首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
The guluronate (G) content of alginate in the fronds of Laminaria japonica and Laminaria angustata, cultured in the laboratory from zoospore via gametophyte using PESI medium, was determined by the 1H‐nuclear magnetic resonance spectroscopic method. The G content of alginates in young fronds cultured in various conditions were shown to exceed 55%. These values were remarkably higher than those in field kelp. The G content increased with extending culture period and at low temperature.  相似文献   

2.
Nishide  Eiichi  Anzai  Hirosi  Uchida  Naozuki  Nisizawa  Kazutosi 《Hydrobiologia》1996,326(1):515-518
Kjellmaniella crassifolia, the edible macro-brown alga in Japan contained nearly 27% of alginates of which nearly 7% was extractable from the fronds with boiling water for 6 h and the residual alginates in the frond were almost exhaustively extracted with a dilute alkali at 60 °C for 6 h. The alginates dissolved in all these extracts with both boiling water and dilute alkali were purified by fractionation with MgCl2 and alcohol.The content of MM blocks in the boiling water-soluble alginate sample increased remarkably during heating for 6 h while that of GG blocks from the same sample decreased. In contrast, MM blocks in the alkali-soluble alginate sample decreased during 6 h heating while GG blocks continued to increase. Since the amounts of MG blocks showed slight fluctation, the M:G ratio of alginates extracted with boiling water increased towards the end of extraction whereas the reverse is true for the alkali-soluble alginates.  相似文献   

3.
In cultures of Azotobacter vinelandii inoculated using washed cells (avoiding exhausted broth components) alginates of a higher molecular weight (1200 kDa) than those obtained in cultures conventionally inoculated (350 kDa), were produced. Also, when comparing conventionally inoculated cultures with those inoculated with washed-cells, the alginate lyase activity was delayed and the final polymer concentration decreased from 4.8 to 3.5 g l–1. This suggests that components in the exhausted inoculum broth play important regulatory roles in alginate biosynthesis and needs to be taken into account when describing polymer biosynthesis.  相似文献   

4.
Investigations were made on the brown seaweed Sargassum polycystum C. Agardh collected from Rameswaram Coast, Tamil Nadu. The alginates extracted from ‘leaf’, ‘stem’ and entire thallus of S. polycystum were investigated for their viscosity and chemical constituents, namely β‐D‐mannuronic acid (M‐block), α‐L‐guluronic acid (G‐block) and alternating sequences of β‐D‐mannuronic acid and α‐L‐guluronic acid (MG‐block) for six different seasons between August 1998 and November 1999. Significant seasonal variation (P< 0.05) was observed with high yield of alginate in February. The alginate extracted from the ‘leaf’ region showed a maximum yield whereas the ‘stem’ region exhibited maximum viscosity. The amount of G‐block was found to be more than M‐ and MG‐blocks in all the samples tested. The amount of G‐block was high in ‘stem’ followed by leaf and entire thallus. A positive correlation was recorded between viscosity and G‐block. Among the three alginates, the ratio of M/G was low in the ‘stem’ followed by ‘leaf’ and entire thallus.  相似文献   

5.
Alginate is a polysaccharide belonging to the family of linear (unbranched), non-repeating copolymers, consisting of variable amounts of β-d-mannuronic acid and its C5-epimer α- l-guluronic acid linked via β-1,4-glycosidic bonds. Like DNA, alginate is a negatively charged polymer, imparting material properties ranging from viscous solutions to gel-like structures in the presence of divalent cations. Bacterial alginates are synthesized by only two bacterial genera, Pseudomonas and Azotobacter, and have been extensively studied over the last 40 years. While primarily synthesized in form of polymannuronic acid, alginate undergoes chemical modifications comprising acetylation and epimerization, which occurs during periplasmic transfer and before final export through the outer membrane. Alginate with its unique material properties and characteristics has been increasingly considered as biomaterial for medical applications. The genetic modification of alginate producing microorganisms could enable biotechnological production of new alginates with unique, tailor-made properties, suitable for medical and industrial applications.  相似文献   

6.

