首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.  相似文献   

2.
3.
杨磊  张春明  王德芝 《生物磁学》2009,(13):2590-2593
体外展示技术包括核糖体展示技术、mRNA展示技术、DNA展示技术,是在无细胞蛋白质表达体系内将基因型和表型通过一定的方法连接在一起,体外高通量的筛选多肽和蛋白质的技术。抗体的产生是一个不断选择的过程,利用体外展示技术在体外选择针对某一抗原的抗体分子,并结合基因工程技术对抗体进行改造,以产生高亲和力、高特异性的抗体。体外展示技术的研究和应用已越来越广泛,有望成为下一代的抗体制备技术。  相似文献   

4.
Ribosome display: cell-free protein display technology.   总被引:4,自引:0,他引:4  
Ribosome display is a cell-free system for the in vitro selection of proteins and peptides from large libraries. It uses the principle of coupling individual nascent proteins (phenotypes) to their corresponding mRNA (genotypes), through the formation of stable protein-ribosome-mRNA (PRM) complexes. This permits the simultaneous isolation of a functional nascent protein, through affinity for a ligand, together with the encoding mRNA, which is then converted and amplified as DNA for further manipulation, including repeated cycles or protein expression. Ribosome display has a number of advantages over cell-based systems such as phage display; in particular, it can display very large libraries without the restriction of bacterial transformation. It is also suitable for generating toxic, proteolytically sensitive and unstable proteins, and allows the incorporation of modified amino acids at defined positions. In combination with polymerase chain reaction (PCR)-based methods, mutations can be introduced efficiently into the selected DNA pool in subsequent cycles, leading to continuous DNA diversification and protein selection (in vitro protein evolution). Both prokaryotic and eukaryotic ribosome display systems have been developed and each has its own distinctive features. In this paper, ribosome display systems and their application in selection and evolution of proteins are reviewed.  相似文献   

5.
DARTs: A DNA-based in vitro polypeptide display technology   总被引:1,自引:0,他引:1  
Display technologies link proteins with the genes that encode them, providing a means of selecting proteins with desired properties through the process of directed evolution. Here, we describe DNA/protein attachment and recovery tools (DARTs), a novel polypeptide display technology that utilizes the Agrobacterium tumefaciens protein VirD2 to generate DNA-protein hybrid molecules. The resulting DNA-protein hybrids are small, robust, and are not expected to be subject to the synthesis and selection biases associated with viral- and cell-based display systems. We demonstrated that these DNA-protein hybrids could be used to display a variety of peptides that bind to appropriate antibodies for immunodetection and immunopurification. Further, the DNA components of the hybrid molecules can hybridize to complementary DNA molecules in solution or on a solid substrate. Because full-length VirD2 self-associated, we constructed a truncation that did not self-associate but still exhibited DNA linking activity and efficiently displayed peptides. Finally, we purified DNA-protein hybrids using their displayed peptide epitopes and amplified their DNA components by polymerase chain reaction. We suggest that the DART polypeptide display system will be valuable for performing directed evolution and generating protein arrays.  相似文献   

6.
分子文库展示技术   总被引:1,自引:0,他引:1  
分子文库展示技术是一系列广泛应用于多肽、蛋白质及药物筛选和研究蛋白质间相互作用的有效的生物学技术。它将组合成的具有一定长度的随机序列寡核苷酸片段(或cDNA)克隆到特定表达载体中,使其表达产物(多肽片段或蛋白质结构域)以融合蛋白的形式展示在活的噬菌体或细胞表面。根据其蛋白质表达是否依赖于宿主表达系统,分为体内表达展示系统和无细胞展示系统(体外表达展示系统)。就其展示的部位不同又可分为噬菌体展示技术、细胞表面展示技术、核糖体展示技术、mRNA展示技术等。现对各种展示技术的基本原理及相关应用做简要综述。  相似文献   

7.
Applications of display technology in protein analysis   总被引:9,自引:0,他引:9  
Li M 《Nature biotechnology》2000,18(12):1251-1256
Display technology refers to a collection of methods for creating libraries of modularly coded biomolecules that can be screened for desired properties. It has become a routine tool for enriching molecular diversity and producing novel types of proteins. The combination of an ever-increasing variety of libraries of modularly coded protein complexxes with the development of innovative approaches to select a wide array of desired properties has facilitated large-scale analyses of protein-protein/protein-substrate interactions, rapid isolation of antibodies (or antibody mimetics) without immunization, and function-based protein analysis. Several practical and theoretical challenges remain to be addressed before display technology can be readily applied to proteomic studies.  相似文献   

