首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of the echocardiographic techniques, morphometric and functional parameters of the heart left ventricle (HLV) were studied in male humans aged 20 to 23, in resting and under the effect of a physical load. The total ventricle work was found to be about 1 J, the relative one (per 100 g of the LV mass)--0.6 J. The total working power was found to be about 70 Watt, the relative one--about 40 Watt. The physical load resulted in increase of the LV mechanical work parameters due to the heart rate and systolic arterial pressure.  相似文献   

2.
Six male and six female elite speed skaters were tested during two bicycle ergometer tests: a 30 s sprint test and a 2.5 min supra maximal test. During the 2.5 min test oxygen consumption was measured every 30 s. The males showed 30-31% higher mean power output values both during the sprint test (1103 versus 769 Watt) and during the 2.5 min test (570 versus 390 Watt). Maximal oxygen consumption was 31% higher for the males than for the females (5.10 versus 3.50 1.min-1). However, when expressed per kilogram lean body weight (LBM), power output and oxygen consumption was equal for both sexes. Differences between present and previous results are most likely due to methodological problems with the estimation of load during the supra maximal test. Subjects appear to experience difficulties in distributing their power output over the 2.5 min if they are tested for the first time. For experienced skaters and cyclists, fixed levels of 19 W.kgLBM-1 as initial load setting for the sprint test and 8 W.kg LBM-1 for the 2.5 min test are recommended.  相似文献   

3.
Strain while skiing and hauling a sledge or carrying a backpack   总被引:1,自引:0,他引:1  
Eight soldiers on skis transported three loads of different weights on the level, uphill and downhill. The load was placed either on a cargo sledge or in a backpack or divided between the sledge and the backpack. The sledge had a new type of haulage-shaft, which was fixed to both sides of the pelvis. A service belt spread the pull over the whole upper body. The physical stain of different transport methods and the serviceability of the sledge was studied by measuring heart rate (HR), oxygen consumption, ventilation, and perceived exertion. The results indicate that both absolute and relative strain were systematically lower when pulling the load on the sledge than when carrying it in the backpack and on the sledge. HR when pulling a load equal to the human body weight on the sledge was on average 133 beats X min-1; HR was significantly higher 144 beats X min-1 when the load was divided between backpack and sledge. At the lower load level the differences between the transport methods were not significant for HR, oxygen consumption or ventilation. Uphill travel increased oxygen consumption by about 50% over that on the level. Perceived exertion at all load levels was significantly lower with the sledge than with the backpack alone or in combination. The estimated maximal allowable working time emphasized the advantage of the sledge and the importance of high physical working capacity. The maneuverability of the sledge with the new haulage shaft was good and the braking mechanisms worked well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of a filtering device, an air-line breathing apparatus and a self-contained breathing apparatus ( SCBA ) on pulmonary ventilation, oxygen consumption and heart rate were studied in 12 well-trained firemen aged 21-35 years. Their average maximal oxygen consumption (VO2 max) was 64.9 ml X min-1 X kg-1. Sequential tests without and with the respirator were performed on a treadmill. The continuous test contained five components, each of which lasted 5 min: sitting at rest, walking at 20%, 40%, and 60% of the individual VO2 max, and recovery sitting. During the higher submaximal work levels and recovery, ventilation, heart rate, and oxygen consumption in particular increased more with respirators than without them. At the highest work level the increments in oxygen consumption caused by the respirators were 13%, (8.7 ml X min-1 X kg-1), 7% (4.4 ml X min-1 X kg-1), and 20% (12.7 ml X min-1 X kg-1) of VO2 max. All three respirators hampered respiration, resulting in hypoventilation. The additional effort of breathing and the weight of the apparatus (15 kg with the SCBA ) increased the subjects' cardiorespiratory strain so clearly that the need for rest periods and the individual's work capacity when the respirators are worn must be carefully considered, particularly with the SCBA .  相似文献   