Pure culture biofilms of Pseudomonas aeruginosa (strains 8830 and ATCC 700829) and mixed population biofilms composed of Pseudomonas aeruginosa (ATCC 700829), Pseudomonas fluorescens (ATCC 700830), and Klebsiellapneumoniae (ATCC 700831) were treated with an alginate‐degrading enzyme (AlgL). The enzyme effectively depolymerized the mannuronic acid rich (92%), partially O‐acetylated bacterial alginate produced by P. aeruginosa (8830), both in dilute solution and in a gel‐like, concentrated state. However, both biofilms were unaffected by the presence of the enzyme. These findings suggest either that bacterial alginates do not contribute significantly to the cohesiveness of biofilms or that the alginate is protected from enzymatic degradation in biofilms.  相似文献   

7.
Summary To exploit alginate lyase which could degrade bacterial alginates, degenerate PCR and long range-inverse PCR (LR-IPCR) were used to isolate alginate lyase genes from soil bacteria. Gene algL, an alginate lyase-encoding gene from Pseudomonas sp. QD03 was cloned, and it was composed of a 1122 bp open reading frame (ORF) encoding 373 amino acid residues with the calculated molecular mass of 42.2 kDa. The deduced protein had a potential N-terminal signal peptide of 20 amino acid residues that was consistent with its proposed periplasmic location. Gene algL was expressed in pET24a (+)/E. coli BL21 (DE3) system. The recombinant AlgL was purified to electrophoretic homogeneity using affinity chromatography. The molecular weight of AlgL was estimated to be 42.8 kDa by SDS-PAGE. AlgL exhibited maximal activity at pH 7.5 and 37 °C. Na+, K+, Ca2+ and Ba2+ significantly enhanced the activity of AlgL. AlgL could degrade alginate and mannuronate blocks, but hardly degrade guluronate blocks. In particular, AlgL could degrade acetylated alginate of Pseudomonas aeruginosa FRD1 (approximately 0.54 mol of O-acetyl group per mol of alginate). It might be possible to use alginate lyase AlgL as an adjuvant therapeutic medicine for the treatment of disease associated with P. aeruginosa infection.  相似文献   

8.
A system was developed to evaluate the effects of root growth of cotton seedlings on the inoculum dynamics ofGliocladium virens in nonsterile soil. In soil infested withG. virens, inoculum densities of the fungus increased when plants remained alive. After 30 days, shoots were excised and the roots allowed to deteriorate. During this portion of the experiment (30–60 days) soil inoculum densities ofG. virens declined. In infested soil without a seedling, inoculum densities remained constant throughout the duration of the experiments. Colonization of roots byG. virens was found to increase throughout the duration of the experiments. At 60 daysG. virens was recovered from approximately 60% of the root pieces (1-cm) sampled. The percentage of primary, secondary, or tertiary roots colonized was different (P = 0.01), but the total colonization of roots at three depths (0–10, 10–20, and 20–30 cm) was not different (P = 0.64). In noninfested soil, colonization of roots by indigenous propagules ofG. virens was never greater than 3%. Offprint requests to: C. M. Kenerley.  相似文献   

