首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most cytolytic T lymphocytes (CTL) recognize class I rather than class II MHC determinants, and relatively little is known about those CTL that do recognize class II MHC determinants. The present study was undertaken to document the specificity, phenotype, and precursor frequency of primary class II allospecific CTL. It was found that class II-allospecific CTL could be consistently generated in vitro from unprimed spleen or thymus populations in the presence of exogenously added helper factors. The class II MHC specificity of both the precursor and CTL effectors activated in primary cultures by Ia-disparate stimulator cells was documented both by blocking experiments with anti-Ia mAb and by the use of L cell transfectants. The mechanism by which primary allospecific CTL effectors lysed their targets appeared to involve direct cell-cell contact, because they failed to lyse bystander target cells. The frequency in unprimed spleen populations of precursor CTL specific for class II alloantigens was examined by limiting dilution analysis and was found to be as high as 1/15,000 splenocytes and approximately 10% of the frequency reported for primary class I allospecific CTL. Finally, the Lyt phenotype of primary class II allospecific CTL precursors and effectors was determined. It was found that anti-class II CTL derive from at least two distinct precursor subpopulations that are either L3T4+Lyt-2- or L3T4-Lyt-2+, and that the Lyt phenotype expressed by the CTL effectors are concordant with that of their precursors. No correlation was found between the I subregion gene products recognized by CTL effectors and the Lyt phenotype they expressed in that both I-A- and I-E-specific CTL were both L3T4+Lyt-2- and L3T4-Lyt-2+.  相似文献   

2.
The goal of the present study was to evaluate the relationship among function, Lyt phenotype, and MHC recognition specificity in primary allospecific T cell populations. By using Lyt-2+ and L3T4+ T cells obtained from the same responder populations, we assessed the ability of T cells of each phenotype to generate cytotoxic effector cells (CTL) and IL 2-secreting helper T cells in response to either class I or class II MHC allodeterminants. It was found that a discordance between Lyt phenotype and MHC recognition specificity does exist in primary allospecific T cells, but only in one T cell subpopulation with limited functional potential: namely, Lyt-2+ T cells with cytotoxic, but not helper, function that recognize class II MHC alloantigens. Target cell lysis by these Lyt-2+ class II-allospecific CTL was inhibited by anti-Ia monoclonal antibodies (mAb), but not anti-Lyt-2 mAb, indicating that they recognized class II MHC determinants as their "restriction" specificity and not as their "nominal" specificity even though they were Lyt-2+. A second allospecific T cell subset with limited functional potential was also identified but whose Lyt phenotype and MHC restriction specificity were not discordant: namely, an L3T4+ T cell subset with helper, but not cytotoxic, function specific for class I MHC allodeterminants presented in the context of self-Ia. Thus, the present study demonstrates that primary allospecific T cell populations contain phenotypically identical subpopulations of helper and effector cells that express fundamentally different MHC recognition specificities. Because the recognition specificities expressed by mature T cells reflect the selection pressures they encountered during their differentiation into functional competence, these findings suggest that functionally distinct but phenotypically identical T cell subsets may be selected independently of one another during ontogeny. Thus, the existence of Lyt-2+ CTL specific for class II allodeterminants can be explained by the hypothesis that the association of Lyt phenotype with MHC recognition specificity results from the process of thymic selection that these Lyt-2+ effector cells avoid.  相似文献   