5.
Oxygen consumption and metabolic strain in rowing ergometer exercise   总被引:2,自引:0,他引:2  
Oxygen consumption (VO2) when rowing was determined on a mechanically braked rowing ergometer (RE) with an electronic measuring device. VO2 was measured by an open spirometric system. The pneumotachograph valve was fixed to the sliding seat, thus reducing movement artefacts. A multi-stage test was performed, beginning with a work load of 150 W and increasing by 50 W every 2 minutes up to exhaustion. Serum lactate concentrations were determined in a 30 s break between the work stages. 61 examinations of oarsmen performing at maximum power of 5 W X kg-1 or more were analysed VO2 and heart rate (HR) for each working stage were measured and the regression line of VO2 on the work load (P) and an estimation error (Sxy) were calculated: VO2 = 12.5 X P + 415.2 (ml X min-1) (Sxy = +/- 337 ml, r = 0.98) Good reproducibility was found in repeated examinations. Similar spiroergometry was carried out on a bicycle ergometer (BE) with 10 well trained rowers and 6 trained cyclists. VO2 of rowing was about 600 ml X min-1 higher than for bicycling in the submaximal stages for both groups. The VO2max of RE exercise was 2.6% higher than for oarsmen on BE, and the cyclists reached a greater VO2 on BE than the oarsmen. No differences were found between RE and BE exercise heart rate. The net work efficiency when rowing was 19% for both groups, experienced and inexperienced: when cycling it was 25% for cyclists and 23% for oarsmen.  相似文献   

6.
We compared the cardiovascular effects evoked in conscious dogs by 1) submaximal exercise; 2) infusion of dobutamine (40 micrograms X kg-1 X min-1); and 3) infusion of a combination of atropine (0.15 mg/kg), norepinephrine (0.19 micrograms X kg-1 X min-1), and epinephrine (0.05 micrograms X kg-1 X min-1). Myocardial O2 demand, as estimated by the double product (heart rate X systolic blood pressure), was similar during all three interventions. Cardiac output and heart rate increased significantly (P less than 0.05) during each of the three interventions. Arteriovenous O2 difference and total body O2 consumption, however, increased only during submaximal exercise. Although myocardial blood flow increased similarly during each of the three interventions, blood flow to skeletal muscle and the tongue increased only during exercise. Exercise and the combined infusion of atropine, norepinephrine, and epinephrine produced similar increases in blood flow to the diaphragm and similar decreases in blood flow to the stomach. These changes in blood flow were associated with appropriate changes in vascular resistance. Additionally, blood flow to the brain, kidney, adrenal glands, liver, and intestine did not change during any of the three interventions. Thus, in dogs, submaximal exercise, infusion of dobutamine, and infusion of a combination of atropine, norepinephrine, and epinephrine to evoke a given level of estimated myocardial O2 consumption produce similar increases in cardiac output, heart rate, and myocardial blood flow. In contrast, the changes in total body O2 consumption, arteriovenous O2 difference, regional blood flow, and regional vascular resistance that occur during each of these three interventions are different.  相似文献   

7.
The peripheral factor (PF), i.e. the ratio: artero-venous oxygen extraction to total peripheral resistences, has been studied in a total of 8 professional basket players under controlled work-load conditions. The results obtained by continuous monitoring heart rate, oxygen consumption, pulmonary ventilation, arterial blood pressure etc, have shown that from 0 to 150 watt work-load, the PF increases linearly showing a slope of 83 degrees, whereas from 150 to 200 watt the pendence reduces up to 45 degrees. The absolute value of PF from a resting value of 3.83 mlo2 X min-1 X mmHg-1 increases up to 21,64 (at 150 watt) and to a maximum of 23.45 mlo2 X min-1 X mmHg-1 at 200 watt. The slope of the first range of load (83 degrees) is quite similar to what previously observed in endurance athletes (cyclists) whereas the 45 degrees angular coefficient indicates that the increased energy demand in basket-players can be obtained only with a large cardiac load.  相似文献   

8.
The purpose of this experiment was to explore the complex relationship between fluid consumption and consumption factors (thirst, voluntary dehydration, water alliesthesia, palatability, work-rest cycle) during a simulated 14.5-km desert walk (treadmill, 1.34 m X s-1, 5% grade, 40 degrees C dry bulb/26 degrees C wet bulb, and wind speed of approximately 1.2 m X s-1). Twenty-nine subjects were tested (30 min X h-1, 6 h) on each of two nonconsecutive days. The subjects were randomly assigned to one of three groups: tap water (n = 8), iodine-treated tap water (n = 11), or iodine-treated flavored tap water (n = 10). The temperature of the water was 40 degrees C during one trial and 15 degrees C on the other. Mean sweat losses (6 h) varied between 1.4 kg (warm iodine-treated; 232 +/- 44 g X h-1) and 3.0 kg (cool iodine-treated flavored; 509 +/- 50 g X h-1). Warm drinks were consumed at a lower rate than cool drinks (negative and positive alliesthesia). This decreased consumption resulted in the highest percent body weight losses (2.8 and 3.2%). Cooling and flavoring effects on consumption were additive and increased the rate of intake by 120%. The apparent paradox between reduced consumption concomitant with severe dehydration and hyperthermia is attributed to negative alliesthesia for warm water rather than an apparent inadequacy of the thirst mechanism. The reluctance to drink warm iodine-treated water resulted in significant hyperthermia, dehydration, hypovolemia, and, in two cases, heat illness.  相似文献   

