首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin A contains a region implicated in binding to the p27 inhibitor and to substrates. There is strong evolutionary conservation of surface residues contributing to this region in many cyclins, including yeast B-type cyclins, despite the absence of a yeast p27 homolog. The yeast S-phase B-type cyclin Clb5p interacted with mammalian p27 in a two-hybrid assay. This interaction was disrupted by mutations designed to disrupt hydrophobic interactions (hpm mutation) or hydrogen bonding (Q241A mutation) based on the cyclin A-p27 crystal structure. In contrast, mutation of the Clb5p p27-binding domain only slightly reduced binding and inhibition by the Sic1p Clb-Cdc28p kinase inhibitor. Mutations disrupting the p27-binding domain strongly reduced Clb5p biological activity in diverse assays without reducing Clb5p-associated kinase activity. An analogous hpm mutation in the mitotic cyclin Clb2p reduced mitotic function, but in some assays this mutation increased the ability of Clb2p to perform functions normally restricted to Clb5p. These results support the idea of a modular, structurally conserved cyclin domain involved in substrate targeting.  相似文献   

2.
The phosphatase Cdc14 is required for mitotic exit in budding yeast. Cdc14 promotes Cdk1 inactivation by targeting proteins that, when dephosphorylated, trigger degradation of mitotic cyclins and accumulation of the Cdk1 inhibitor, Sic1. Cdc14 is sequestered in the nucleolus during most of the cell cycle but is released into the nucleus and cytoplasm during anaphase. When Cdc14 is not properly sequestered in the nucleolus, expression of the S-phase cyclin Clb5 is required for viability, suggesting that the antagonizing activity of Clb5-dependent Cdk1 specifically is necessary when Cdc14 is delocalized. We show that delocalization of Cdc14 combined with loss of Clb5 causes defects in DNA replication. When Cdc14 is not sequestered, it efficiently dephosphorylates a subset of Cdk1 substrates including the replication factors, Sld2 and Dpb2. Mutations causing Cdc14 mislocalization interact genetically with mutations affecting the function of DNA polymerase epsilon and the S-phase checkpoint protein Mec1. Our findings suggest that Cdc14 is retained in the nucleolus to support a favorable kinase/phosphatase balance while cells are replicating their DNA, in addition to the established role of Cdc14 sequestration in coordinating nuclear segregation with mitotic exit.  相似文献   

3.
Cell cycle progression in the budding yeast Saccharomyces cerevisiae is controlled by the Cdc28 protein kinase, which is sequentially activated by different sets of cyclins. Previous genetic analysis has revealed that two B-type cyclins, Clb5 and Clb6, have a positive role in DNA replication. In the present study, we show, in addition, that these cyclins negatively regulate G1- and G2-specific functions. The consequences of this negative regulation were most apparent in clb6 mutants, which had a shorter pre-Start G1 phase as well as a shorter G2 phase than congenic wild-type cells. As a consequence, clb6 mutants grew and proliferated more rapidly than wild-type cells. It was more difficult to assess the role of Clb5 in G1 and G2 by genetic analysis because of the extreme prolongation of S phase in clb5 mutants. Nevertheless, both Clb5 and Clb6 were shown to be responsible for down-regulation of the protein kinase activities associated with Cln2, a G1 cyclin, and Clb2, a mitotic cyclin, in vivo. These observations are consistent with the observed cell cycle phase accelerations associated with the clb6 mutant and are suggestive of similar functions for Clb5. Genetic evidence suggested that the inhibition of mitotic cyclin-dependent kinase activities was dependent on and possibly mediated through the CDC6 gene product. Thus, Clb5 and Clb6 may stabilize S phase by promoting DNA replication while inhibiting other cell cycle activities.  相似文献   