3.
The present study was undertaken to evaluate the role of accessory cell processing of MHC alloantigens in the initiation of primary allospecific CTL responses. To first determine whether antigen processing by accessory cells is involved in the initiation of allospecific CTL responses, accessory cells were retreated with the lysosomotropic drug chloroquine before their addition to culture. It was found that chloroquine pretreatment abrogated their ability to function as accessory cells only when they were of responder haplotype and had no effect when the accessory cells were of stimulator haplotype. Although accessory cells of either responder or stimulator haplotype can initiate allospecific CTL responses, we have previously demonstrated that they do so by activating distinct classes of T helper TH) cells. Indeed, the differential effects of chloroquine on accessory cells of responder or stimulator haplotypes were shown to reflect the fact that chloroquine pretreatment markedly impaired the ability of accessory cells to activate self-Ia-restricted TH cells, but had little effect on the ability of the same accessory cells to activate either allo-class I- or allo-class II-specific TH cells. We next examined the possibility that accessory cells of responder haplotype mediate alloresponses by acquiring and processing shed MHC alloantigens derived from the stimulator cell population. In these experiments, accessory cell-depleted stimulator cells were fixed with paraformaldehyde to inhibit shedding of their surface MHC alloantigens. It was observed that even though mixed stimulator cells were recognized normally by allospecific CTL precursors, they completely failed to stimulate CTL responses mediated by responder haplotype accessory cells, indicating that the function of such accessory cells is dependent upon their acquisition of shed MHC alloantigens. Taken together, the data presented in this report demonstrate that accessory cells of responder haplotype function in allospecific CTL responses by acquiring and processing shed class I MHC alloantigens, and by then presenting the processed alloantigens in association with self-Ia determinants to self-Ia-restricted TH cells. Thus, these data indicate that the self-Ia-restricted TH cells that are involved in allospecific CTL responses recognize processed class I alloantigens in association with self-Ia determinants.  相似文献   

4.
Responder cells from primary syngeneic and allogeneic one-way mixed-lymphocyte cultures (MLC) specifically inhibit the development of cytotoxic T lymphocytes (CTL) directed against the major histocompatibility complex (MHC) antigens of the MLC responder cells. This special kind of suppressor activity is known as veto suppression. Ia+ cells with veto activity obtained from H-2 recombinant mouse strains were shown to downregulate alloantigen (class II)-specific helper activity for class I-specific CTL development in a primary MLC provided that the veto cells expressed the same I-E alpha subregion as the MLC stimulator cells. The veto-induced suppression of allo-help was prevented by the addition of supernatant from concanavalin A-stimulated spleen cells (Con A-SN) and was inhibited considerably by very high amounts of recombinant interleukin-2 (IL-2). In the presence of Con A-SN, CTL precursors recognizing either the K end or the D end of the veto cell MHC were found to be inactivated. Thus, our results indicate that MLC responder cells include active veto cells expressing Ia region-encoded restriction elements for allospecific T helper cells, as well as K- or D-encoded restriction elements for allospecific T cytotoxic cells.  相似文献   

5.
The specificity of the T-accessory cell interactions that initiate primary allospecific cytotoxic T lymphocyte (CTL) responses were found to be surprisingly diverse and of three distinct major histocompatibility complex (MHC) specificities, involving responder T cell recognition of: a) self-Ia accessory cell determinants, b) allo-Ia accessory cell determinants, or c) allo-K/D accessory cell determinants. Any one of these T-accessory cell interactions was sufficient to initiate allospecific CTL responses. It was observed that when accessory cells did not express foreign class I MHC determinants, primary allospecific CTL responses were invariably initiated by Ia-restricted T-accessory cell interactions. In contrast, it was observed that when accessory cells did express foreign class I MHC determinants, primary allospecific CTL responses could be initiated by Ia-independent T-accessory cell interactions that were specific for allogeneic, but not self, K/D determinants and that did not involve recognition of polymorphic Ia determinants. The MHC specificities of the T-accessory cell interactions that initiate primary allospecific and primary trinitrophenyl (TNP)-self CTL responses were also compared. It was observed that primary allospecific and primary TNP-self CTL responses could be initiated by self-Ia-restricted T-accessory cell interactions, and that in both responses the Ia determinants that the responding T cells recognized as self-specificities on the accessory cell surface were those that their precursors had encountered on radiation-resistant thymic elements in their differentiation environment. In contrast to the initiation of primary TNP-self CTL responses that required the activation by accessory cells of Ia-restricted T helper (TH) cells, allospecific CTL responses could also be initiated by class I-restricted T cells specific for accessory cell K/D determinants. Interestingly, such class I-restricted T cells present in primary responder cell populations were triggered only by recognition of allogeneic, but not self, K/D accessory cell determinants, even when the accessory cells were modified with TNP. Thus, the present study demonstrates that primary allospecific CTL responses, but not TNP-self CTL responses, are initiated by Ia-restricted or Ia-independent cellular interaction pathways. These results raise the possibility that unprimed class I-restricted TH cells that mediate the Ia-independent cellular interaction pathway may predominantly express an allospecific, but not a self + X-specific, receptor repertoire. Possible mechanisms by which these distinct T-accessory cell interactions initiate primary allospecific CTL responses are discuss  相似文献   

