首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Congenital disorders of glycosylation (CDGs) are caused by defects in genes that participate in biosynthetic glycosylation pathways. To date, 19 different genetic defects in N-glycosylation, 17 in O-glycosylation, and 21 in multiple glycosylation are known. Current diagnostic testing of CDGs largely relies on indirect analysis of glycosylation of serum transferrin. Such analysis alone is insufficient to diagnose many of the known glycosylation disorders. To improve the diagnosis of these groups of CDGs, we have developed serum or plasma N- and O-glycan profiling using a combination of MALDI–TOF/MS and LC–MS/MS technologies. Using this approach, we analyzed samples from nine patients with different known multiple glycosylation disorders, including three with COG deficiencies, one with TMEM165-CDG, two with PGM1-CDG, and three with SLC35A2-CDG, and one patient with combined type I and type II of unknown molecular etiology. Measurement of the relative quantities of various N- and O-glycan species clearly differentiates patients and controls. Our study demonstrates that structural analysis and quantitation of combined N- and O-glycan profiles are reliable diagnostic tools for CDGs.  相似文献   

2.
3.
Conditions under which the glycosylation capacity of cells is limited provide an opportunity for studying the efficiency of site-specific glycosylation and the role of glycosylation in the maturation of glycoproteins. Congenital disorders of glycosylation type 1 (CDG-I) provide such a system. CDG-I is characterized by underglycosylation of glycoproteins due to defects in the assembly or transfer of the common dolichol-pyrophosphate-linked oligosaccharide precursor of asparagine-linked glycans. Human plasma alpha1-antitrypsin is normally fully glycosylated at three asparagine residues (46, 83, and 247), but un-, mono-, di-, and fully glycosylated forms of alpha1-antitrypsin were detected by 2D PAGE in the plasma from patients with CDG-I. The state of glycosylation of the three asparagine residues was analyzed in all the underglycosylated forms of alpha1-antitrypsin by peptide mass fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. It was found that asparagine 46 was always glycosylated and that asparagine 83 was never glycosylated in the underglycosylated glycoforms of alpha1-antitrypsin. This showed that the asparagine residues are preferentially glycosylated in the order 46>247>83 in the mature underglycosylated forms of alpha1-antitrypsin found in plasma. It is concluded that the nonoccupancy of glycosylation sites is not random under conditions of decreased glycosylation capacity and that the efficiency of glycosylation site occupancy depends on structural features at each site. The implications of this observation for the intracellular transport and sorting of glycoproteins are discussed.  相似文献   

4.
Congenital disorder of glycosylation (CDG), formerly representing a group of diseases due to defects in the biosynthetic pathway of protein N-glycosylation, currently covers a wide range of disorders affecting glycoconjugates. Since its first application to serum transferrin from a CDG patient with phosphomannomutase-2 deficiency in 1992, mass spectrometry (MS) has been playing a key role in identification and characterization of glycosylation defects affecting glycoproteins. MS of native transferrin detects a lack of glycans characteristic to the classical CDG-I type of molecular abnormality. Electrospray ionization MS of native transferrin, especially, allows glycoforms to be analyzed precisely but requires basic knowledge regarding deconvolution of multiply-charged ions which may generate ghost signals upon transformation into a singly-charged form. MS of glycopeptides from tryptic digestion of transferrin delineates site-specific glycoforms and reveals a delicate balance of donor/acceptor substrates or the conformational effect of nascent proteins in cells. Matrix-assisted laser desorption ionization MS of apolipoprotein C-III is a simple method of elucidating the profiles of mucin-type core 1 O-glycans including site occupancy and glycoforms. In this technological review, the principle and pitfalls of MS for CDG are discussed and mass spectra of various types of CDG are presented.  相似文献   

5.
6.
Congenital Disorders of Glycosylation (CDG) are an expanding and complex group of rare genetic disorders caused by defects in the glycosylation of proteins and lipids. The genetic spectrum of CDG is extremely broad with mutations in over 140 genes leading to a wide variety of symptoms ranging from mild to severe and life-threatening. There has been an expansion in the genetic complexity of CDG in recent years. More specifically several examples of alternate phenotypes in recessive forms of CDG and new types of CDG following an autosomal dominant inheritance pattern have been identified. In addition, novel genetic mechanisms such as expansion repeats have been reported and several already known disorders have been classified as CDG as their pathophysiology was better elucidated. Furthermore, we consider the future and outlook of CDG genetics, with a focus on exploration of the non-coding genome using whole genome sequencing, RNA-seq and multi-omics technology.  相似文献   