9.
In this study, three alginate fractions with different molecular weights and ratios of mannuronic acid (M) to guluronic acid (G) were prepared by enzymatic hydrolysis and ultrafiltration to assess the antioxidant property of alginates from Laminaria japonica with molecular weight below 10 kDa. The antioxidant properties of different molecular weight alginates were evaluated by determining the scavenging abilities on superoxide, hydroxyl, and hypochlorous acid and inhibitory effect on Fe2+-induced lipid peroxidation in yolk homogenate. The results showed that low molecular weight alginates exhibited high scavenging capacities on superoxide, hydroxyl, and hypochlorous acid radicals and good inhibition of Fe2+-induced lipid peroxidation in yolk. By comparison, alginate A1 with molecular weight below 1 kDa and M/G of 1.84 had better scavenging activity on superoxide, hydroxyl, and hypochlorous acid radicals in vitro than A2 (1–6 kDa), A3 (6–10 kDa), ascorbic acid, and carnosine. With similar M/G ratio, A2 exhibited better antioxidant activity on superoxide and hypochlorous acid radicals than A3. However, fraction A3 with molecular weight of 6–10 kDa exhibited higher inhibitory ability on lipid peroxidation in yolk in vitro than A1 and A2. The results indicated that molecular weight played a more important role than M/G ratio on alginate to determine the antioxidant ability. By comparison, low molecular weight alginates composed of guluronic acid and mannuronic acid exhibited better antioxidant ability on oxygen free radicals than sulfated polysaccharides from L. japonica in our previous study and represent a good source of marine polysaccharide with potential application as natural antioxidant.  相似文献   

10.
Three fungi, isolated from soil from which Phytophthora was not obtained, were evaluated for antagonism of Phytophthora spp. shown to cause root rot of chestnut in South Australia. Trichoderma hamatum and T. pseudokoningii appeared to inhibit P. cinnamomi by mycoparasitism. with evidence of parallel growth and coiling, and both Trichoderma spp. and Gliocladium virens grew over P. cinnamomi in vitro, preventing further growth of this pathogen. Antibiotics produced by young T. hamatum cultures and G. virens in culture filtrate experiments inhibited growth of P. cinnamomi and P. citricola. with filtrate from 4-day-old cultures of G. virens showing the greatest potential for biocontrol. All three antagonists prevented P. cinnamomi and P. citricola from causing infection symptoms on micropropagated shoots of chestnut cvs Goldsworthy and Buffalo Queen in an in vitro excised shoot bioassay for biocontrol.  相似文献   

11.
Bacillus megaterium strain B388, isolated from rhizosphere soil of pine belonging to a temperate Himalayan location has been characterized. The plant growth promotion and biocontrol properties of the bacterium have been evaluated through petridish and broth based assays. The isolate solubilized tricalcium phosphate under in vitro conditions; maximum activity (166 μg/ml) was recorded at 28°C after 15 days of incubation. Production of indole acetic acid demonstrated in broth assays was another important plant growth promoting character. The bacterium produced diffusible and volatile compounds that inhibited the growth of two phytopathogens viz. Alternaria alternata and Fusarium oxysporum. The carrier based formulations of the bacterium resulted in increased plant growth in bioassays. The rhizosphere colonization and the viability of the cells entrapped in alginate beads were greater in comparison to coal or broth based formulations. The bacterium showed maximum similarity with Bacillus megaterium by 16S rRNA analysis.  相似文献   

12.
The effect of four opportunistic fungi viz., Paecilomyces lilacinus, Cladosporium oxysporum, Gliocladium virens and Talaromyces flavus on the life cycle of the root-knot nematode, Meloidogyne javanica, on brinjal was evaluated under glasshouse conditions. The results revealed that these fungi affected the penetration and development of M. javanica. The life cycle of M. javanica was delayed by 10, 7, 4 and 2 days in the presence of P. lilacinus, C. oxysporum, G. virens and T. flavus respectively. Fecundity, number of eggs per eggmass and number of larvae was also reduced in the presence of these opportunistic fungi. However, the number of males increased in the presence of opportunistic fungi.  相似文献   

13.
[背景]褐藻胶裂解酶种类丰富、降解机制多样,是高效环保降解褐藻胶、制备褐藻寡糖的工具酶,成为褐藻植物高值化开发利用的研究热点.[目的]从海泥中筛选获得褐藻胶裂解酶高效产酶菌株,确定菌株发酵产酶最优条件,鉴定和分析酶降解产物,进而解析该酶的降解特性.[方法]以褐藻胶为唯一碳源,从海带养殖场附近海泥中筛选菌株,通过形态学观...  相似文献   