6.
This communication describes in vitro culture conditions that permit the use of MHC gene-transfected L cells as stimulators of primary CTL responses. The use of L cells as stimulators usually results in the generation of "nonspecific" anti-L cell cytotoxicity too great to permit visualization of antigen-specific CTL responses. This study demonstrates that the generation of such anti-L cell cytotoxicity can be abrogated by strategies that prevent the in vitro activation of self-Ia-restricted TH cells. These maneuvers allowed the use of L cell transfectants as stimulators of allospecific and xenospecific CTL precursors in primary in vitro mixed lymphocyte reaction cultures.  相似文献   

7.
Allogeneic T cell activation triggering by MHC class I antigens   总被引:2,自引:0,他引:2  
The role of MHC-encoded class I molecules in allogeneic activation and proliferation of human T lymphocytes was investigated. The study was performed by using primary mixed culture of lymphocytes from MHC recombinant siblings identical for MHC class II Ag (DR, DP, DQ) and displaying MHC class I disparity. The results indicate that such allogeneic combination is sufficient to trigger early activation steps within responder T cells without promoting a significant proliferation. After MHC class I allosensitization, a significant proportion of cells entered the cell cycle (G0----G1). The stimulatory potential of MHC class I Ag was further stressed by the specific induction on responder cells of IL-2R (22% T cell activation Ag positive). Under the same experimental conditions, transferrin receptor expression and IL-2 activity were not detectable. This is consistent with the low T cell proliferation. Exogenous rIL-1 did not improve IL-2 production and the subsequent T cell proliferation indicating that these two events were not associated with a defective accessory cell function involving IL-1 release. MHC class I disparity can also prime precursor CTL to differentiate into IL-2-dependent functional MHC restricted cytotoxic T cells. Conversely IFN-gamma had no effect. Addition to the culture of W6/32, a mAb specifically directed against a monomorphic determinant on human class I HLA-A, -B, and -C Ag was able to block all these activation events. These data clearly indicate a role of HLA class I Ag involvement in the early events triggering allogeneic T cell activation.  相似文献   

8.
A model has been established for investigating the cellular interactions for the generation and regulation of primary cytotoxic T lymphocyte (CTL) responses to Qa-1 alloantigens. Although NZB anti-BALB/c one-way mixed leukocyte cultures (MLC) generate anti-Qa-1b CTL, anti-Qa-1 CTL responses are not generated during BALB/c anti-NZB one-way MLC or during two-way MLC with NZB and BALB/c spleen cells. However, depletion of L3T4+ cells from the spleens of BALB/c mice before two-way MLC with NZB spleen cells resulted in anti-Qa-1b CTL responses. Likewise, the addition of anti-L3T4 monoclonal antibody (mAb) or anti-I-Ad mAb to two-way MLC with NZB and BALB/c spleen cells resulted in the generation of anti-Qa-1b CTL. Conversely, anti-Lyt-2 mAb inhibited the generation of anti-Qa-1 CTL. These data indicate that class II major histocompatibility complex-restricted cellular interactions are capable of suppressing the generation of Ia-unrestricted anti-Qa-1 CTL responses by Lyt-2+ responder cells. This model provides a novel opportunity to both characterize the cellular interactions responsible for regulating primary CTL responses to the Qa/Tla-encoded class I molecule Qa-1, and determine the contribution of this L3T4+ Ts-dependent defect in NZB mice to the pathogenesis of autoimmunity.  相似文献   