7.
8.
Update and perspectives on congenital disorders of glycosylation.   总被引:8,自引:0,他引:8  
H H Freeze 《Glycobiology》2001,11(12):129R-143R
Defects in nine genes of the N-linked glycosylation pathway cause congenital disorders of glycosylation (CDGs) and serious medical consequences. Although glycobiology is seldom featured in a general medical education, an increasing number of physicians are becoming acquainted with the field because it directly impacts patient diagnosis and care. Medical practice and attitudes will change in the postgenomic era, and glycobiology has an opportunity to be a cornerstone of part of that new perspective. This review of recent developments in the CDG field describes the biochemical and molecular basis of these disorders, describes successful experimental approaches, and points out a few perspectives on current problems. The broad, multisystemic presentations of these patients emphasize that glycobiology is very much a general medical science, cutting across many traditional medical specialties. The glycobiology community is well poised to provide novel perspectives for the dedicated clinicians treating both well-known and emerging human diseases.  相似文献   

9.
Congenital disorders of glycosylation (CDG) constitute a group of diseases affecting N-linked glycosylation pathways. The classical type of CDG, now called CDG-I, results from deficiencies in the early glycosylation pathway for biosynthesis of lipid-linked oligosaccharide and its transfer to proteins in endoplasmic reticulum, while the CDG-II diseases are caused by defects in the subsequent processing steps. Mass spectrometry (MS) produced a milestone in CDG research, by localizing the CDG-I defect to the early glycosylation pathway in 1992. Currently, MS of transferrin, either by electrospray ionization or matrix-assisted laser desorption/ionization, plays the central role in laboratory screening of CDG-I. On the other hand, the glycopeptide analysis recently developed for site-specific glycans of glycoproteins allows detailed glycan analysis in a high throughput manner and will solve problems in CDG-II diagnosis. These techniques will facilitate studying CDG, a field now expanding to O-linked glycosylation and to acquired as well as inherited conditions that can affect protein glycosylation.  相似文献   

10.
Congenital disorders of glycosylation (CDG) are inherited autosomal-recessive diseases that impair N-glycosylation. Approximately 20% of patients do not survive beyond the age of 5 years old as a result of widespread organ dysfunction. Although most patients receive a CDG diagnosis based on abnormal glycosylation of transferrin, this test cannot provide a genetic diagnosis; indeed, many patients with abnormal transferrin do not have mutations in any known CDG genes. Here, we combined biochemical analysis with whole-exome sequencing (WES) to identify the genetic defect in an untyped CDG patient, and we found a 22 bp deletion and a missense mutation in DDOST, whose product is a component of the oligosaccharyltransferase complex that transfers the glycan chain from a lipid carrier to nascent proteins in the endoplasmic reticulum lumen. Biochemical analysis with three biomarkers revealed that N-glycosylation was decreased in the patient's fibroblasts. Complementation with wild-type-DDOST cDNA in patient fibroblasts restored glycosylation, indicating that the mutations were pathological. Our results highlight the power of combining WES and biochemical studies, including a glyco-complementation system, for identifying and confirming the defective gene in an untyped CDG patient. This approach will be very useful for uncovering other types of CDG as well.  相似文献   