8.
9.
The display of repertoires of antibody fragments on the surface of filamentous bacteriophage offers a new way of making antibodies with predefined binding specificities. Here we explored the use of this technology to make immunochemical reagents to a range of antigens by selection from a repertoire of > 10(8) clones made in vitro from human V gene segments. From the same 'single pot' repertoire, phage were isolated with binding activities to each of 18 antigens, including the intracellular proteins p53, elongation factor EF-1 alpha, immunoglobulin binding protein, rhombotin-2 oncogene protein and sex determining region Y protein. Both phage and scFv fragments secreted from infected bacteria were used as monoclonal and polyclonal reagents in Western blots. Furthermore the monoclonal reagents were used for epitope mapping (a new epitope of p53 was identified) and for staining of cells. This shows that antibody reagents for research can be readily derived from 'single pot' phage display libraries.  相似文献   

10.
A new generation of protein display scaffolds for molecular recognition   总被引:1,自引:0,他引:1  
Engineered antibodies and their fragments are invaluable tools for a vast range of biotechnological and pharmaceutical applications. However, they are facing increasing competition from a new generation of protein display scaffolds, specifically selected for binding virtually any target. Some of them have already entered clinical trials. Most of these nonimmunoglobulin proteins are involved in natural binding events and have amazingly diverse origins, frameworks, and functions, including even intrinsic enzyme activity. In many respects, they are superior over antibody-derived affinity molecules and offer an ever-extending arsenal of tools for, e.g., affinity purification, protein microarray technology, bioimaging, enzyme inhibition, and potential drug delivery. As excellent supporting frameworks for the presentation of polypeptide libraries, they can be subjected to powerful in vitro or in vivo selection and evolution strategies, enabling the isolation of high-affinity binding reagents. This article reviews the generation of these novel binding reagents, describing validated and advanced alternative scaffolds as well as the most recent nonimmunoglobulin libraries. Characteristics of these protein scaffolds in terms of structural stability, tolerance to multiple substitutions, ease of expression, and subsequent applications as specific targeting molecules are discussed. Furthermore, this review shows the close linkage between these novel protein tools and the constantly developing display, selection, and evolution strategies using phage display, ribosome display, mRNA display, cell surface display, or IVC (in vitro compartmentalization). Here, we predict the important role of these novel binding reagents as a toolkit for biotechnological and biomedical applications.  相似文献   

11.
12.
13.
In vitro antibody-display technologies are powerful approaches for isolating monoclonal antibodies from recombinant antibody libraries. However, these display techniques require several rounds of affinity selection which is time-consuming. Here, we combined mRNA display with a microfluidic system for in vitro selection and evolution of antibodies and achieved ultrahigh enrichment efficiency of 106- to 108-fold per round. After only one or two rounds of selection, antibodies with high affinity and specificity were obtained from naïve and randomized single-chain Fv libraries of ~1012 molecules. Furthermore, we confirmed that not only protein–protein (antigen–antibody) interactions, but also protein–DNA and protein–drug interactions were selected with ultrahigh efficiencies. This method will facilitate high-throughput preparation of antibodies and identification of protein interactions in proteomic and therapeutic fields.  相似文献   

14.
Biotechnological applications of phage and cell display   总被引:20,自引:0,他引:20  
In recent years, the use of surface-display vectors for displaying polypeptides on the surface of bacteriophage and bacteria, combined with in vitro selection technologies, has transformed the way in which we generate and manipulate ligands, such as enzymes, antibodies and peptides. Phage display is based on expressing recombinant proteins or peptides fused to a phage coat protein. Bacterial display is based on expressing recombinant proteins fused to sorting signals that direct their incorporation on the cell surface. In both systems, the genetic information encoding for the displayed molecule is physically linked to its product via the displaying particle. Using these two complementary technologies, we are now able to design repertoires of ligands from scratch and use the power of affinity selection to select those ligands having the desired (biological) properties from a large excess of irrelevant ones. With phage display, tailor-made proteins (fused peptides, antibodies, enzymes, DNA-binding proteins) may be synthesized and selected to acquire the desired catalytic properties or affinity of binding and specificity for in vitro and in vivo diagnosis, for immunotherapy of human disease or for biocatalysis. Bacterial surface display has found a range of applications in the expression of various antigenic determinants, heterologous enzymes, single-chain antibodies, and combinatorial peptide libraries. This review explains the basis of phage and bacterial surface display and discusses the contributions made by these two leading technologies to biotechnological applications. This review focuses mainly on three areas where phage and cell display have had the greatest impact, namely, antibody engineering, enzyme technology and vaccine development.  相似文献   