4.
DeCesare JM  Stuart DT 《Genetics》2012,190(3):1001-1016
The Saccharomyces cerevisiae cyclin Clb5 is required for premeiotic S phase, meiotic recombination, and successful progression through meiosis. Clb5 is not essential for mitotic proliferation because Clb1-Clb4 can support DNA replication in clb5 clb6 mutants. Clb1, Clb3, and Clb4 accumulate in clb5 clb6 cells during meiotic differentiation yet fail to promote premeiotic DNA replication. When expressed under the regulation of the CLB5 promoter, Clb1 and Clb3 accumulate and are active in the early stages of meiotic differentiation but cannot induce premeiotic DNA replication, suggesting that they do not target Cdk1 to the necessary substrates. The Clb5 hydrophobic patch (HP) residues are important for Clb5 function but this motif alone does not provide the specificity required for Clb5 to induce premeiotic S phase. Domain exchange experiments demonstrated that the amino terminus of Clb5 when fused to Clb3 confers upon Clb3 the ability to induce premeiotic S phase. Chimeric cyclins containing smaller regions of the Clb5 amino terminus displayed reduced ability to activate premeiotic DNA replication despite being more abundant and having greater associated histone H1 kinase activity than endogenous Clb5. These observations suggest that Clb5 has a unique ability to trigger premeiotic S phase and that the amino-terminal region of Clb5 contributes to its specificity and regulates the functions performed by the cyclin-Cdk complex.  相似文献   

5.
H A Snaith  S L Forsburg 《Genetics》1999,152(3):839-851
The fission yeast Schizosaccharomyces pombe can be induced to perform multiple rounds of DNA replication without intervening mitoses by manipulating the activity of the cyclin-dependent kinase p34(cdc2). We have examined the role in this abnormal rereplication of a large panel of genes known to be involved in normal S phase. The genes analyzed can be grouped into four classes: (1) those that have no effect on rereplication, (2) others that delay DNA accumulation, (3) several that allow a gradual increase in DNA content but not in genome equivalents, and finally, (4) mutations that completely block rereplication. The rereplication induced by overexpression of the CDK inhibitor Rum1p or depletion of the Cdc13p cyclin is essentially the same and requires the activity of two minor B-type cyclins, cig1(+) and cig2(+). In particular, the level, composition, and localization of the MCM protein complex does not alter during rereplication. Thus rereplication in fission yeast mimics the DNA synthesis of normal S phase, and the inability to rereplicate provides an excellent assay for novel S-phase mutants.  相似文献   

6.
The roles in DNA replication of two distinct protein kinases, Cdc7p/Dbf4p and Cdk1p/Clb (B-type cyclin), were studied. This was accomplished through a genetic and molecular analysis of the mechanism by which the mcm5-bob1 mutation bypasses the function of the Cdc7p/Dbf4p kinase. Genetic experiments revealed that loss of either Clb5p or Clb2p cyclins suppresses the mcm5-bob1 mutation and prevents bypass. These two cyclins have distinct roles in bypass and presumably in DNA replication as overexpression of one could not complement the loss of the other. Furthermore, the ectopic expression of CLB2 in G1 phase cannot substitute for CLB5 function in bypass of Cdc7p/Dbf4p by mcm5-bob1. Molecular experiments revealed that the mcm5-bob1 mutation allows for constitutive loading of Cdc45p at early origins in arrested G1 phase cells when both kinases are inactive. A model is proposed in which the Mcm5-bob1 protein assumes a unique molecular conformation without prior action by either kinase. This conformation allows for stable binding of Cdc45p to the origin. However, DNA replication still cannot occur without the combined action of Cdk1p/Clb5p and Cdk1p/Clb2p. Thus Cdc7p and Cdk1p kinases catalyze the initiation of DNA replication at several distinct steps, of which only a subset is bypassed by the mcm5-bob1 mutation.  相似文献   

7.
We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.  相似文献   

8.
Cyclical inactivation of B-type cyclins has been proposed to be required for alternating DNA replication and mitosis. Destruction box-dependent Clb5p degradation is strongly increased in mitotic cells, and constitutive overexpression of Clb5p lacking the destruction box resulted in rapid accumulation of inviable cells, frequently multiply budded, with DNA contents ranging from unreplicated to apparently fully replicated. Loss of viability correlated with retention of nuclear Clb5p at the time of nuclear division. CLB2-Deltadb overexpression that was quantitatively comparable to CLB5-Deltadb overexpression with respect to Clb protein production and Clb-associated kinase activity resulted in a distinct phenotype: reversible mitotic arrest with uniformly replicated DNA. Simultaneous overexpression of CLB2-Deltadb and CLB5-Deltadb overexpressers similarly resulted in a uniform arrest with replicated DNA, and this arrest was significantly more reversible than that observed with CLB5-Deltadb overexpression alone. These results suggest that Clb2p and not Clb5p can efficiently block mitotic completion. We speculate that CLB5-Deltadb overexpression may be lethal, because persistence of high nuclear Clb5p-associated kinase throughout mitosis leads to failure to load origins of replication, thus preventing DNA replication in the succeeding cell cycle.  相似文献   

