首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Blue-light-receptor cryptochrome (CRY), which mediates cotyledon expansion, increased accumulation of anthocyanin, and inhibition of hypocotyl elongation, was first identified in Arabidopsis. Two Arabidopsis cryptochromes (AtCRY1 and AtCRY2) have been reported to be localized to the nucleus. However, there is no information on the cryptochromes in monocotyledons. In this study, we isolated two cryptochrome cDNAs, OsCRY1 and OsCRY2, from rice (Oryza sativa) plants. The deduced amino acid sequences of OsCRY1 and OsCRY2 have a photolyase-like domain in their N termini and are homologous to AtCRY1. To investigate the function of OsCRY1, we overexpressed a green fluorescence protein-OsCRY1 fusion gene in Arabidopsis and assessed the phenotypes of the resulting transgenic plants. When the seedlings were germinated in the dark, no discernible effect was observed. However, light-germinated seedlings showed pronounced inhibition of hypocotyl elongation and increased accumulation of anthocyanin. These phenotypes were induced in a blue-light-dependent manner, indicating that OsCRY1 functions as a blue-light-receptor cryptochrome. We also examined the intracellular localization of green fluorescence protein-OsCRY1 in the transgenic plants. It was localized to both the nucleus and the cytoplasm. We identified two nuclear localization domains in the primary structure of OsCRY1. We discuss the relationship between the function and intracellular localization of rice cryptochromes by using additional data obtained with OsCRY2.  相似文献   

3.
Dark-grown transgenic Arabidopsis seedlings expressing the C-terminal domains (CCT) of the cryptochrome (CRY) blue light photoreceptors exhibit features that are normally associated only with light-grown seedlings, indicating that the signaling mechanism of Arabidopsis CRY is mediated through CCT. The phenotypic properties mediated by CCT are remarkably similar to those of the constitutive photomorphogenic1 (cop1) mutants. Here we show that Arabidopsis cryptochrome 1 (CRY1) and its C-terminal domain (CCT1) interacted strongly with the COP1 protein. Coimmunoprecipitation studies showed that CRY1 was bound to COP1 in extracts from both dark- and light-grown Arabidopsis. An interaction also was observed between the C-terminal domain of Arabidopsis phytochrome B and COP1, suggesting that phytochrome signaling also proceeds, at least in part, through direct interaction with COP1. These findings give new insight into the initial step in light signaling in Arabidopsis, providing a molecular link between the blue light receptor, CRY1, and COP1, a negative regulator of photomorphogenesis.  相似文献   

4.
Sang Y  Li QH  Rubio V  Zhang YC  Mao J  Deng XW  Yang HQ 《The Plant cell》2005,17(5):1569-1584
Cryptochromes (CRY) are blue light receptors that share sequence similarity with photolyases, flavoproteins that catalyze the repair of UV light-damaged DNA. Transgenic Arabidopsis thaliana seedlings expressing the C-terminal domains of the Arabidopsis CRY fused to beta-glucuronidase (GUS) display a constitutive photomorphogenic (COP) phenotype, indicating that the signaling mechanism of Arabidopsis CRY is mediated through the C-terminal domain. The role of the Arabidopsis CRY N-terminal photolyase-like domain in CRY action remains poorly understood. Here, we report the essential role of the Arabidopsis CRY1 N-terminal domain (CNT1) in the light activation of CRY1 photoreceptor activity. Yeast two-hybrid assay, in vitro binding, in vivo chemical cross-linking, gel filtration, and coimmunoprecipitation studies indicate that CRY1 homodimerizes in a light-independent manner. Mutagenesis and transgenic studies demonstrate that CNT1-mediated dimerization is required for light activation of the C-terminal domain of CRY1 (CCT1). Transgenic data and native gel electrophoresis studies suggest that multimerization of GUS is both responsible and required for mediating a COP phenotype on fusion to CCT1. These results indicate that the properties of the GUS multimer are analogous to those of the light-modified CNT1 dimer. Irradiation with blue light modifies the properties of the CNT1 dimer, resulting in a change in CCT1, activating CCT1, and eventually triggering the CRY1 signaling pathway.  相似文献   