11.
One of the biochemical characteristics of carbohydrate deficient glycoprotein syndromes is the presence of abnormal glycoforms in serum transferrin. Both glycoform heterogeneity and variable site occupancy may, in principle, lead to the generation of a range of glycoforms which contain different numbers of sialic acid residues, and therefore variable amounts of negative charge. Capillary zone electrophoresis was used to resolve the glycoforms of normal human serum transferrin and also of a set of glycoforms which were prepared by digesting the sugars on the intact glycoprotein with sialidase. The sugars on the intact glycoprotein were also modified by a series of exoglycosidase enzymes to produce a series of neutral glycoforms which were also analysed by capillary zone electrophoresis. The oligosaccharide population of human serum transferrin was analysed by a series of mixed exoglycosidase digests on the released glycan pool and quantified using a novel HPLC strategy. Transferrin was isolated from carbohydrate deficient glycoprotein syndromes type I serum and both the intact glycoforms and released sugars were resolved and quantified. The data presented here confirm the presence of a hexa-, penta- and tetra-sialoforms of human serum transferrin in both normal and carbohydrate deficient glycoprotein syndrome type I serum samples. Consistent with previous reports carbohydrate deficient glycoprotein syndrome type I transferrin also contained a di-sialoform, representing a glycoform in which one of the two N-glycosylation sites is unoccupied, and a non-glycosylated form where both remain unoccupied. This study demonstrates that capillary zone electrophoresis can be used to resolve quantitatively both sialylated and neutral complex type glycoforms, suggesting a rapid diagnostic test for the carbohydrate deficient glycoprotein syndromes group of diseases.Abbreviations CDGS Carbohydrate Deficient Glycoprotein Syndrome - CZE Capillary Zone Electrophoresis - hTf human transferrin - gu HPLC glucose units - EOF electroosmotic flow. Nomenclature: for describing oligosaccharide structures: A(1,2,3,4) indicates the number of antennae linked to the t trimannosyl core - G(0–4) indicates the number of terminal galactose residues in the structure - F core fucose - B bisecting N-acetyl glucosamine (GlcNAc) - S sialic acid - Gal galactose; M - Man mannose  相似文献   

12.
Antibodies may be viewed as adaptor molecules that provide a link between humoral and cellular defence mechanisms. Thus, when antigen-specific IgG antibodies form antigen/antibody immune complexes the effectively aggregated IgG can activate a wide range of effector systems. Multiple effector mechanisms result from cellular activation mediated through a family of IgG-Fc receptors differentially expressed on leucocytes. It is established that glycosylation of IgG-Fc is essential for recognition and activation of these ligands. IgG antibodies predominate in human serum and most therapeutic antibodies are of the IgG class.The IgG-Fc is a homodimer of N-linked glycopeptide chains comprised of two immunoglobulin domains (Cgamma2, Cgamma3) that dimerise via inter-heavy chain disulphide bridges at the N-terminal region and non-covalent interactions between the C-terminal Cgamma3 domains. The overall shape of the IgG-Fc is similar to that of a "horseshoe" with a majority of the internal space filled by the oligosaccharide chains, only attached through asparagine residues 297.To investigate the influence of individual sugar (monosaccharide) residues of the oligosaccharide on the structure and function of IgG-Fc we have compared the structure of "wild-type" glycosylated IgG1-Fc with that of four glycoforms bearing consecutively truncated oligosaccharides. Removal of terminal N-acetylglucosamine as well as mannose sugar residues resulted in the largest conformational changes in both the oligosaccharide and in the polypeptide loop containing the N-glycosylation site. The observed conformational changes in the Cgamma2 domain affect the interface between IgG-Fc fragments and FcgammaRs. Furthermore, we observed that the removal of sugar residues permits the mutual approach of Cgamma2 domains resulting in the generation of a "closed" conformation; in contrast to the "open" conformation which was observed for the fully galactosylated IgG-Fc, which may be optimal for FcgammaR binding. These data provide a structural rationale for the previously observed modulation of effector activities reported for this series of proteins.  相似文献   

13.
Defects in the biosynthesis of N- and core 1 O-glycans may be found by isoelectric focusing (IEF) of plasma transferrin and apolipoprotein C-III (apoC-III). We hypothesized that IEF of transferrin and apoC-III in combination with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of apoC-III may provide a classification for congenital disorders of glycosylation (CDG) patients. We analyzed plasma from 22 patients with eight different and well-characterized CDG subtypes and 19 cases with unsolved CDG. Transferrin IEF (TIEF) has been used to distinguish between N-glycan assembly (type 1 profile) and processing (type 2 profile) defects. We differentiated two different CDG type 2 TIEF profiles: The "asialo profile" characterized by elevated levels of asialo- and monosialotransferrin and the "disialo profile" characterized by increased levels of disialo- and trisialotransferrin. ApoC-III IEF gave two abnormal profiles ("apoC-III(0)" and "apoC-III(1)" profiles). The results for the eight established CDG forms exactly matched the theoretical expectations, providing a validation for the study approach. The combination of the three electrophoretic techniques was not additionally informative for the CDG-Ix patients as they had normal apoC-III IEF patterns. However, the CDG-IIx patients could be further subdivided into six biochemical subgroups. The robustness of the methodology was supported by the fact that three patients with similar clinical features ended in the same subgroup and that another patient, classified in the "CDG-IIe subgroup," turned out to have a similar defect. Dividing the CDG-IIx patients in six subgroups narrows down drastically the options of the primary defect in each of the subgroups and will be helpful to define new CDG type II defects.  相似文献   