9.
Mitotic cyclins drive initiation and progression through mitosis. However, their role during progression remains poorly understood due to their essential function in initiation of mitosis and redundant activities. The function of the principal mitotic cyclin, Clb2, in S. cerevisiae, was investigated during progression through anaphase in diploid cells after DNA damage and during normal growth using fixed and live cell fluorescence techniques. I find that during anaphase, absence of Clb2 affects chromosome movement and plays an important role in inhibiting kinetochore microtubules regrowth. In addition, absence of Clb2 leads to defects and the collapse of spindle pole body separation. Most unexpectedly, new bipolar spindle forms and spindle re-forms. The intensity of the defects appears to correlate with strength of checkpoint activation, and during adaptation to DNA damage, these defects lead to important chromosome missegregation, during normal growth, defects are resolved rapidly. During recovery, intermediate phenotypes are observed. Altogether, data reveal new and unexpected roles for mitotic cyclins during progression through mitosis; results indicate that mitotic cyclins play key role in growth suppression of kinetochore microtubules and suggest that new bipolar spindle formation might be actively inhibited by mitotic cyclins during anaphase.  相似文献   

10.
Cyclin-dependent kinase (CDK) is required for the initiation of chromosomal DNA replication in eukaryotes. In Saccharomyces cerevisiae, the Clb5 and Clb6 cyclins activate Cdk1 and drive replication origin firing. Deletion of CLB5 reduces initiation of DNA synthesis from late-firing origins. We have examined whether checkpoints are activated by loss of Clb5 function and whether checkpoints are responsible for the DNA replication defects associated with loss of Clb5 function. We present evidence for activation of Rad53 and Ddc2 functions with characteristics suggesting the presence of DNA damage. Deficient late origin firing in clb5Delta cells is not due to checkpoint regulation, but instead, directly reflects the decreased abundance of S-phase CDK, as Clb6 activates late origins when its dosage is increased. Moreover, the viability of clb5Delta cells depends on Rad53. Activation of Rad53 by either Mrc1 or Rad9 contributes to the survival of clb5Delta cells, suggesting that both DNA replication and damage pathways are responsive to the decreased origin usage. These results suggest that reduced origin usage leads to stress or DNA damage at replication forks, necessitating the function of Rad53 in fork stabilization. Consistent with the notion that decreased S-CDK function creates stress at replication forks, deletion of RRM3 helicase, which facilitates replisome progression, greatly diminished the growth of clb5Delta cells. Together, our findings indicate that deregulation of S-CDK function has the potential to exacerbate genomic instability by reducing replication origin usage.  相似文献   

11.
The cell cycle is driven by the sequential activation of a family of cyclin-dependent kinases (CDK) in association with cyclins. In mammalian cells the timing of activation of cyclin A-associated kinase activity coincides with the onset of DNA synthesis in S-phase. Using in vitro replication of SV40 origin-containing DNA as a model system, we have analyzed the proteins associated with DNA during initiation of DNA replication in S-phase cell extracts. This analysis reveals that, in addition to replication initiation proteins, cyclin A and cdk2 are also specifically associated with DNA. The association of cyclin A and cdk2 with DNA during initiation is cell cycle regulated and occurs specifically in the presence of SV40 origin-containing plasmid and SV40 T antigen (the viral replication initiator protein). The interactions among proteins involved in initiation play an important role in DNA replication. We therefore investigated the ability of cyclin A and cdk2 to associate with replication initiation proteins. Under replication initiation conditions, cyclin A and cdk2 from S-phase extracts specifically associate with SV40 T antigen. Further, the interaction of cyclin A-cdk2 with SV40 T antigen is mediated via cyclin A, and purified recombinant cyclin A associates directly with SV40 T antigen. Taken together, our results suggest that cyclin A and cdk2 are components of the SV40 replication initiation complex, and that protein-protein interactions between cyclin A-cdk2 and T antigen may facilitate the association of cyclin A-cdk2 with the complex. Received: 30 July 1996; in revised form: 25 September 1996 / Accepted: 8 October 1996  相似文献   