5.
6.
This paper reports the characterization of novel mutations within the Arabidopsis thaliana HY4 gene, which has previously been shown to encode a protein (CRY1) with characteristics of a blue-light photoreceptor. Several point mutations were identified within the amino-terminal domain of CRY1—this region of CRY1 has high homology to photolyase and is likely to be involved in blue-light-mediated electron transfer. Mutations were found within the region of homology to the known chromophore binding domains of photolyase. Point mutations within the 200 amino acid carboxy-terminal extension distinguishing CRY1 from photolyase, likewise disrupt function of the protein. CRY1 was originally defined as the photoreceptor responsible for blue-light-mediated inhibition of hypocotyl elongation and we now report that anthocyanin accumulation in germinating seedlings is an additional phenotype under the control of this photoreceptor—this is shown to be mediated in part by modulation of mRNA levels of chalcone synthase, one of the anthocyanin biosynthetic enzymes. The effect of the novel mutations on both inhibition of hypocotyl elongation and anthocyanin biosynthesis have been evaluated, and it is demonstrated that mutations with less severe effects on hypocotyl elongation show a similarly reduced effect on anthocyanin biosynthesis. These results are consistent with the cryptochrome photoreceptor mediating multiple regulatory pathways by the same primary mode of action.  相似文献   

7.
Yang HQ  Wu YJ  Tang RH  Liu D  Liu Y  Cashmore AR 《Cell》2000,103(5):815-827
Cryptochrome blue light photoreceptors share sequence similarity to photolyases, flavoproteins that mediate light-dependent DNA repair. However, cryptochromes lack photolyase activity and are characterized by distinguishing C-terminal domains. Here we show that the signaling mechanism of Arabidopsis cryptochrome is mediated through the C terminus. On fusion with beta-glucuronidase (GUS), both the Arabidopsis CRY1 C-terminal domain (CCT1) and the CRY2 C-terminal domain (CCT2) mediate a constitutive light response. This constitutive photomorphogenic (COP) phenotype was not observed for mutants of cct1 corresponding to previously described cry1 alleles. We propose that the C-terminal domain of Arabidopsis cryptochrome is maintained in an inactive state in the dark. Irradiation with blue light relieves this repression, presumably through an intra- or intermolecular redox reaction mediated through the flavin bound to the N-terminal photolyase-like domain.  相似文献   

8.
Cryptochromes are blue light photoreceptors that mediate various light responses in plants and mammals. In Arabidopsis (Arabidopsis thaliana), cryptochrome 1 (CRY1) mediates blue light-induced photomorphogenesis, which is characterized by reduced hypocotyl elongation and enhanced anthocyanin production, whereas gibberellin (GA) signaling mediated by the GA receptor GA-INSENSITIVE DWARF1 (GID1) and DELLA proteins promotes hypocotyl elongation and inhibits anthocyanin accumulation. Whether CRY1 control of photomorphogenesis involves regulation of GA signaling is largely unknown. Here, we show that CRY1 signaling involves the inhibition of GA signaling through repression of GA-induced degradation of DELLA proteins. CRY1 physically interacts with DELLA proteins in a blue light-dependent manner, leading to their dissociation from SLEEPY1 (SLY1) and the inhibition of their ubiquitination. Moreover, CRY1 interacts directly with GID1 in a blue light-dependent but GA-independent manner, leading to the inhibition of the interaction between GID1 with DELLA proteins. These findings suggest that CRY1 controls photomorphogenesis through inhibition of GA-induced degradation of DELLA proteins and GA signaling, which is mediated by CRY1 inhibition of the interactions of DELLA proteins with GID1 and SCFSLY1, respectively.

Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins inhibit gibberellin (GA)-induced degradation of DELLA proteins to regulate GA signaling and photomorphogenesis.  相似文献   

9.
Blue-light responses in higher plants are mediated by specific photoreceptors, which are thought to be flavoproteins; one such flavin-type blue-light receptor, CRY1 (for cryptochrome), which mediates inhibition of hypocotyl elongation and anthocyanin biosynthesis, has recently been characterized. Prompted by classical photobiological studies suggesting possible co-action of the red/far-red absorbing photoreceptor phytochrome with blue-light photoreceptors in certain plant species, the role of phytochrome in CRY1 action in Arabidopsis was investigated. The activity of the CRY1 photoreceptor can be substantially altered by manipulating the levels of active phytochrome (Pfr) with red or far-red light pulses subsequent to blue-light treatments. Furthermore, analysis of severely phytochrome-deficient mutants showed that CRY1-mediated blue-light responses were considerably reduced, even though Western blots confirmed that levels of CRY1 photoreceptor are unaffected in these phytochrome-deficient mutant backgrounds. It was concluded that CRY1-mediated inhibition of hypocotyl elongation and anthocyanin production requires active phytochrome for full expression, and that this requirement can be supplied by low levels of either phyA or phyB.  相似文献   