9.
It is reported here that most cytotoxic T lymphocytes (CTL), which recognize class I major histocompatibility complex (MHC) loci, express the T cell differentiation antigen T8. However, a minority of T8+ CTL clones was found to recognize class II MHC antigens. To test the hypothesis that T8 is involved only in T cell recognition of class I MHC antigens, we studied the role of T8 in the cytotoxic activity of class II MHC-specific CTL. Monoclonal antibodies specific for T8 blocked the activity of most class I MHC-specific CTL clones but did not affect the activity of class II MHC-specific CTL clones. Moreover, a mild trypsin treatment of the clones, which removed and T8 determinant, affected the activity of class I MHC but not that of class II MHC-specific CTL clones. These findings indicate that the class II-specific MHC CTL clones described here did not require T8 for their cytolytic activity. The activity of one T8+ class I MHC-specific (HLA-B27) CTL clone (HG-61) against the B cell line JY, which was used to raise this CTL clone, was not blocked by trypsin treatment of this clone. However, the activity of CTL clone HG-61 against target cells different from JY but carrying the appropriate HLA specificity was blocked by anti-T8 antibodies and trypsin treatment. The implications of these findings for the hypothesis that T8 is involved only in the activity of CTL with a relatively low avidity for class I MHC antigens are discussed.  相似文献   

10.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

11.
The enterotoxins of Staphylococcus aureus (SE) are extremely potent activators of human and mouse T lymphocytes. In general, T cell responses to SE are MHC class II dependent (presumably reflecting the ability of SE to bind directly to MHC class II molecules) and restricted to responding cells expressing certain T cell receptor beta-chain variable (TCR V beta) domains. Recently we demonstrated that CD8+ CTL expressing appropriate TCR V beta could recognize SE presented on MHC class II-bearing target cells. We now show that MHC class II expression is not strictly required for T cell recognition of SE. Both human and mouse MHC class II negative target cells could be recognized (i.e., lysed) in a SE-dependent fashion by CD8+ mouse CTL clones and polyclonal populations, provided that the CTL expressed appropriate TCR V beta elements. SE-dependent lysis of MHC class II negative targets by CTL was inhibited by mAb directed against CD3 or LFA-1, suggesting that SE recognition was TCR and cell contact dependent. Furthermore, different SE were recognized preferentially by CTL on MHC class II+ vs MHC class II- targets. Taken together, our data raise the possibility that SE binding structures distinct from MHC class II molecules may exist.  相似文献   

12.
Human peripheral blood lymphocytes heated at 45 degrees C for 1 hr were found to continue to express all the serologically detected class II MHC antigens (HLA DR, MT, MB) but not to stimulate proliferation in primary or secondary MLR. Such cells did, however, stimulate the formation of potent suppressor cells. Three additional stimulator cell models for the presentation of either class I antigen only (purified platelets and purified T cells) or class I antigen plus nonimmunogenic class II antigen (D/DR-compatible cells) gave identical results. Supernatants from cultures stimulated with any of these cell types had significantly reduced IL 2 activity when compared to control MLR. The suppressor cells generated in such cultures were not restricted to the class I or class II MHC antigen of the original stimulator. These data are interpreted to mean that 1) the class II epitopes detected by alloantisera and the epitopes that serve as lymphocyte-activating determinants are metabolically or conformationally distinct, and 2) that presentation of class I MHC antigen alone or in conjunction with nonimmunogenic class II MHC antigen preferentially stimulates the formation of suppressor cells. It is hypothesized that the latter may be an additional mechanism that contributes to the efficacy of matching for class II determinants in human renal transplantation.  相似文献   