14.
Carbohydrate Deficient Glycoprotein Syndrome (CDGS) is an inherited metabolic disease affecting all parts of the body. The biochemical diagnosis of this syndrome is based on the presence of a special marker in blood, Carbohydrate Deficient Transferrin (CDT), which is also a marker of chronic alcohol abuse. CDT is characterized by abnormal glycoforms of serum transferrin (Tf). In the present study, electrophoretic separation of human serum transferrin glycoforms was carried out using a bare fused-silica capillary and the glycoforms present in commercial Tf were baseline separated. The limit of detection (LOD) of human Tf was around the nmol concentration range. The LOD of the trisialo- and disialo-Tf, expressed as percentages of the tetrasialo-Tf peak area, were 0.5% for trisialo-Tf and 0.4% for disialo-Tf, and these values were appropriate for CDGS diagnosis. Moreover, Tf glycoforms were characterized using mass spectrometry (MS). The method was applied to the analysis of normal and pathological serum samples, after dilution. The results obtained suggest a way of making a rapid and simple CDGS diagnosis.  相似文献   

15.
A method for the diagnosis of the congenital disorders of glycosylation type I (CDG-I) by SELDI-TOF-MS of serum transferrin immunocaptured on protein chip arrays is described. The underglycosylation of glycoproteins in CDG-I produces glycoforms of transferrin with masses lower than that of the normal fully glycosylated transferrin. Immobilisation of antitransferrin antibodies on reactive-surface protein chip arrays (RS100) selectively enriched transferrin by at least 100-fold and allowed the detection of patterns of transferrin glycoforms by SELDI-TOF-MS using approximately 0.3 microL of serum/plasma. Abnormal patterns of immunocaptured transferrin were detected in patients with known defects in glycosylation (CDG-Ia, CDG-Ib, CDG-Ic, CDG-If and CDG-Ih) and in patients in whom the basic defect has not yet been identified (CDG-Ix). The correction of the N-glycosylation defect in a patient with CDG-Ib after mannose therapy was readily detected. A patient who had an abnormal transferrin profile by IEF but a normal profile by SELDI-TOF-MS analysis was shown to have an amino acid polymorphism by sequencing transferrin by quadrupole-TOF MS. Complete agreement was obtained between analysis of immunocaptured transferrin by SELDI-TOF-MS and the IEF profile of transferrin, the clinical severity of the disease and the levels of aspartylglucosaminidase activity (a surrogate marker for the diagnosis of CDG-I). SELDI-TOF-MS of transferrin immunocaptured on protein chip arrays is a highly sensitive diagnostic method for CDG-I, which could be fully automated using microtitre plates and robotics.  相似文献   

16.
Abnormal protein glycosylation is observed in many common disorders like cancer, inflammation, Alzheimer’s disease and diabetes. However, the actual use of this information in clinical diagnostics is still very limited. Information is usually derived from analysis of total serum N-glycan profiling methods, whereas the current use of glycoprotein biomarkers in the clinical setting is commonly based on protein levels. It can be envisioned that combining protein levels and their glycan isoforms would increase specificity for early diagnosis and therapy monitoring. To establish diagnostic assays, based on the mass spectrometric analysis of protein-specific glycosylation abnormalities, still many technical improvements have to be made. In addition, clinical validation is equally important as well as an understanding of the genetic and environmental factors that determine the protein-specific glycosylation abnormalities. Important lessons can be learned from the group of monogenic disorders in the glycosylation pathway, the Congenital Disorders of Glycosylation (CDG). Now that more and more genetic defects are being unraveled, we start to learn how genetic factors influence glycomics profiles of individual and total serum proteins. Although only in its initial stages, such studies suggest the importance to establish diagnostic assays for protein-specific glycosylation profiling, and the need to look beyond the single glycoprotein diagnostic test. Here, we review progress in and lessons from genetic disease, and review the increasing opportunities of mass spectrometry to analyze protein glycosylation in the clinical diagnostic setting. Furthermore, we will discuss the possibilities to expand current CDG diagnostics and how this can be used to approach glycoprotein biomarkers for more common diseases.  相似文献   