12.
A critical DNA damage checkpoint in Saccharomyces cerevisiae is an arrest at the metaphase stage of mitosis. Here we show that the S-phase cyclins Clb5 and Clb6 are required for this arrest. Strains lacking Clb5 and Clb6 are hypersensitive to DNA damage. Furthermore, in the presence of the DNA alkylating agent methyl methanesulfonate (MMS) over 50% of clb5 clb6 mutants by-passed the metaphase checkpoint and arrested instead with separated sister chromatids. Levels of Pds1, an inhibitor of anaphase that accumulates following DNA damage, were similar in the wild-type and mutant strains following MMS treatment. Furthermore, unlike wild-type cells, clb5 clb6 mutants undergo nuclear division despite the presence of nuclear non-degradable Pds1. Our results suggest a novel role for the S-phase cyclins Clb5 and Clb6 in maintaining sister chromatid cohesion during a metaphase arrest, perhaps by regulating Pds1 activity.  相似文献   

13.
Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G(2) and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.  相似文献   

14.
In budding yeast four mitotic cyclins (Clb1–4) cooperate in a partially redundant manner to bring about M-phase specific events, including the apical isotropic switch that ends polarized bud growth initiated at bud emergence. How exactly this morphogenetic transition is regulated by mitotic CDKs remains poorly understood. We have taken advantage of the isotropic bud growth that prevails in cells responding to DNA damage to unravel the contribution of mitotic cyclins in this cellular context. We find that clb2∆, in contrast to the other mitotic cyclin mutants, inappropriately respond to the presence of DNA damage. This aberrant response is characterized by a Cdc42- and Bni1-dependent but Cln-independent resumption of polarized bud growth after a brief period of actin depolarization. Biochemical and genetic evidence is presented that formally excludes the possibility of indirect effects due for instance to unrestrained APC activity, untimely mitotic exit or Swe1-mediated CDK inhibition. Importantly, our data demonstrate that in order to maintain the characteristic dumbbell arrest phenotype upon checkpoint activation Clb2 needs to be efficiently exported into the cytoplasm. We propose that the inhibition of mitotic cyclin destruction by the DNA damage checkpoint pathway leads to a buildup of Clb2 in the cytoplasm where this cyclin can stabilize the apical isotropic switch throughout a G2/M checkpoint arrest. Our study also unveils an essential role of nuclear Clb2 in both survival and adaptation to the DNA damage checkpoint, illustrating a spatially distinct dual function of this mitotic cyclin in the response to DNA damage.  相似文献   

15.
Eukaryotes replicate DNA once and only once per cell cycle due to multiple, partially overlapping mechanisms efficiently preventing reinitiation. The consequences of reinitiation are unknown. Here we show that the induction of rereplication by mutations in components of the prereplicative complex (origin recognition complex [ORC], Cdc6, and minichromosome maintenance proteins) causes a cell cycle arrest with activated Rad53, a large-budded morphology, and an undivided nucleus. Combining a mutation disrupting the Clb5-Orc6 interaction (ORC6-rxl) and a mutation stabilizing Cdc6 (CDC6(Delta)NT) causes a cell cycle delay with a similar phenotype, although this background is only partially compromised for rereplication control and does not exhibit overreplication detectable by fluorescence-activated cell sorting. We conducted a systematic screen that identified genetic requirements for the viability of these cells. ORC6-rxl CDC6(Delta)NT cells depend heavily on genes required for the DNA damage response and for double-strand-break repair by homologous recombination. Our results implicate an Mre11-Mec1-dependent pathway in limiting the extent of rereplication.  相似文献   