10.
11.
The action mechanisms of plant cryptochromes   总被引:1,自引:0,他引:1  
  相似文献   

12.
Zuo Z  Liu H  Liu B  Liu X  Lin C 《Current biology : CB》2011,21(10):841-847
Cryptochromes are blue light receptors that mediate light regulation of gene expression in all major evolution lineages, but the molecular mechanism underlying cryptochrome signal transduction remains not fully understood. It has been reported that cryptochromes suppress activity of the multifunctional E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) to regulate gene expression in response to blue light. But how plant cryptochromes mediate light suppression of COP1 activity remains unclear. We report here that Arabidopsis CRY2 (cryptochrome 2) undergoes blue light-dependent interaction with the COP1-interacting protein SUPPRESSOR OF PHYTOCHROME A 1 (SPA1). We demonstrate that SPA1 acts genetically downstream from CRY2 to mediate blue light suppression of the COP1-dependent proteolysis of the flowering-time regulator CONSTANS (CO). We further show that blue light-dependent CRY2-SPA1 interaction stimulates CRY2-COP1 interaction. These results reveal for the first time a wavelength-specific mechanism by which a cryptochrome photoreceptor mediates light regulation of protein degradation to modulate developmental timing in Arabidopsis.  相似文献   

13.
Since auxin was first isolated and characterized as a plant hormone, the underlying molecular mechanism of auxin signaling has been elucidated primarily in dicot plants represented by Arabidopsis. In monocot plants, the molecular mechanism of auxin signaling has remained unclear, despite various physiological experiments. To understand the function and mechanism of auxin signaling in rice ( Oryza sativa ), we focused on the IAA gene, a well-studied gene in Arabidopsis that serves as a negative regulator of auxin signaling. We found 24 IAA gene family members in the rice genome. OsIAA3 is one of these family members whose expression is rapidly increased in response to auxin. We produced transgenic rice harboring m OsIAA3 - GR , which can overproduce mutant OsIAA3 protein containing an amino acid change in domain II to cause a gain-of-function phenotype, by treatment with dexamethasone. The transgenic rice was insensitive to auxin and gravitropic stimuli, and exhibited short leaf blades, reduced crown root formation, and abnormal leaf formation. These results suggest that , in rice, auxin is important for development and its signaling is mediated by IAA genes.  相似文献   

14.
15.
Plants possess two cryptochrome photoreceptors, cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2), that mediate overlapping and distinct physiological responses. Both CRY1 and CRY2 undergo blue light-induced phosphorylation, but the molecular details of CRY1 phosphorylation remain unclear. Here we identify 19 in vivo phosphorylation sites in CRY1 using mass spectrometry and systematically analyze the physiological and photobiochemical activities of CRY1 variants with phosphosite substitutions. We demonstrate that nonphosphorylatable CRY1 variants have impaired phosphorylation, degradation, and physiological functions, whereas phosphomimetic variants mimic the physiological functions of phosphorylated CRY1 to constitutively inhibit hypocotyl elongation. We further demonstrate that phosphomimetic CRY1 variants exhibit enhanced interaction with the E3 ubiquitin ligase COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC 1). This finding is consistent with the hypothesis that phosphorylation of CRY1 is required for COP1-dependent signaling and regulation of CRY1. We also determine that PHOTOREGULATORY PROTEIN KINASEs (PPKs) phosphorylate CRY1 in a blue light-dependent manner and that this phosphorylation is critical for CRY1 signaling and regulation. These results indicate that, similar to CRY2, blue light-dependent phosphorylation of CRY1 determines its photosensitivity.  相似文献   

16.
Zuo ZC  Meng YY  Yu XH  Zhang ZL  Feng DS  Sun SF  Liu B  Lin CT 《Molecular plant》2012,5(3):726-733
Arabidopsis cryptochrome 2 (CRY2) is a blue-light receptor mediating blue-light inhibition of hypocotyl elongation and photoperiodic promotion of floral initiation. CRY2 is a constitutive nuclear protein that undergoes blue-light-dependent phosphorylation, ubiquitination, photobody formation, and degradation in the nucleus, but the relationship between these blue-light-dependent events remains unclear. It has been proposed that CRY2 phosphorylation triggers a conformational change responsible for the subsequent ubiquitination and photobody formation, leading to CRY2 function and/or degradation. We tested this hypothesis by a structure-function study, using mutant CRY2-GFP fusion proteins expressed in transgenic Arabidopsis. We show that changes of lysine residues of the NLS (Nuclear Localization Signal) sequence of CRY2 to arginine residues partially impair the nuclear importation of the CRY2K541R and CRY2K554/5R mutant proteins, resulting in reduced phosphorylation, physiological activities, and degradation in response to blue light. In contrast to the wild-type CRY2 protein that forms photobodies exclusively in the nucleus, the CRY2K541R and CRY2K554/5R mutant proteins form protein bodies in both the nucleus and cytosol in response to blue light. These results suggest that photoexcited CRY2 molecules can aggregate to form photobody-like structure without the nucleus-dependent protein modifications or the association with the nuclear CRY2-interacting proteins. Taken together, the observation that CRY2 forms photobodies markedly faster than CRY2 phosphorylation in response to blue light, we hypothesize that the photoexcited cryptochromes form oligomers, preceding other biochemical changes of CRY2, to facilitate photobody formation, signal amplification, and propagation, as well as desensitization by degradation.  相似文献   