14.
Our overall objectives were to prepare commercially acceptable formulations of the postharvest biological control yeasts, Metschnikowia pulcherrima and Pichia guilliermondii, which have a long storage life and to determine the effectiveness of these formulations to control postharvest green and blue moulds on citrus fruit. Yeasts, grown on a cane molasses-based medium, were combined with talc or kaolin carriers and various adjuvants and the viability of yeast in 12 formulations was determined over a 6 month period. Formulation no. 11, containing talc, sodium alginate, sucrose, and yeast extract, for both yeasts had a significantly higher viable yeast cell content over a 6 month storage period. Among the formulations, three formulations (formulations no. 5, 6, and 11) were selected for additional in vivo testing because they had higher levels of viability amongst yeast cell populations during storage and were easier to resuspend remained in suspension more easily. These formulations were tested on Satsuma mandarin and grapefruit to control green and blue moulds. Formulations no. 5, 6, and 11 for both yeasts effectively controlled green mould, while only formulation no. 11 with either yeast isolate M. pulcherrima (isolate M1/1) or P. guilliermondii (isolate P1/3) effectively controlled both blue and green moulds.  相似文献   

15.
The viability of mycelial fragments of Trametes versicolor and Irpex lacteus and their growth on selected hydrogels are described. The size of mycelial fragments of the fungi did not significantly influence their viability. Alginate hydrogel films supported fungal growth better than agarose, carrageenan, chitosan and gelatin films, and had the highest mechanical strength but were less hydrophilic than the other hydrogels. All commercial alginates that were tested supported aseptic growth of fungal fragments without prior sterilization of the hydrogel solution. The viability of mycelial fragments in the hydrogel solutions was higher for some commercial alginates than that in laboratory grade alginate. The mechanical strength and hydrophilicity of hydrogels from alginate type Sobalg FD 155 and Meer HV were comparable to that of laboratory grade alginate. Sterilization and pH of the alginate hydrogel did not significantly influence the growth of T. versicolor mycelial fragments but affected the growth of I. lacteus. Concentrations of alginate in the range of 1–2% in the hydrogel did not affect the growth of entrapped mycelial fragments of these fungi. Received 25 June 1997/ Accepted in revised form 07 March 1998  相似文献   

16.
Methodology was developed to isolate and regenerate protoplasts from the biocontrol fungus Gliocladium virens and to transform them to benomyl resistance with a Neurospora crassa β-tubulin gene. Southern blots demonstrated that multiple copies of the vector integrated into the chromosomal DNA of stable biotypes but not of abortive transformants. Analysis of nuclear condition in vegetative and asexual structures demonstrated that no structure of G. virens is dependably uninucleate and thus preferentially suitable for transformation.  相似文献   

17.
The potential of root‐colonising antagonistic microbial biocontrol agents was evaluated for their ability to improve plant growth and suppress aflatoxigenic fungal and aflatoxin contamination in groundnut. By considering root colonisation of groundnut seedlings, plant growth promotion and antagonism against aflatoxigenic Aspergillus flavus as preliminary criteria, eight rhizobacteria and nine Trichoderma spp. were selected and characterised for their beneficial traits. These strains gave varying results for IAA production, phosphate solubilisation, ACC deaminase, chitinase and siderophore production. Under laboratory and greenhouse conditions, these strains significantly (P < 0.05) suppressed seed‐borne and rhizospheric population of A. flavus and improved seed quality variables. However, cdELISA results revealed that none of the biocontrol strains were effective in reducing aflatoxin level in seed. Based on the overall performance, Pseudomonas fluorescens 2bpf, Bacillus sp. Bsp‐3/aM and Trichoderma atroviride UMDBT‐Dha.Tat8 were used for field trials in the form of talcum powder formulations. Under field conditions, biocontrol agents improved seedling emergence, plant biomass and pod yield. Seeds harvested from plots treated with biocontrol agents showed significant (P < 0.05) reduction in A. flavus infection and aflatoxin production after 6 months' storage. Use of microbial strains with multiple beneficial traits is advantageous in bioformulation development. Hence, in future, these formulations will play a major role as biofertilisers and biopesticides, which can reduce the usage of agrochemicals up to greater extents in groundnut production.  相似文献   