15.
In vitro display technologies, such as mRNA display and DNA display are powerful tools to screen peptides and proteins with desired functions from combinatorial libraries in the fields of directed protein evolution and proteomics. When screening combinatorial libraries of polypeptides (phenotype), each of which is displayed on its gene (genotype), the problem remains, how best to recover the genotype moiety whose phenotype moiety has bound to the desired target. Here, we describe the use of a photocleavable 2-nitrobenzyl linker between genotype (DNA or mRNA) and phenotype (protein) in our DNA and mRNA display systems. This technique allows rapid and efficient recovery of selected nucleic acids by simple UV irradiation at 4 degrees C for 15 min. Further, we confirmed that the photocleavable DNA display and mRNA display systems are useful for in vitro selection of epitope peptides, recombinant antibodies, and drug-receptor interactions. Thus, these improved methods should be useful in therapeutics and diagnostics, e.g., for screening high-affinity binders, such as enzyme inhibitors and recombinant antibodies from random peptide and antibody libraries, as well as for screening drug-protein interactions from cDNA libraries.  相似文献   

16.
17.
Since its first application to antibody engineering 15years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.  相似文献   

18.
Therapeutic antibodies have become a major driving force for the biopharmaceutical industry; therefore, the discovery and development of safe and efficacious antibody leads have become competitive processes. Phage and ribosome display are ideal tools for the generation of such molecules and have already delivered an approved drug as well as a multitude of clinical candidates. Because they are capable of searching billions of antibody variants in tailored combinatorial libraries, they are particularly applicable to potency optimisation. In conjunction with targeted, random or semi-rational mutagenesis strategies, they deliver large panels of potent antibody leads. This review introduces the two technologies, compares them with respect to their use in antibody optimisation and highlights how they can be exploited for the successful and efficient generation of putative drug candidates.  相似文献   

19.
Detection of antibodies in serum has many important applications. Our goal was to develop a facile general experimental approach for identifying antibody-specific peptide ligands that could be used as the reagents for antibody detection. Our emphasis was on an approach that would allow identification of peptide ligands for antibodies in serum without the need to isolate the target antibody or to know the identity of its antigen. We combined ribosome display (RD) with the analysis of peptide libraries by next generation sequencing (NGS) of their coding RNA to facilitate identification of antibody-specific peptide ligands from random sequence peptide library. We first demonstrated, using purified antibodies, that with our approach-specific peptide ligands for antibodies with simple linear epitopes, as well as peptide mimotopes for antibodies recognizing complex epitopes, were readily identified. Inclusion of NGS analysis reduced the number of RD selection rounds that were required to identify specific ligands and facilitated discrimination between specific and spurious nonspecific sequences. We then used a model of human serum spiked with a known target antibody to develop NGS-based analysis that allowed identification of specific ligands for a target antibody in the context of an overwhelming amount of unrelated immunoglobins present in serum.  相似文献   

20.
In vitro display technologies, best exemplified by phage and yeast display, were first described for the selection of antibodies some 20 years ago. Since then, many antibodies have been selected and improved upon using these methods. Although it is not widely recognized, many of the antibodies derived using in vitro display methods have properties that would be extremely difficult, if not impossible, to obtain by immunizing animals. The first antibodies derived using in vitro display methods are now in the clinic, with many more waiting in the wings. Unlike immunization, in vitro display permits the use of defined selection conditions and provides immediate availability of the sequence encoding the antibody. The amenability of in vitro display to high-throughput applications broadens the prospects for their wider use in basic and applied research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号