9.
The goal of this article is to detect, describe, and compare 2 heart rate (HR) conditions associated with high-intensity efforts but somewhat different in nature: The first one is indicated by HR values close to the maximum heart reserve (MHRR), and the second is indicated by a marked increase in the HR values (MIHR). It was expected that both conditions were associated with different game situations. A sample of 441 game situations (241 MIHRs and 200 MHRRs), taken from HR records and individual filming of 12 elite soccer players, was assessed along 7 preseason competition matches. The game situations in which each of these 441 HR conditions took place were identified, using a previously established taxonomy of a combination of field formats and category systems in the Match Vision Studio Premium. For the recording of the HR condition, an HRM Polar was attached to the players when in competition, together with a simultaneous filming of their performance during the game. The HRM and video recordings were synchronized beforehand to be able to relate the game situation in the film with HR conditions. The results showed significant differences between both HR conditions for 4 criteria of game situations (Ball in play, Game Center, Role, and Opposition). In all the cases, the MIHR is more associated with active participation of the players in the game, whereas the MHRR is more associated with the end of this participation. Thus, the results suggest that MIHR could be a useful complementary measurement to assess the intensity of physiological load that elite soccer players bear during competition, together with more traditional measurements such as MHRR.  相似文献   

10.
31P NMR measurement of ATP synthesis rate in perfused intact rat hearts   总被引:1,自引:0,他引:1  
Using 31P NMR and the saturation-transfer method, the unidirectional rate of ATP synthesis was measured in isolated, Langendorff-perfused, isovolumic rat hearts operating at a rate pressure product of 25.6 +/- 2.5 (SE) X 10(3) mmHg X min-1 and consuming O2 at a rate of 35 +/- 2 mumol O2 X min-1 X (g dry wt)-1, at 37 degrees C. This rate was 7.2 +/- 0.9 mumol X s-1 X (g dry wt)-1 and was related to the rate of oxygen atom consumption by a ratio of 6.3 +/- 0.9. These data show that in the intact heart the unidirectional rate of ATP synthesis exceeds the net rate of ATP synthesis and consumption by approximately a factor of 2.  相似文献   

11.
Graded erythrocythemia was induced by isovolemic loading of packed red blood cells in the toad, Bufo marinus. Blood viscosity, hematocrit, hemoglobin concentration, maximal aortic blood flow rate and maximal rates of oxygen consumption were determined after each load. Blood viscosity was related to hematocrit in the expected exponential manner; ln eta = 0.43 + 0.035 Hct. Maximal blood flow rates in the dorsal aorta were inversely proportional to blood viscosity and fit predictions of the Poiseuille-Hagen flow formula. The effect of increased blood viscosity was to reduce aortic pulse volume, but not maximal heart rate. Maximal systemic oxygen transport capacity (aortic blood flow rate X hemoglobin concentration X O2 binding capacity of hemoglobin) was linearly correlated with the maximal rate of oxygen consumption. These date indicate that optimal hematocrit theory is applicable for maximal blood flow rates in vivo, and that systemic oxygen transport is the primary limitation to aerial VO2 max in amphibians.  相似文献   

12.
In pentobarbital-anesthetized mongrel dogs the intravenous actions of 0.50 mg/kg molsidomine on pulmonary artery and left ventricular (LV) end-diastolic pressures and internal heart dimensions (preload), left ventricular systolic and peripheral blood pressures, and total peripheral resistance (afterload), as well as on heart rate, dP/dt, stroke volume, and cardiac output (heart performance) were studied for 2 h. Hemodynamic molsidomine effects were influenced by increasing amounts of intravenously infused dihydroergotamine solution (DHE, 1-64 micrograms X kg-1 X min-1). Molsidomine decreased preload, stroke volume, and cardiac output for over 2 h but decreased ventricular and peripheral pressures for 45 min. Systemic vascular resistance showed a tendency to decrease while heart rate and LV dP/dtmax were not altered. DHE infusion reversed molsidomine effects on the preload and afterload of the heart. The diminished stroke volume was elevated so that cardiac output also increased. Total peripheral resistance increased while heart rate fell in a dose-dependent fashion. The LV dP/dtmax remained unchanged until the highest dose of 64 micrograms X kg-1 X min-1 DHE elevated the isovolumic myocardial contractility. These experiments indicate that DHE can reverse the intravenous molsidomine effects on hemodynamics. Most likely, this is mediated through peripheral vasoconstriction of venous capacitance vessels, thereby affecting molsidomine's action on postcapillary beds of the circulation.  相似文献   

