C]choline-prelabeled phospholipids. The accelerated degradation of phospholipid was accompanied by evidence of membrane dysfunction as shown by the loss of 50% of the glucose 6-phosphatase activity in whole cell homogenates. The results of these studies establish that anoxia induces in cultured rat hepatocytes a similar disturbance to phospholipid metabolism as does ischemia of the same cells in the intact animal. This implies that the deprivation of oxygen per se determines the characteristic reaction of cells to ischemia. This conclusion allows further analysis of the effects of O2 deprivation on cultured hepatocytes as a new experimental model with which to further explore the effects of ischemia on cells.  相似文献   

10.
采用结扎大鼠冠脉造成急性心肌缺血模型 ,观察了三七总皂甙和灯盏花素复方注射剂 (简称复方注射剂 )抗实验性心肌缺血作用。结果表明 :大鼠静脉注射复方注射剂 5 0mg/kg和 10 0mg/kg对急性心肌缺血均有一定程度的保护作用 ,在改善心电图S T段的上移、降低血清CPK、LDH方面两个剂量组均有显著作用 (P <0 .0 5 ,P <0 .0 1)以 10 0mg/kg组缩小心肌梗塞范围为显著 (P <0 .0 5 )。复方注射剂与丹参注射剂均能保护超氧化物歧化酶活性 (P <0 .0 5 ,P <0 .0 1) ,显著降低丙二醛含量 (P <0 .0 1)。复方注射剂两个剂量组均能显著增加前列环素合成 (P <0 .0 5 ,P <0 .0 1)。提示三七总皂甙和灯盏花素复方注射剂对心肌缺血的保护作用与抗脂质过氧化作用有关 ,其促进前列环素合成作用可能与其抗心肌缺血有关。  相似文献   

11.
L. Wu  H. Qiao  Y. Li  L. Li   《Phytomedicine》2007,14(10):652-658
Ischemic heart diseases have been the leading cause of death in both developed and developing countries over the past decades. The aim of this study was to investigate the cardioprotective effects of the complex preparation (called Shenge), made of puerarin (isolated from Pueraria lobata Ohwi., also called Kudzu) and Danshensu (isolated from the Chinese herb, Salvia miltiorrhiza), on acute ischemic myocardial injury in rats and its underlying mechanisms. The left anterior descending (LAD) coronary artery was occluded to induce myocardial ischemia in the hearts of SD rats. Shenge was injected into the tail vein 15 min after occlusion at doses of 0, 30, 60, or 120 mg/kg body wt. ST elevation was then measured at 60, 120, and 240 min after Shenge administration. The ischemic size, serum levels of creatine kinase isoenzyme-MB (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA), and ST elevation were measured after the rats were sacrificed. Shenge decreased ST elevation induced by acute myocardial ischemia, reduced ischemic size, serum levels of CK-MB, LDH and MDA, and increased serum activity of SOD in a dose-dependent manner. The combined use of puerarin and Danshensu at a ratio of 1:1 showed the most effective activity. In conclusion, Shenge exerts significant cardioprotective effects against acute ischemic myocardial injury in rats, likely through its antioxidant and anti-lipid peroxidation properties, and thus may be an effective and promising medicine for both prophylaxis and treatment of ischemic heart disease.  相似文献   

12.
Oxidative stress is involved in the pathogenesis of ischemia-reperfusion during myocardial transplantation. Therefore, graft preservation solutions may be improved by supplementation with antioxidants to minimize graft dysfunction caused by cold ischemic injury. Propolis is a polyphenol-rich substance which has an important antioxidant activity. The protective effect of propolis against oxidative stress induced by prolonged cold preservation of heart was investigated. Mice were subjected to a hypothermic model of ischemia in which hearts were preserved for 24 h at 4 °C in Krebs-Hensleit (KH) solution in the absence or presence of propolis concentrations (50, 150 and 250 μg/ml). Levels of released Lactate dehydrogenase (LDH), Creatine phosphokinase (CPK) and Troponine-I (Trop I) were assessed in the preservation solution and histological assessement of heart ischemia injuries was performed. Oxidative stress biomarkers malondialdehyde (MDA) and advanced oxidation protein products (AOPP) and antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were assessed in cardiac tissue. Mitochondria were isolated from stored hearts and production of reactive oxygen species (ROS) was tested. Propolis supplementation protected efficiently hearts during preservation by reducing significantly levels of lipids and proteins oxidation and restoring activities of antioxidant enzymes. Also, propolis preserved tissue integrity altered by hypothermic ischemia in a concentration-dependent manner. Propolis reduced significantly the rate of H2O2 produced by mitochondrial respiration, the best antioxidant effect being obtained at the highest propolis concentration (250 μg/ml). Algerian propolis is a non-temperature sensitive scavenger that protects heart from oxidative damage induced by prolonged hypothermic ischemia.  相似文献   

