首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Seven slow-growing bacterial strains isolated from root nodules of yellow serradella (Ornithopus compressus) that originated from Asinara Island on North Western Sardinia in Italy were characterized by partial 16S rRNA gene and intergenic spacer (ITS) sequencing as well as amplified fragment length polymorphism (AFLP) genomic fingerprinting. The results indicated that the O. compressus isolates belong to the Bradyrhizobium canariense species. The analysis of ITS sequences divided the branch of B. canariense strains into two statistically separated groups (ITS clusters I and II). All the strains in ITS cluster I showed the presence of unique oligonucleotide insert TTAGAGACTTAGGTTTCTK. This insert was neither found in other described species of the family Rhizobiaceae nor in any other bacterial families and can be used as a natural and high selective genetic marker for ITS cluster I of B. canariense strains. ITS grouping of O. compressus isolates was supported by the unweighted pair group method with arithmetic averages cluster analysis of their AFLP patterns, suggesting that the strains of ITS cluster II were genetically closer to each other than to isolates from the ITS cluster I. A taxonomic importance is supposed of the revealed 19 bp ITS insert for an intraspecific division within high heterogeneous B. canariense species.  相似文献   

2.
The genome of the Bacillus subtilis 168-type strain contains 10 ribosomal RNA (rRNA) operons. In the intergenic spacer region (ISR) between the 16S and 23S rRNA genes, five rRNA operons, rrnI-H-G and rrnJ-W, lack a trinucleotide signature region. Precise determination of molecular weight (MW), using electrospray mass spectrometry (MS), of the polymerase chain reaction (PCR) products from a segment of the ISR from the 168-type strain and B. subtilis 168-like strain 23071 demonstrated 114 and 111 basepair (bp) PCR products (due to the presence or absence of the insert in the operons) as predicted from sequence. However, PCR of the ISR segment for five other B. subtilis 168 isolates generated only a 114 bp PCR product, suggesting the presence of the trinucleotide signature region in all rRNA operons for these strains. Additional genetic variability between the seven B. subtilis 168 isolates was demonstrated by restriction fragment length polymorphism (RFLP) of the rRNA operons, with three distinct patterns found upon Southern blot analysis. The 168-type strain and three others (23066, 23067, and 23071) exhibited the same Southern pattern. Thus, operon deletion is not responsible for the absence of a 111 bp product on MS analysis for strains 23066 and 23067. Restriction analysis confirmed the presence of the trinucleotide signature region in the ISR of all rRNA operons for five B. subtilis 168 isolates; sequencing of rrnW/H from a representative strain also upheld this finding. These results help provide a better understanding of variations in sequence, operon number and chromosomal organization, both within a genome and among isolates of B. subtilis subgroup 168. It is also hypothesized that the presence of the trinucleotide insert in certain rRNA operons may play a role in rRNA maturation and protein synthesis.  相似文献   

3.
We amplified the 16S-23S rRNA intergenic spacer region of Acholeplasma laidlawii PG8 by polymerase chain reaction (PCR) and obtained two specific PCR products in different sizes. We have sequenced both PCR products and found that one of them has sequence homologous to the spacer tRNA genes in Bacillus subtilis. This is the first evidence of tRNA genes between the 16S-23S rRNA intergenic spacer regions in members of the class Mollicutes.  相似文献   

4.
Phylogenetic relationships of the species belonging to the genus Myxococcus were elucidated based on the sequences of 16S rRNA genes and 16S-23S rRNA gene internal transcribed spacer (ITS) regions. The Myxococcus species were consequently classified into four distinct groups. The type strain of Myxococcus coralloides occupied an independent position (Group 1); it has been recently reclassified as Corallococcus coralloides. Group 2 comprised the type strains of both Myxococcus virescens and Myxococcus xanthus, and some strains assigned to Myxococcus flavescens. The type strain of M. flavescens was contained in Group 3 along with the strains of Myxococcus fulvus. Group 4 included the strains belonging to C. coralloides, M. fulvus, and M. stipitatus. The type strain of M. fulvus that was allocated outside Group 4 in the 16S rRNA gene tree belonged to Group 3 in the ITS tree. These results strongly suggest that the morphological characteristics of Myxococcus species are not consistent with the phylogenetic relationships. The Myxococcus species must therefore be redefined according to the phylogenetic relationships revealed in this study.  相似文献   