16.
17.
The cyclins encoded by Kaposi sarcoma-associated herpesvirus and herpesvirus saimiri are homologs of human D-type cyclins. However, when complexed to cdk6, they have several activities that distinguish them from D-type cyclin-cdk6 complexes, including resistance to cyclin-dependent kinase inhibitors and an enhanced substrate range. We find that viral cyclins interact with and phosphorylate proteins involved in replication initiation. Using mammalian in vitro replication systems, we show that viral cyclin-cdk6 complexes can directly trigger the initiation of DNA synthesis in isolated late-G(1)-phase nuclei. Viral cyclin-cdk6 complexes share this capacity with cyclin A-cdk2, demonstrating that in addition to functioning as G(1)-phase cyclin-cdk complexes, they function as S-phase cyclin-cdk complexes.  相似文献   

18.
In yeast, anaphase entry depends on Pds1 proteolysis, while chromosome re-duplication in the subsequent S-phase involves degradation of mitotic cyclins such as Clb2. Sequential proteolysis of Pds1 and mitotic cyclins is mediated by the anaphase-promoting complex (APC). Lagging chromosomes or spindle damage are detected by surveillance mechanisms (checkpoints) which block anaphase onset, cytokinesis and DNA re-replication. Until now, the MAD and BUB genes implicated in this regulation were thought to function in a single pathway that blocks APC activity. We show that spindle damage blocks sister chromatid separation solely by inhibiting APCCdc20-dependent Pds1 proteolysis and that this process requires Mad2. Blocking APCCdh1-mediated Clb2 proteolysis and chromosome re-duplication does not require Mad2 but a different protein, Bub2. Our data imply that Mad1, Mad2, Mad3 and Bub1 regulate APCCdc20, whereas Bub2 regulates APCCdh1.  相似文献   

19.
The yeast S-phase cyclins Clb5 and Clb6 are closely related proteins that are synthesized late in G1. Although often grouped together with respect to function, Clb5 and Clb6 exhibit differences in their ability to promote S-phase progression. DNA replication is significantly slowed in clb5Delta mutants but not in clb6Delta mutants. We have examined the basis for the differential functions of Clb5 and Clb6 and determined that unlike Clb5, which is stable until mitosis, Clb6 is degraded rapidly at the G1/S border. N-terminal deletions of CLB6 were hyperstabilized, suggesting that the sequences responsible for directing the destruction of Clb6 reside in the N terminus. Clb6 lacks the destruction box motif responsible for the anaphase promoting complex-mediated destruction of Clb5 but contains putative Cdc4 degron motifs in the N terminus. Clb6 was hyperstabilized in cdc34-3 and cdc4-3 mutants at restrictive temperatures and when S/T-P phosphorylation sites in the N terminus were mutated to nonphosphorylatable residues. Efficient degradation of Clb6 requires the activities of both Cdc28 and Pho85. Finally, hyperstabilized Clb6 expressed from the CLB6 promoter rescued the slow S-phase defect exhibited by clb5Delta cells. Taken together, these findings suggest that the SCF(Cdc4) ubiquitin ligase complex regulates Clb6 turnover and that the functional differences exhibited by Clb5 and Clb6 arise from the distinct mechanisms controlling their stability.  相似文献   

20.
Cdc28p is the major cyclin-dependent kinase in Saccharomyces cerevisiae. Its activity is required for blocking the reinitiation of DNA replication during mitosis. Here, we show that under conditions where Cdc28p activity is improperly regulated--either through the loss of function of the Schizosaccharomyces pombe wee1 ortholog Swe1p or through the expression of a dominant CDC28 allele, CDC28AF--diploid yeast cells are able to complete several rounds of premeiotic DNA replication within a single meiotic cell cycle. Moreover, a percentage of mutant cells exhibit a "multispore" phenotype, possessing the ability to package more than four spores within a single ascus. These multispored asci contain both even and odd numbers of viable spores. In order for meiotic rereplication and multispore formation to occur, cells must initiate homologous recombination and maintain proper chromosome cohesion during meiosis I. Rad9p- or Rad17p-dependent checkpoint mechanisms are not required for multispore formation and neither are the B-type cyclin Clb6p and the cyclin-dependent kinase inhibitor Sic1p. Finally, we present evidence of a possible role for a Cdc55p-dependent protein phosphatase 2A in initiating meiotic replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号