13.
Cardiovascular drift (CVD) can be defined as a progressive increase in heart rate (HR), decreases in stroke volume (SV) and mean arterial pressure (MAP), and a maintained cardiac output (Q) during prolonged exercise. To test the hypothesis that the magnitude of CVD would be related to changes in skin blood flow ( SkBF ), eight healthy, moderately trained males performed 70-min bouts of cycle ergometry in a 2 X 2 assortment of airflows (less than 0.2 and 4.3 m X s-1) and relative work loads (43.4% and 62.2% maximal O2 uptake). Ambient temperature and relative humidity were controlled to mean values of 24.2 +/- 0.8 degrees C and 39.5 +/- 2.4%, respectively. Q, HR, MAP, SkBF , skin and rectal temperatures, and pulmonary gas exchange were measured at 10-min intervals during exercise. Between the 10th and 70th min during exercise at the higher work load with negligible airflow, HR and SkBF increased by 21.6 beats X min-1 and 14.0 ml X 100 ml-1 X min-1, respectively, while SV and MAP decreased by 16.4 ml and 11.3 mmHg. The same work load in the presence of 4.3 m X s-1 airflow resulted in nonsignificant changes of 7.6 beats X min-1, 4.0 ml X (100 ml-1 X min)-1, -2.7 ml, and -1.7 mmHg for HR, SkBF , SV, and MAP. Since nonsignificant changes in HR, SkBF , SV, and MAP were observed at the lower work load in both airflow conditions, the results emphasize that CVD occurs only in conditions which combine high metabolic and thermal circulatory demands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The major objective of this study was to test the hypothesis that arterial CO2 partial pressure (PaCO2) does not change in transitions from rest to steady-state exercise and between two levels of exercise. Nine young adults exercised on a treadmill or a bicycle (sit or supine) for 5 min at a mild work load (heart rate = 90 beats X min-1) and then 3 min at a moderate work load (heart rate = 150 beats X min-1). In some studies the moderate work load preceded the mild work load. Arterial blood was sampled from a catheterized artery. During all exercise tasks isocapnia was not strictly maintained (F greater than 4.0, P less than 0.001). For example, a 1-to 2-Torr hypocapnia was the dominant trend during the first 15-45 s after increasing treadmill speed, and a transient hypercapnia was most prevalent when treadmill speed was decreased. During steady-state exercise PaCO2 did not deviate by more than 1-3 Torr from PaCO2 during any resting posture, and PaCO2 differences between exercise intensities and conditions did not exceed 1-2 Torr. A mouthpiece-breathing valve system was not used in most studies, but when this system was used, it did not consistently affect exercise PaCO2. Increasing inspired O2 to 40% likewise did not consistently alter exercise PaCO2. Failure to maintain isocapnia throughout exercise indicates that the matching of alveolar ventilation (VA) to lung CO2 delivery is not exquisitely precise. Accordingly it is inappropriate to base theories of the exercise hyperpnea on the heretofore contention of precise matching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Clearer guidance is recommended for evaluating site-specific chemical risks due to the consumption of wild game in human health risk assessment (HHRA), particularly in estimating consumption rate values for site-specific exposure modeling. This study reviewed site-specific HHRAs, survey data, regulatory documents, and scientific literature to evaluate the state of the practice for evaluating site-specific chemical risks via wild game consumption. Consumption rates of distinct wildlife species groups varied over three orders of magnitude (increasing from lowest to highest: waterfowl, terrestrial birds, small mammals, and cervids), and rates for all groups except cervids were lower than wild fish consumption rates. Wild game consumption rate values should be explicitly derived for site-specific HHRAs using one or more of the following approaches (in general order of lowest to highest uncertainty): (1) Empirical site-specific surveys; (2) Empirical surveys of comparable communities; (3) Modeling of local game harvest data; (4) Use of a nationally applicable default value; (5) Modeling of legally harvestable game limits; and (6) Modeling based on estimates of total meat consumption. Data are readily available such that approximate nationally applicable default values could be developed. More precise guidance and data for different wildlife species groups, regions, and consumers would improve HHRAs including this exposure pathway.  相似文献   