5.
The 16S-23S intergenic spacer region (spacer region 1) of Streptococcus salivarius, S. thermophilus, and Lactococcus lactis subsp. cremoris and the 23S-5S intergenic spacer region (spacer region 2) of S. salivarius and L. lactis subsp. cremoriswere sequenced and compared with the spacer regions 1 and 2 of other streptococci. A high degree of intraspecific conservation was observed for S. thermophilus and L. lactis, and very similar sequences were found for S. salivarius and S. thermophilus. Whereas spacer region 1 is highly conserved in the genus Streptococcus sensu-stricto,only the tRNA gene and the rRNA processing stems are highly conserved in the three genera: Streptococcussensu-stricto, Lactococcus, and Enterococcus. The presence of a unique tRNAAla gene without the 3 terminal CCA sequence seems to be a general feature of the streptococci spacer region 1. A secondary structure model was built to show the interaction between the spacer regions 1 and 2 of S. thermophilus and S. salivarius. The rapid evolution of spacer region 1 in streptococci is in part due to insertions and deletions of small RNA stem/loop structures.  相似文献   

6.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

7.
AIM: In this study, we evaluated, the use of universal primers, specific for the 16S-23S rRNA intergenic region, to detect and identify nine species that are of high interest for the microbiological control of water. METHODS AND RESULTS: The analysis of the fragments was carried out using a High Resolution acrylamide/bisacrylamide gels in a fluorescent automated DNA sequencer. The results showed specific profiles for each of the nine species but this technique failed to detect simultaneously micro-organisms in samples containing a mixed population. CONCLUSION: Nevertheless, the electrophoretic profiles obtained provided a very useful tool for the rapid and specific identification of water isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: A possible new methodology for a rapid identification of pathogens in water.  相似文献   

8.

Background

Mosquito-borne dengue virus (DENV, genus Flavivirus) has emerged as a major threat to global human health in recent decades, and novel strategies to contain the escalating dengue fever pandemic are urgently needed. RNA interference (RNAi) induced by exogenous small interfering RNAs (siRNAs) has shown promise for treatment of flavivirus infections in hosts and prevention of transmission by vectors. However, the impact of RNAi triggered by authentic virus infection on replication of DENV, or any flavivirus, has received little study. The objectives of the current study were threefold: first, to assess the utility of Drosophila melanogaster S2 cells for the study of DENV, second to investigate the impact of multiple enzymes in the RNAi pathway on DENV replication; and third to test for variation in the response of the four serotypes of DENV to modulation of RNAi.

Results

Three strains from each of the four DENV serotypes showed replication in S2 cells following infection at multiplicity of infection (MOI) 0.1 and MOI 10; each strain achieved titers > 4.0 log10pfu/ml five days after infection at MOI 10. The four serotypes did not differ in mean titer. S2 cells infected with DENV-1, 2, 3 or 4 produced siRNAs, indicating that infection triggered an RNAi response. Knockdown of one of the major enzymes in the RNAi pathway, Dicer-2 (Dcr-2), resulted in a 10 to 100-fold enhancement of replication of all twelve strains of DENV in S2 cells. While serotypes did not differ in their average response to Dcr-2 knockdown, strains within serotypes showed significant differences in their sensitivity to Dcr-2 knockdown. Moreover, knockdown of three additional components of the RNAi pathway, Argonaute 2 (Ago-2), Dcr-1 and Ago-1, also resulted in a significant increase in replication of the two DENV strains tested, and the magnitude of this increase was similar to that resulting from Dcr-2 knockdown.