13.
Following cultivation of distinct mesenchymal stem cell (MSC) populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O2)) revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O2). A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 μmol/L at 1.5% O2 to 196 μmol/L at normoxic 21% O2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1α) and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.  相似文献   

14.
对肾上腺素性心肌缺血模型大鼠相关指标的探讨   总被引:11,自引:1,他引:10  
目的进一步探讨客观评价大鼠心肌缺血模型的指标。方法观察皮下注射10mg kg异丙肾上腺素(ISO)造成SD大鼠心肌缺血性损伤模型后心电图的变化、检测血清中肌酸激酶(CK)、乳酸脱氢酶(LDH)、游离脂肪酸(FFA)以及心肌组织的坏死面积、超氧化物歧化酶(SOD)、丙二醛(MDA)含量的变化。结果腹腔注射ISO后30s,大鼠心电图的J点开始降低,2min后缓慢回升,但20min后仍未回复到原来的水平,而且20min内各时间点与给药前比较,模型对照组大鼠的J点与生理盐水对照组比较,差异有显著性(P<0.05);T波则在注射异丙肾上腺素30s后开始下降,10min内两组的T波一直保持显著差异(P<0.05),而且注射异丙肾上腺素后30s(P<0.01)以及5min(P<0.05)与给药前比较,T波均有显著差异;模型对照组大鼠血清中CK、LDH、FFA以及心肌组织中MDA浓度均显著高于生理盐水对照组,心肌坏死面积与这些指标呈正相关关系,心肌组织中SOD浓度显著低于生理盐水对照组。结论J点可以作为评价此种动物模型的主要指标,T波可以作为辅助指标,应重点观察20min内心电图的变化;可以选择CK、LDH、FFA、SOD、MDA等生化指标以及心肌坏死面积等来探讨抗心肌缺血药物的作用机理。  相似文献   

15.
Cerebellar granule neurons were incubated with or without glucose (3 mM) in the presence or absence of citrate (20 mM) using normoxic and/or hypoxic incubation conditions. During 4 h of hypoglycemia and also during hypoxia plus hypoglycemia, citrate increased lactate dehydrogenase (LDH) leakage from the cells and decreased mitochondrial activity, the latter was also the case in the presence of glucose. After 24 h of hypoglycemia, however, citrate decreased LDH leakage slightly, possibly due to its metabolism in the tricarboxylic acid cycle under these conditions. It should be noted that during mild hypoxia plus hypoglycemia a reduced LDH leakage was observed when compared to hypoglycemia alone. The 4 h low oxygen period did protect the neurons also during the 20 h re-oxygenation period. The present study might indicate that incubation of brain cell cultures in an atmosphere of air (30% oxygen) and 5% CO2, which is used in most laboratories, can be toxic and that oxygen concentration should be lowered considerably to mimic conditions in the brain.  相似文献   

16.
This study was designed to assess the effect of a peptidol eukotriene receptor antagonist. SK&F 104353, for limiting myocardial damage and neutrophil accumulation in rats subjected to myocardial reperfusion injury (MI/R). In conscious rats, SK&F 104353 (25 mg/kg, i.v.) antagonized LTD4-induced vasopressor responses by 90% and 60% at 1 and 4 hr, respectively, indicating effective blockade of peptidol eukotriene responses. In another group of animals subjected to 30 min of coronary artery occlusion with reperfusion for 24 hr, myocardial injury and neutrophil infiltration were determined by measuring creatine phosphokinase (CPK) specific activity and myeloperoxidase (MPO) activity, respectively, in the left ventricular free wall (LVFW). Myocardial CPK levels were 8.1 ± 0.2 U/mg protein in Sham-MI/R vehicle-treated animals, and were significantly decreased to 6.4 ± 0.6 U/mg protein in MI/R-vehicle animals. Myocardial MPO values were 1.5 ± 0.5 U/g LVFW in Sham-MI/R vehicle-treated animals, and significantly increased to 4.3 ± 0.6 U/g LVFW in MI/R-vehicle animals. Administration of SK&F 105353 (25 mg/kg, i.v.) 1 min prior to coronary occlusion and 3.5 hr post reperfusion and no effect on the loss of myocardial CPK specific activity or the increase in MPO levels (p > 0.05, compared to the MI/R-vehicle group). Thus, at a dose that antagonized LTD4-induced vasopressor responses, SK&F 104353 did not attenuate either the extent of myocardial injury or inflammatory cell accumulation associated with myocardial ischemia/ reperfusion. These results suggest that peptidoleukotrienes do not contribute to the progression of myocardial ischemic/reperfusion injury.  相似文献   