16.
The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.  相似文献   

17.
三化螟危害损失与防治指标的研究   总被引:4,自引:1,他引:3  
陈惠祥  陈小波 《昆虫知识》1999,36(6):322-325
2代三化螟平均每块卵为害 11.25个枯心丛,34.75个枯心株; 3代每块卵平均为害 7.95个白穗丛,14.55个白穗株。模拟为害与水稻产量损失的关系:2代Y=s8060.5-2181.5X,Y-水稻产量(kg/hm2),X-枯心株率,水稻耐害补偿作用明显,枯心株率与产量损失率之比1:0.27;3代Y=7654.2-3902.2X,Y-水稻产量(kg/hm2),X-白穗株率,水稻表现一定的耐害补偿能力,白穗株率与产量损失率之比1:0.51。三化螟危害允许水平1.28%。防治指标:2代卵块4875万块/hm2,3代卵块6519块/hm2。  相似文献   

18.
The purpose of the study was to describe hemodynamic response and regional blood flows through various organs and tissues (microsphere technique) in dogs (n = 8), at rest and during mild (4 km/h, 13% slope; heart rate = 154 bpm), moderate (4 km/h, 26% slope; heart rate = 201 bpm), and severe (4 km/h, 39% slope; heart rate = 266 bpm) exercise on treadmill. Cardiac output (rest: 3.2 +/- 0.3; 39% slope: 10.2 +/- 1.3 l/min; mean +/- SE), systolic aortic pressure (rest: 122 +/- 4; 39% slope: 158 +/- 9 mm Hg), and left atrial pressure (rest: 5 +/- 0.7; 39% slope: 11.0 +/- 0.6 mm Hg) increased linearly with workload. On the contrary stroke volume increased from rest (35 +/- 2 ml) to mild (38 +/- 2 ml) and moderate (42 +/- 3 ml) exercise but decreased in response to the severe workload (38 +/- 5 ml). Regional blood flows across the brain, femoral bone, adrenal glands and temporalis muscle were not modified during exercise. On the contrary, a marked increase in regional blood flow was observed through the flexor and extensor muscles of the limb (X 5 to X 15), the muscles of the back (X 4) and the diaphragm (X 2.5). The small inconsistent increase in nutritional tongue blood flow probably underestimated the increased perfusion through arteriovenous shunts in the mucosa for heat-loss purposes. Myocardial blood flow increased in a linear fashion with work load in both ventricles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Six Hereford steers were studied before, during, and after short exercise bouts on a motor-driven treadmill (3 degrees incline) at four speeds (1.0, 1.4, 1.8, and 2.2 m X s-1). Oxygen consumption (MO2) and carbon dioxide production (MCO2) were measured by collecting the expired gas. Arterial and mixed venous blood samples were obtained simultaneously from indwelling catheters in the aorta and pulmonary artery. A 10-fold increase was observed in MO2 and MCO2 at the highest work load. Minute ventilation increased proportionately less than MO2 and MCO2 with increasing work loads, but alveolar ventilation was found to increase in proportion to both MO2 and MCO2. The highest work load produced a threefold increase in cardiac output primarily as a result of increased heart rate. A 10-fold increase in lactate and a 63% increase in serum potassium concentration were observed at the highest work load. Plasma cortisol levels were highest at 10 min postexercise and reached levels of seven times the resting values following exercise at the highest speed. The responses to exercise in the calf are qualitatively similar to those observed in other species, but quantitative differences exist in some cardiovascular and metabolic responses which may limit this animal's ability to perform strenuous exercise.  相似文献   

20.
In the continuous systems, such as continuous beer fermentation, immobilized cells are kept inside the bioreactor for long periods of time. Thus an important factor in the design and performance of the immobilized yeast reactor is immobilized cell viability and physiology. Both the decreasing specific glucose consumption rate (q(im)) and intracellular redox potential of the cells immobilized to spent grains during continuous cultivation in bubble-column reactor implied alterations in cell physiology. It was hypothesized that the changes of the physiological state of the immobilized brewing yeast were due to the aging process to which the immobilized yeast are exposed in the continuous reactor. The amount of an actively growing fraction (X(im)act) of the total immobilized biomass (X(im)) was subsequently estimated at approximately X(im)act = 0.12 g(IB) g(C)(-1) (IB = dry immobilized biomass, C = dry carrier). A mathematical model of the immobilized yeast biofilm growth on the surface of spent grain particles based on cell deposition (cell-to-carrier adhesion and cell-to-cell attachment), immobilized cell growth, and immobilized biomass detachment (cell outgrowth, biofilm abrasion) was formulated. The concept of the active fraction of immobilized biomass (X(im)act) and the maximum attainable biomass load (X(im)max) was included into the model. Since the average biofilm thickness was estimated at ca. 10 microm, the limitation of the diffusion of substrates inside the yeast biofilm could be neglected. The model successfully predicted the dynamics of the immobilized cell growth, maximum biomass load, free cell growth, and glucose consumption under constant hydrodynamic conditions in a bubble-column reactor. Good agreement between model simulations and experimental data was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号