Conclusions

These findings indicate that DENV can replicate in Drosophila S2 cells and that the RNAi pathway plays a role in modulating DENV replication in these cells. S2 cells offer a useful cell culture model for evaluation of the interaction between DENV and the RNAi response.  相似文献   

9.
The intergenic transcribed spacers (ITS) between the 16S and 23S rRNA genetic loci are frequently used in PCR fingerprinting to discriminate bacterial strains at the species and intraspecies levels. We investigated the molecular nature of polymorphisms in ITS-PCR fingerprinting of low-G+C-content spore-forming bacteria belonging to the genera Bacillus, Brevibacillus, Geobacillus, and Paenibacillus: We found that besides the polymorphisms in the homoduplex fragments amplified by PCR, heteroduplex products formed during PCR between amplicons from different ribosomal operons, with or without tRNA genes in the ITS, contribute to the interstrain variability in ITS-PCR fingerprinting patterns obtained in polyacrylamide-based gel matrices. The heteroduplex nature of the discriminating bands was demonstrated by fragment separation in denaturing polyacrylamide gels, by capillary electrophoresis, and by cloning, sequencing, and recombination of purified short and tRNA gene-containing long ITS. We also found that heteroduplex product formation is enhanced by increasing the number of PCR cycles. Homoduplex-heteroduplex polymorphisms (HHP) in a conserved region, such as the 16S and 23S rRNA gene ITS, allowed discrimination of closely related strains and species undistinguishable by other methods, indicating that ITS-HHP analysis is an easy and reproducible additional tool for strain typing.  相似文献   

10.
Vibrio cholerae identification based on molecular sequence data has been hampered by a lack of sequence variation from the closely related Vibrio mimicus. The two species share many genes coding for proteins, such as ctxAB, and show almost identical 16S DNA coding for rRNA (rDNA) sequences. Primers targeting conserved sequences flanking the 3' end of the 16S and the 5' end of the 23S rDNAs were used to amplify the 16S-23S rRNA intergenic spacer regions of V. cholerae and V. mimicus. Two major (ca. 580 and 500 bp) and one minor (ca. 750 bp) amplicons were consistently generated for both species, and their sequences were determined. The largest fragment contains three tRNA genes (tDNAs) coding for tRNAGlu, tRNALys, and tRNAVal, which has not previously been found in bacteria examined to date. The 580-bp amplicon contained tDNAIle and tDNAAla, whereas the 500-bp fragment had single tDNA coding either tRNAGlu or tRNAAla. Little variation, i.e., 0 to 0.4%, was found among V. cholerae O1 classical, O1 El Tor, and O139 epidemic strains. Slightly more variation was found against the non-O1/non-O139 serotypes (ca. 1% difference) and V. mimicus (2 to 3% difference). A pair of oligonucleotide primers were designed, based on the region differentiating all of V. cholerae strains from V. mimicus. The PCR system developed was subsequently evaluated by using representatives of V. cholerae from environmental and clinical sources, and of other taxa, including V. mimicus. This study provides the first molecular tool for identifying the species V. cholerae.  相似文献   

11.
Phenotypically, Photobacterium damselae subsp. piscicida and P. damselae subsp. damselae are easily distinguished. However, their 16S rRNA gene sequences are identical, and attempts to discriminate these two subspecies by molecular tools are hampered by their high level of DNA-DNA similarity. The 16S-23S rRNA internal transcribed spacers (ITS) were sequenced in two strains of Photobacterium damselae subsp. piscicida and two strains of P. damselae subsp. damselae to determine the level of molecular diversity in this DNA region. A total of 17 different ITS variants, ranging from 803 to 296 bp were found, some of which were subspecies or strain specific. The largest ITS contained four tRNA genes (tDNAs) coding for tRNA(Glu(UUC)), tRNA(Lys(UUU)), tRNA(Val(UAC)), and tRNA(Ala(GGC)). Five amplicons contained tRNA(Glu(UUC)) combined with two additional tRNA genes, including tRNA(Lys(UUU)), tRNA(Val(UAC)), or tRNA(Ala(UGC)). Five amplicons contained tRNA(Ile(GAU)) and tRNA(Ala(UGC)). Two amplicons contained tRNA(Glu(UUC)) and tRNA(Ala(UGC)). Two different isoacceptor tRNA(Ala) genes (GGC and UGC anticodons) were found. The five smallest amplicons contained no tRNA genes. The tRNA-gene combinations tRNA(Glu(UUC))-tRNA(Val(UAC))-tRNA(Ala(UGC)) and tRNA(Glu(UUC))-tRNA(Ala(UGC)) have not been previously reported in bacterial ITS regions. The number of copies of the ribosomal operon (rrn) in the P. damselae chromosome ranged from at least 9 to 12. For ITS variants coexisting in two strains of different subspecies or in strains of the same subspecies, nucleotide substitution percentages ranged from 0 to 2%. The main source of variation between ITS variants was due to different combinations of DNA sequence blocks, constituting a mosaic-like structure.  相似文献   