13.
Natural killer T (NKT) cells are positively selected on cortical thymocytes expressing the non-classical major histocompatibility complex (MHC) class I CD1d molecules. However, it is less clear how NKT cells are negatively selected in the thymus. In this study, we investigated the role of MHC class II expression in NKT cell development. Transgenic mice expressing MHC class II on thymocytes and peripheral T cells had a marked reduction in invariant NKT (iNKT) cells. Reduced numbers of iNKT cells correlated with the absence of in vivo production of cytokines in response to the iNKT cell agonist alpha-galactosylceramide. Using mixed bone marrow chimeras, we found that MHC class II-expressing thymocytes suppressed the development of iNKT cells in trans in a CD4-dependent manner. Our observations have significant implications for human iNKT cell development as human thymocytes express MHC class II, which can lead to an inefficient selection of iNKT cells.  相似文献   

14.
Antigen loading of MHC class I molecules in the endocytic tract   总被引:4,自引:1,他引:3  
Major histocompatibility complex (MHC) class I molecules bind antigenic peptides that are translocated from the cytosol into the endoplasmic reticulum by the transporter associated with antigen processing. MHC class I loading independent of this transporter also exists and involves peptides derived from exogenously acquired antigens. Thus far, a detailed characterization of the intracellular compartments involved in this pathway is lacking. In the present study, we have used the model system in which peptides derived from measles virus protein F are presented to cytotoxic T cells by B-lymphoblastoid cells that lack the peptide transporter. Inhibition of T cell activation by the lysosomotropic drug ammoniumchloride indicated that endocytic compartments were involved in the class I presentation of this antigen. Using immunoelectron microscopy, we demonstrate that class I molecules and virus protein F co-localized in multivesicular endosomes and lysosomes. Surprisingly, these compartments expressed high levels of class II molecules, and further characterization identified them as MHC class II compartments. In addition, we show that class I molecules co-localized with class II molecules on purified exosomes, the internal vesicles of multivesicular endosomes that are secreted upon fusion of these endosomes with the plasma membrane. Finally, dendritic cells, crucial for the induction of primary immune responses, also displayed class I in endosomes and on exosomes.  相似文献   

15.
Several different Mycoplasma species have been shown to act as mitogens for either T or B cells and as stimulators of macrophage tumoricidal activity. In this report, we show that at least five different species of Mycoplasma are capable of inducing class II MHC expression on macrophages. We have observed significant induction of class II MHC surface expression on the myelomonocytic cell line, WEHI-3, as early as 24 h after deliberate infection of cultures, reaching maximal levels by 4 days. This induction was also apparent at the mRNA level as assessed by Northern blot analysis by using A alpha, E alpha, and A beta probes. However, unlike many other previously described MHC-inducing agents, mycoplasmas failed to induce class I MHC expression at either the cell surface or mRNA levels. Kinetic analysis revealed that induction of class II mRNA by mycoplasmas was slower than induction by IFN-gamma requiring 24 h rather than 8 h for significant increases to be noted. Induction by mycoplasmas does not require the presence of live organisms and remains active after heat treatment of 90 degrees C for 30 min. We have also demonstrated that mycoplasma infection of primary bone marrow macrophage cultures leads to the induction of both class I and class II genes and, as in the case of WEHI-3, this induction does not require the presence of live organisms. These data indicate that several Mycoplasma species have the capacity to induce class II MHC expression in WEHI-3 and both class I and class II MHC expression in bone marrow macrophage cultures in the absence of any T cell products.  相似文献   

16.
An interspecies class I MHC molecule, Kb1+2/A2 (in which the alpha-1 and alpha-2 domains of the H-2Kb molecule have been linked to the alpha-3, transmembrane and intracytoplasmic domains of the HLA-A2 molecule) has been expressed on both human and mouse target cells by gene transfer. Maintenance of serologic determinants has been demonstrated. However, decreased lysis by allospecific CTL populations of cell lines that expressed a hybrid interspecies class I molecule, Kb1+2/A2, as compared with lines that expressed the native Ag, H-2Kb, has been described. An analysis with a limited panel of H-2Kb allospecific clones demonstrated that not all H-2Kb-specific CTL can lyse cells that express Kb1+2/A2 Ag. This suggested that the reduction of lysis by CTL populations was due to the loss of specific alloreactive clones in the population. Each clone used in this study was then defined as having high or low affinity characteristics. No correlation between the affinity of the CTL and the ability to recognize the interspecies hybrid molecule could be shown. Rather, these data suggest that antigenic determinants that are located within the polymorphic domains, alpha-1 and alpha-2, may be conformationally influenced by the alpha-3 domain.  相似文献   