17.
Therapeutic and/or preventive interventions using phytochemical constituents for ischemic heart disease have gained considerable attention worldwide, mainly due to their antioxidant activity. This study investigated the cardioprotective effect and possible mechanism of juglone, a major constituent of the walnut tree, using an isoproterenol (ISO)-induced myocardial infarction (MI) model in rats. Rats were pretreated for five (5) days with juglone (1, 3 mg/kg, i.p) and atenolol (1 mg/kg, i.p) in separate experiments before inducing myocardial injury by administration of ISO (80 mg/kg, s.c) at an interval of 24 h for 2 consecutive days (4th and 5th day). The cardioprotective effect of juglone was confirmed through a lead II electrocardiograph (ECG), cardiac biomarkers (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological study. The results of our present study suggest that prior administration of juglone (1 and 3 mg/kg) proved to be effective as a cardioprotective therapeutic agent in reducing the extent of myocardial damage (induced by ISO) by fortifying the myocardial cell membrane, preventing elevated T-waves, deep Q-waves in the ECG, heart to body weight ratio, infarction and also by normalizing cardiac marker enzymes (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological changes, such as inflammation, edema and necrosis. In conclusion, this study has identified phytochemical constituents, in particular juglone, as a potential cardioprotective agent.  相似文献   

18.
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

19.
Glucose-free perfusion preconditions myocardium against the consequences of subsequent ischemia. We investigated whether mitochondrial ATP-sensitive potassium (mK (ATP)) channels are involved in preconditioning by glucose deprivation, and whether moderate glucose deprivation also preconditions myocardium. Isolated rat hearts underwent 30 min of no-flow ischemia followed by 1 h reperfusion. Controls were not further treated. Three groups were preconditioned by perfusion with 0, 40 or 80 mg/dl (0, 2.22, 4.44 mmol/l) glucose (correction of osmotic pressure by addition of urea) for 10 min followed by 10 min perfusion with normal buffer (150 mg/dl, or 8.33 mmol/l glucose) before the ischemia reperfusion protocol. In one group, 100 micromol/l of the mK (ATP) channel blocker 5-HD was added to the glucose-free perfusate. Two groups were treated with 5-HD or urea before ischemia without preconditioning. Left ventricular developed pressure and maximum ischemic contracture (82 +/- 21 mmHg) were similar in all groups. Mean left ventricular developed pressure was 100 +/- 16 mm Hg under baseline conditions, and poorly recovered to 8 +/- 11 mm Hg during reperfusion. Preconditioning with 0 and 40 mg/dl glucose containing buffer reduced infarct size from 41 +/- 10% (control) to 23 +/- 12% (p = 0.02) and 26 +/- 8% (p = 0.011). The 5-HD blocked preconditioning by glucose deprivation (38 +/- 9%, p = 0.04) while 80 mg/dl glucose, 5-HD and urea had no effect on infarct size (39 +/- 9%; 38 +/- 13%; 37 +/- 8%; p = 1.0 each). We conclude that transient severe glucose deprivation and moderate glucose deprivation preconditions the isolated rat heart. Preconditioning by complete glucose deprivation depends on the opening of mK (ATP) channels.  相似文献   

20.
We tested the hypothesis that down-regulated hearts, as observed during low-flow ischemia, adapt better to low O2 supply than non-down-regulated, or hypoxic, hearts. To address the link between down-regulation and endogenous ischemic protection, we compared myocardial tolerance to ischemia and hypoxia of increasing duration. To that end, we exposed buffer-perfused rat hearts to either low-flow ischemia or hypoxia (same O2 shortage) for 20, 40 or 60 min (n = 8/group), followed by reperfusion or reoxygenation (20 min, full O2 supply). At the end of the O2 shortage, the rate·pressure product was less in ischemic than hypoxic hearts (p < 0.0001). The recovery of the rate·pressure product after reperfusion or reoxygenation was not different for t = 20 min, but was better in ischemic than hypoxic hearts for t = 40 and 60 min (p < 0.02 and p < 0.0002, respectively). The end-diastolic pressure remained unchanged during low-flow ischemia (0.024 ± 0.013 mmHg·min–1), but increased significantly during hypoxia (0.334 ± 0.079 mmHg·min–1). We conclude that, while the duration of hypoxia progressively impaired the rate·pressure product and the end-diastolic pressure, hearts were insensitive of the duration of low-flow ischemia, thereby providing evidence that myocardial down-regulation protects hearts from injury. Excessive ATP catabolism during ischemia in non-down-regulated hearts impaired myocardial recovery regardless of vascular, blood-related and neuro-hormonal factors. These observations support the view that protection is mediated by the maintenance of the ATP pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号