12.
Aims: For the rapid detection of Laribacter hongkongensis, which is associated with human community‐acquired gastroenteritis and traveller’s diarrhoea, we developed a duplex species‐specific PCR assay. Methods and Results: Full‐length of the 16S–23S rRNA intergenic spacer region (ISR) sequences of 52 L. hongkongensis isolates were obtained by PCR‐based sequencing. Two species‐specific primer pairs targeting 16S rRNA gene and ISR were designed for duplex PCR detection of L. hongkongensis. The L. hongkongensis species‐specific duplex PCR assay showed 100% specificity, and the minimum detectable level was 2·1 × 10?2 ng μl?1 genomic DNA which corresponds to 5000 CFU ml?1. Conclusions: The high specificity and sensitivity of the assay make it suitable for rapid detection of L. hongkongensis. Significance and Impact of the Study: This species‐specific duplex PCR method provides a rapid, simple, and reliable alternative to conventional methods to identify L. hongkongensis and may have applications in both clinical and environmental microbiology.  相似文献   

13.
The aim of the present research is to identify rapidly the lactic acid bacteria (LAB) microflora of four natural French sourdoughs (GO, BF, VB and RF), applying a biphasic (restriction length polymorphism (RFLP) and sequencing) approach for bacterial identification. For this purpose, a database with the RFLP patterns of 30 lactobacilli type strains was created. So-developed ISR-RFLP algorithm was further applied for the differentiation and identification of 134 sourdough isolates. The 16S-23S rDNA intergenic spacer region was amplified by primers tAla and 23S/10, and then digested by HindIII, HinfI and α-TaqI enzymes. Nucleotide sequences of the cloned 16S-23S intergenic spacer region (ISR) were determined by the dideoxynucleotide chain termination method. The T7Prom and M13rev primers flanking the multiple cloning site of pCR2.1 DNA were used to sequence both DNA strands. The RFLP profile obtained upon digestion with HindIII, HinfI and α-TaqI enzymes can be used to discriminate Lactobacillus sanfranciscensis (66%), Lactobacillus panis (17%), Lactobacillus nantensis (11%) and Lactobacillus hammesii(6%) in sourdough GO, Lactobacillus sanfranciscensis (80%), Lactobacillus spicheri (14%) and Lactobacillus pontis(6%) in sourdoughs BF. In sourdoughs VB, which differed in the process temperature, we can differentiate Lactobacillus sanfranciscensis (89%) and Leuconostoc mesenteroidessubsp. mesenteroides (11%). Lactobacillus frumenti(47%), Lactobacillus hammesii (8%), and Lactobacillus paralimentarius (45%) were differentiated in sourdough RF.  相似文献   

14.
The 16S-23S rRNA gene internal transcribed spacer region (ITS1) from 34 strains of Pseudomonas avellanae and some strains of Pseudomonas syringae pathovars was amplified and assessed by restriction fragment length polymorphism (RFLP) using 10 restriction enzymes. In addition, the ITS1 region of four representative P. avellanae strains was sequenced and compared by the neighbour-joining algorithm with that of P. syringae pathovars. Two main groups of P. avellanae strains were observed that did not correlate with their origin. The ITS1 region sequencing revealed a high similarity with the P. syringae complex. One group of P. avellanae strains showed high similarity to P. s. pv. actinidiae and P. s. pv. tomato; another group showed similarity with P. s. pv. tabaci and P. s. pv. glycinea. Two strains clustered with P. s. pv. pisi. The difficulties to unambiguously classify the strains associated with hazelnut decline in Greece and Italy are discussed.  相似文献   

