首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plant growth and productivity are adversely affected by various abiotic and biotic stress factors. In our previous study, we used Prosopis juliflora, an abiotic stress tolerant tree species of Fabaceae, as a model plant system for isolating genes functioning in abiotic stress tolerance. Here we report the isolation and characterization of a Rab family GTPase from P. juliflora (Pj Rab7) and the ability of this gene to confer salt stress tolerance in transgenic tobacco. Northern analysis for Pj Rab7 in P. juliflora leaf tissue revealed up-regulation of this gene under salt stress under the concentrations and time points analyzed. Pj Rab7 transgenic tobacco lines survived better under conditions of 150 mM NaCl stress compared to control un-transformed plants. Pj Rab7 transgenic plants were found to accumulate more sodium than control plants during salt stress. The results of our studies could be used as a starting point for generation of crop plants tolerant to abiotic stress.  相似文献   

3.
4.
The ThPOD1 gene encodes a peroxidase and was isolated from a Tamarix hispida NaCl-stress root cDNA library. We found that ThPOD1 expression could be induced by abiotic stresses such as cold, salt, drought and exogenous abscisic acid. These findings suggested that ThPOD1 might be involved in the plant response to environmental stresses and ABA treatment. To elucidate the function of this gene, recombinant plasmids expressing full-length ThPOD1 as well as ThPOD2 (aa 41-337), and ThPOD3 (aa 73-337) truncated polypeptides were constructed. SDS–PAGE and Western blot analyses of the fusion proteins revealed that the molecular weights of ThPOD1, ThPOD2 and ThPOD3 were ~57, ~50 and ~47 kDa, respectively. Stress assays of E. coli treated with the recombinant plasmids indicated that ThPOD3 could improve resistance to drought stress. This finding could potentially be used to improve plant tolerance to drought stress via gene transfer.  相似文献   

5.
6.
Late embryogenesis abundant (LEA) proteins have been implicated in many stress responses of plants. In this report, a LEA protein gene OsLEA3-1 was identified and over-expressed in rice to test the drought resistance of transgenic lines under the field conditions. OsLEA3-1 is induced by drought, salt and abscisic acid (ABA), but not by cold stress. The promoter of OsLEA3-1 isolated from the upland rice IRAT109 exhibits strong activity under drought- and salt-stress conditions. Three expression constructs consisting of the full-length cDNA driven by the drought-inducible promoter of OsLEA3-1 (OsLEA3-H), the CaMV 35S promoter (OsLEA3-S), and the rice Actin1 promoter (OsLEA3-A) were transformed into the drought-sensitive japonica rice Zhonghua 11. Drought resistance pre-screening of T1 families at anthesis stage revealed that the over-expressing families with OsLEA3-S and OsLEA3-H constructs had significantly higher relative yield (yield under drought stress treatment/yield under normal growth conditions) than the wild type under drought stress conditions, although a yield penalty existed in T1 families under normal growth conditions. Nine homozygous families, exhibiting over-expression of a single-copy of the transgene and relatively low yield penalty in the T1 generation, were tested in the field for drought resistance in the T2 and T3 generations and in the PVC pipes for drought tolerance in the T2 generation. Except for two families (transformed with OsLEA3-A), all the other families (transformed with OsLEA3-S and OsLEA3-H constructs) had higher grain yield than the wild type under drought stress in both the field and the PVC pipes conditions. No significant yield penalty was detected for these T2 and T3 families. These results indicate that transgenic rice with significantly enhanced drought resistance and without yield penalty can be generated by over-expressing OsLEA3-1 gene with appropriate promoters and following a bipartite (stress and non-stress) in-field screening protocol.  相似文献   

7.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

8.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

9.
10.
11.
A cotton Ltp3 gene and its 5′ and 3′ flanking regions have been cloned with a PCR-based genomic DNA walking method. The amplified 2.6 kb DNA fragment contains sequences corresponding to GH3 cDNA which has been shown to encode a lipid transfer protein (LTP3). The gene has an intron of 80 bp which is located in the region corresponding to the C-terminus of LTP3. The Ltp3 promoter was systematically analyzed in transgenic tobacco plants by employing the Escherichia coli β-glucuronidase gene (GUS) as a reporter. The results of histochemical and fluorogenic GUS assays indicate that the 5′ flanking region of the Ltp3 gene contains cis-elements conferring the trichome specific activity of Ltp3 promoter.  相似文献   

12.
13.
14.
We have previously isolated a Brassica juncea cDNA encoding a novel chitinase BjCHI1 with two chitin-binding domains (Zhao and Chye in Plant Mol Biol 40:1009–1018, 1999). The expression of BjCHI1 was highly inducible by methyl jasmonate (MeJA) treatment, wounding, caterpillar feeding, and pathogenic fungal infection. These observations suggest that the promoter of BjCHI1 gene might contain specific cis-acting elements for stress responses. Here, we report the cloning and characterization of the BjCHI1 promoter. A 1,098 bp BjCHI1 genomic DNA fragment upstream of the ATG start codon was isolated by PCR walking and various constructs were made by fusing the BjCHI1 promoter or its derivatives to β-glucuronidase reporter gene. The transgenic Arabidopsis plants showed that the BjCHI1 promoter responded to wounding and MeJA treatment, and to treatments with either NaCl or polyethyleneglycol (PEG 6000), indicating that the BjCHI1 promoter responses to both biotic and abiotic stresses. A transient gene expression system of Nicotiana benthamiana leaves was adopted for promoter deletion analysis, and the results showed that a 76 bp region from −695 to −620 in the BjCHI1 promoter was necessary for MeJA-responsive expression. Furthermore, removal of a conserved T/G-box (AACGTG) at −353 to −348 of the promoter greatly reduced the induction by MeJA. This is the first T/G-box element identified in a chitinase gene promoter. Gain-of-function analysis demonstrated that the cis-acting element present in the 76 bp region requires coupling with the T/G-box to confer full magnitude of BjCHI1 induction by MeJA.  相似文献   

15.
16.
17.
18.
19.
20.
Zinc finger proteins function in plant tolerances to stresses from cold, dehydration, and salt. To determine the mechanisms for those underlying defenses, we previously used cDNA microarrays and northern blot analysis to identify a gene for the ring zinc finger protein (RDCP1) from hot pepper (Capsicum annuum). In that study, we showed that theRDCP1 gene was strongly induced by cold stress and, to a lesser degree, by ABA and high salt Here, we have used a Ti-plasmid andAgrobacterium- mediated transformation to engineerRDCP1 under the control of the CaMV35S promoter for constitutive expression in tobacco. The resultant RDCP1 transgenic plants exhibit significantly increased tolerance to low temperatures. Moreover, some of those transgenics have greater drought tolerance. In addition, none of the RDCP1 transgenic plants show any visible alterations from the wild phenotype. These current results demonstrate the biological role of RDCP1 in conferring stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号