17.
Growth-associated alterations in the oligosaccharide structures of transferrin secreted by HepG2 cells were examined by concanavalin A-crossed affinoimmuno-electrophoresis. Slowly dividing, confluent cultures produced transferrin with a approximately 4.5-fold greater proportion of biantennary complex-type oligosaccharides than rapidly dividing, subconfluent cultures. The activity of N-acetylglucosaminyltransferase V (GlcNAc-T V) and galactosyltransferase were measured in cell extracts from subconfluent and confluent cultures. While the activity of galactosyltransferase remained relatively constant, the activity of GlcNAc-T V was approximately 3.2-fold lower in confluent cultures than in subconfluent cultures. These results suggest that the growth-associated alteration in the oligosaccharides of transferrin is due, at least in part, to the regulation of GlcNAc-T V activity.  相似文献   

18.
Congenital disorders of glycosylation (CDG) are a group of diseases that affect glycoprotein biogenesis. Eighteen different types of CDG have been defined genetically. They result from deficiencies in either the biosynthesis of oligosaccharide precursors or specific steps of N-glycan assembly, resulting in the absence or structural alteration of N-glycan chains. These diseases have a broad range of clinical phenotypes and affect nearly every organ system, with special emphasis on normal brain development and the multiple functions of the nervous, hepatic, gastrointestinal and immune systems. Although most of the deficiencies observed in CDG patients are only partial, the severity of the clinical manifestations signifies the relevance of protein N-glycosylation and shows the importance of defined glycan structures.  相似文献   

19.
Heterogeneous glycosylation of murine transferrin receptor subunits   总被引:1,自引:0,他引:1  
The N-linked glycosylation of the murine receptor for transferrin has been investigated. Previously we have found that purified receptors appear as two bands after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and Coomassie blue staining [van Driel, I.R., Stearne, P.A., Grego, B., Simpson, R.J. and Goding, J.W. (1984) J. Immunol. 133, 3220-3224]. In the current report we show that the two bands are due to different glycosylation of individual receptor molecules. The receptors have three asparagines to which N-linked glycans can be added, but only two sites are glycosylated in all receptors. The level of glycosylation of the third site varies depending on cell line or tissue. Limited endoglycosidase digestion of mature receptors indicates that differential glycosylation probably occurs at only one particular asparagine residue. Possible mechanisms that could result in such a glycosylation pattern are discussed.  相似文献   

20.
Valmu L  Kalkkinen N  Husa A  Rye PD 《Biochemistry》2005,44(49):16007-16013
Transferrin exhibits heterogeneity in glycosylation characteristic of pathological changes in alcohol abuse and congenital disorders in glycosylation. This study investigated an alternative approach in the detection of carbohydrate-deficient transferrin based on the premise that glycosylation may afford some degree of protection to proteolytic action. Differential susceptibility to proteolysis by chymotrypsin was demonstrated for normal glycosylated and nonglycosylated recombinant human transferrin, using reverse-phase (RP) HPLC, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and LC-tandem mass spectrometry (MS/MS). Peptide fragmentation profiles were consistent with a predominantly high-specificity cleavage pattern of chymotrypsin. The observed peptide fragmentation profile showed that the C-lobe of recombinant full-length nonglycosylated transferrin (rhTf-NG) appeared to be preferentially cleaved, while cleavage of the N-lobe was restricted to the N-terminal and link sequence regions. Although chymotryptic cleavage sites abound in the N-lobe, their resistance to cleavage was independent of glycosylation. Compared to previous studies of lactoferrin, our data suggest disparity in the role by which glycosylation exerts a protective effect in the siderophilin family. It was clear from the transferrin digestions analyzed by HPLC that N-linked glycosylation did confer protection from proteolysis by chymotrypsin. After fragmentation, a range of peptides representing previously cryptic epitopes were identified as potential candidates for an immunological approach to differentiate between the different transferrin glycoforms. Based on its proximity to the Asn413 glycosylation site, a 15-mer peptide, m/z 1690.472 (NKSDNCEDTPEAGYF), was identified as a suitable candidate for raising anti-peptide antibodies for subsequent immunological detection. This novel approach could form the basis for an alternative assay or reference method for the detection of carbohydrate-deficient transferrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号