15.
Forty-nine strains belonging to the genus Gluconobacter were re-examined with respect to their species identification based on the sequences of the 16S rDNA and 16S-23S rDNA internal transcribed spacer regions (ITS). A phylogenetic tree constructed from the 16S rDNA sequences indicated the presence of five clusters corresponding, respectively, to the major five species of the genus Gluconobacter, namely G. albidus, G. cerinus, G. frateurii, G. oxydans (type species), and G. thailandicus. The type strain of G. asaii, NBRC 3276T (T=type strain) was included in the G. cerinus cluster, which is consistent with the report that G. asaii is a junior subjective synonym of G. cerinus. Existence of the G. albidus, G. cerinus, G. frateurii, G. oxydans, and G. thailandicus clusters was also recognized by the ITS sequence analysis. Both sequence analyses revealed that the G. cerinus and G. frateurii clusters were heterogeneous. The G. cerinus cluster comprised three strains of G. cerinus and one strain of G. frateurii, while the G. frateurii cluster included ten strains of G. frateurii, three of G. cerinus, and eleven of G. oxydans. These results suggest that phenotypic differences among Gluconobacter species are ambiguous and the species definition must be re-evaluated. The 16S rDNA and ITS sequences determined in this study are valuable for the identification and phylogenetic analysis of Gluconobacter species.  相似文献   

16.
Clostridium difficile is a major spore-forming environmental pathogen that causes serious health problems in patients undergoing antibiotic therapy. Consequently, reliable and sensitive methods for typing individual strains are required for epidemiological and environmental studies. Ribotyping is generally considered the best method, but it fails to account for sequence diversity which might exist in intergenic 16S-23S rRNA spacer regions (ISRs) within and among strains of this organism. Therefore, this study was undertaken to compare the sequence of each individual ISR in five strains of C. difficile to explore the extent of this diversity and see whether such information might provide the basis for more sensitive and discriminatory strain typing methods. After targeted PCR amplification, cloning, and sequencing, the diversity of the ISRs was used as a measure of rRNA operon copy number. In C. difficile strains 630, ATCC 43593, A, and B, 11, 11, 7, and 8 ISR length variants, respectively, were found (containing different combinations of sequence groups [i to xiii]), suggesting 11, 11, 7, and 8 rrn copies in the respective strains. Many ISRs of the same length differed markedly in their sequences, and some of these were restricted in occurrence to a single strain. Most of these ISRs did not contain any tRNA genes, and only single copies of the tRNA(Ala) gene were found in those that did. The presence of ISR sequence groups (i to xiii) varied between strains, with some found in one, two, three, four, or all five strains. We conclude that the intergenic 16S-23S rRNA spacer regions showed a high degree of diversity, not only among the rrn operons in different strains and different rrn copies in a single strain but also among ISRs of the same length. It appears that C. difficile ISRs vary more at the inter- and intragenic levels than those of other species as determined by empirical comparison of sequences. The precise characterization of these sequences has demonstrated a high level of mosaic sequence block rearrangements that are present or absent in multiple strain-variable rrn copies within and between five different strains of C. difficile.  相似文献   

17.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

18.
19.
Amplification of the gene encoding 23S rRNA of Plesiomonas shigelloides by polymerase chain reaction (PCR), with primers complementary to conserved regions of 16S and the 3' end of 23S rRNA genes, resulted in a DNA fragment of approximately 3 kb. This fragment was cloned in Escherichia coli and its nucleotide sequence determined. The region encoding 23S rRNA shows high homology with the published sequences of 23S rRNA from other members of the gamma division of Proteobacteria. The sequence of the intergenic spacer region, between the 16S and 23S rRNA genes, was determined in a further two clones. In one the sequence of a single tRNA(Glu) was found which was absent from the other two. This variation in sequence suggests that the different clones may be derived from different ribosomal RNA operons.  相似文献   

20.
Streptococcus phocae, a bacterial pathogen of seals, could reliably be identified by PCR amplification using oligonucleotide primers designed according to species specific segments of the previously sequenced 16S rRNA gene and the 16S-23S rDNA intergenic spacer region of this species. The PCR mediated assay allowed an identification of S. phocae isolated from harbor and gray seals and from Atlantic salmons. No cross-reaction could be observed with 13 different other streptococcal species and subspecies and with Lactococcus garvieae strains investigated for control purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号