17.
T cell recognition of nonpolymorphic determinants on H-2 class I molecules   总被引:2,自引:0,他引:2  
Recognition of polymorphic determinants on class I or class II MHC Ag is required for T lymphocyte responses. Using cell-size artificial membranes (pseudocytes) bearing H-2 class I Ag it is demonstrated that T cells can, in addition, recognize nonpolymorphic determinants on class I proteins. Pseudocytes bearing class I alloantigen stimulate in vitro generation of secondary allogeneic CTL responses. At a suboptimal alloantigen surface density, incorporation of class I molecules identical to those of the responder cells (self-H-2) or from third-party cells resulted in dramatically enhanced responses, whereas incorporation of class II proteins had no effect. The receptor that mediates recognition of conserved class I determinants has not been identified, but results of antibody blocking studies are consistent with the Lyt-2/3 complex of CTL having this role. Thus, class I proteins on Ag-bearing cells can have two distinct roles in T cell activation, one involving recognition of polymorphic determinants by the Ag-specific receptor and the other involving recognition of conserved determinants.  相似文献   

18.
DNA-based vaccines generate potent CTL responses. The mechanism of T cell stimulation has been attributed to plasmid-transfected dendritic cells. These cells have also been shown to express plasmid-encoded proteins and to become activated by surface marker up-regulation. However, the increased surface expression of CD40 and B7 on these dendritic cells is insufficient to overcome the need for MHC class II-restricted CD4(+) T cell help in the priming of a CTL response. In this study, MHC class II(-/-) mice were unable to generate a CTL response following DNA immunization. This deficit in CTL stimulation by MHC class II-deficient mice was only modestly restored with CD40-activating Ab, suggesting that there were other elements provided by MHC class II-restricted T cell help for CTL induction. CTL activity was also augmented by coinjection with a vector encoding the costimulatory ligand B7.1, but not B7.2. These data indicate that dendritic cells in plasmid DNA-injected mice require conditioning signals from MHC class II-restricted T cells that are both CD40 dependent and independent and that there are different roles for costimulatory molecules that may be involved in inducing optimal CTL activity.  相似文献   

19.
In previous studies, the murine SaI (A/J derived, KkDd) sarcoma was transfected with the allogeneic MHC class I H-2Kb gene, and expressed high levels of H-2Kb antigen. Contrary to expectations, the tumor cells expressing the alloantigen (SKB3.1M tumor cells) were not rejected by autologous A/J mice. Because these results contradict the laws of transplantation immunology, the present studies were undertaken to examine the immunogenicity of SKB3.1M and SaI cells in allogeneic hosts. Similar to SKB3.1M, SaI cells are lethal in some allogeneic strains, despite tumor-host MHC class I incompatibilities. Tumor challenges of SKB3.1M and SaI cells, however induce MHC class I-specific antibodies and CTL in both tumor-resistant and -susceptible hosts. Although the tumors induce specific CTL, tumor cells are not lysed in vitro by these CTL, suggesting that the tumor cells are resistant to CTL-mediated lysis. Since growth of these tumors does not follow the classical rules of allograft transplantation, and because the tumor is not susceptible to CTL-mediated lysis, we have used Winn assays to identify the effector lymphocyte(s) responsible for SaI rejection. Depletion studies demonstrate that the effector cell is a CD4-CD8+ T lymphocyte. Collectively these studies suggest that the host's response to MHC class I alloantigens of SKB3.1M and SaI cells does not determine tumor rejection, and that effector cells other than classically defined CTL, but with the CD4-CD8+ phenotype, can mediate tumor-specific immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号