18.
Biological control of mycotoxigenic fungi using antagonistic microbes is a promising alternative to agricultural chemicals for postharvest storage. In this study, we evaluated rice‐derived bacterial strains to identify biocontrol agents to inhibit Aspergillus flavus in stored rice grains. Consequently, we obtained three potential biocontrol strains (Microbacterium testaceum KU313, Bacillus megaterium KU143 and Pseudomonas protegens AS15) from 26 tested strains that were prescreened from the 460 strains isolated from rice grains. The three selected strains proved to be effective biocontrol agents showing antifungal activity against A. flavus and good colonisation ability on rice grains, along with inhibition of the fungal growth and aflatoxin production. In particular, P. protegens AS15 greatly inhibited the aflatoxins produced by A. flavus on rice grains to 8.68 (percent aflatoxin reduction relative to control = 82.9%) and 18.05 (68.3 %) ng g?1 dry weight of rice grains, compared with the 50.89 and 56.97 ng g?1 dry weight of rice grains of the MgSO4 control at 1 and 2 weeks after inoculation, respectively. In addition, strain AS15 had a significant ability to not only degrade aflatoxin B1 (the most harmful aflatoxin), but also utilise the toxin for bacterial growth in a nutrient‐deficient medium. Therefore, the selected bacterial strains could be environmentally sound alternatives for the management of A. flavus and aflatoxin production by reducing the fungal damage to stored rice grains. This would also reduce the human and animal health hazards associated with the consumption of fungus‐contaminated rice grains. To our knowledge, this is the first report of the potential of the bacterial species M. testaceum and P. protegens as biocontrol agents for controlling aflatoxigenic A. flavus on stored rice grains.  相似文献   

19.
Matrix polysaccharide from the brown algae Sargassum turbinarioides collected in the coastal waters of Nosy Be (Madagascar) in the Indian Ocean was isolated and its structure was studied by 1H-NMR spectroscopy, FT-IR, SEC-MALLS and HPAEC. An alginate with a molecular weight of 5.528 × 105 g mol−1 was identified as sole polysaccharide. Values of the M/G ratio, F GG, F MM and F GM (or F GM) blocks were measured at respectively 0.94, 0.39, 0.36 and 0.25 and compared with those of alginates from other Sargassum species. This sodium alginate appeared similar to some of the other Sargassum alginates with M/G < 1, high values of homopolymeric blocks (η < 1) and significant polyguluronic block content.  相似文献   

20.
Antibacterial activity of lyase-depolymerized products of alginate   总被引:1,自引:0,他引:1  
A series of mannuronic acid (M-block) and guluronic acid (G-block) fractions (M1–M5 and G1–G5) with different molecular weights were obtained by lyase depolymerization of alginate and evaluated for in vitro antibacterial activity against 19 bacterial strains. The antibacterial data revealed that both types of fractions generally showed activity against certain tested bacteria, whereas M-block fractions showed broader spectra and more potent inhibition than G-block fractions. Among these fractions, M3 (molecular weight 4.235 kDa) exhibited the broadest spectrum of inhibition and high inhibitory activity against Escherichia coli (minimal inhibitory concentration, MIC = 0.312 μg mL−1), Salmonella paratyphi B (MIC = 0.225 μg mL−1), Staphylococcus aureus (MIC = 0.016 μg mL−1) and Bacillus subtilis (MIC = 0.325 μg mL−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号