17.
Cryptochrome blue-light photoreceptors are found in both plants and animals and have been implicated in numerous developmental and circadian signaling pathways. Nevertheless, no action spectrum for a physiological response shown to be entirely under the control of cryptochrome has been reported. In this work, an action spectrum was determined in vivo for a cryptochrome-mediated high-irradiance response, the blue-light-dependent inhibition of hypocotyl elongation in Arabidopsis. Comparison of growth of wild-type, cry1cry2 cryptochrome-deficient double mutants, and cryptochrome-overexpressing seedlings demonstrated that responsivity to monochromatic light sources within the range of 390 to 530 nm results from the activity of cryptochrome with no other photoreceptor having a significant primary role at the fluence range tested. In both green- and norflurazon-treated (chlorophyll-deficient) seedlings, cryptochrome activity is fairly uniform throughout its range of maximal response (390-480 nm), with no sharply defined peak at 450 nm; however, activity at longer wavelengths was disproportionately enhanced in CRY1-overexpressing seedlings as compared with wild type. The action spectrum does not correlate well with the absorption spectra either of purified recombinant cryptochrome photoreceptor or to that of a second class of blue-light photoreceptor, phototropin (PHOT1 and PHOT2). Photoreceptor concentration as determined by western-blot analysis showed a greater stability of CRY2 protein under the monochromatic light conditions used in this study as compared with broad band blue light, suggesting a complex mechanism of photoreceptor activation. The possible role of additional photoreceptors (in particular phytochrome A) in cryptochrome responses is discussed.  相似文献   

18.
The Arabidopsis-turnip crinkle virus (TCV) system is one of the few tractable plant-virus systems that allow simultaneous characterization of host components required for basal- and/or resistance (R) protein-mediated defenses. Another unique feature is that hypersensitive response (HR) and resistance can be studied as two distinct phenotypes in this pathosytem. The R protein HRT confers HR to TCV but requires a recessive locus rrt to confer resistance. The pathways leading to HR and resistance are mutually exclusive. HRT interacts with EDS1, which potentiates HR to TCV and is also required for resistance signaling. HRT-mediated signaling is also dependent on the EDS1-interacting proteins PAD4 and SAG101, which form binary and ternary complexes with EDS1. HRT-mediated resistance is also dependent on light and more specifically on the blue-light photoreceptors, cryptochromes (CRY) and phototropins (PHOT). Of these, CRY2 and PHOT2 are required for the stability of HRT. HRT is degraded in a proteasome-dependent manner, which correlates with its interaction with the E3 ubiquitin ligase, COP1. Together, these results suggest that components of light signaling modulate plant defense against TCV by regulating the stability of, and signaling mediated by, the R protein HRT.  相似文献   

19.
Cryptochrome 1 (CRY1) is a flavin-type blue light receptor of Arabidopsis thaliana which mediates inhibition of hypocotyl elongation. In the work described in this report it is demonstrated that CRY1 is a soluble protein expressed in both young seedlings grown either in the dark or under light, and in different organs of adult plants. The functional role of CRY1 was further investigated using transgenic Arabidopsis plants overexpressing CRY1. It is demonstrated that overexpression of CRY1 resulted in hypersensitivity to blue, UV-A, and green light for the inhibition of hypocotyl elongation response. Transgenic plants overexpressing CRY1 also exhibited a dwarf phenotype with reduced size in almost every organ. This was in keeping with the previous observation of reciprocal alterations found in hy4 mutant plants and is consistent with a hypothesis that CRY1 mediates a light-dependent process resulting in a general inhibitory effect on plant growth. In addition, transgenic plants overexpressing CRY1 showed increased anthocyanin accumulation in response to blue, UV-A, and green light in a fluence rate-dependent manner. This increase in anthocyanin accumulation in transgenic plants was shown to be concomitant with increased blue light-induction of CHS gene expression. It is concluded that CRY1 is a photoreceptor mediating blue light-dependent regulation of gene expression in addition to its affect on plant growth.  相似文献   

20.
In Arabidopsis, stamen elongation, which ensures male fertility, is controlled by the auxin response factor ARF8, which regulates the expression of the auxin repressor IAA19. Here, we uncover a role for light in controlling stamen elongation. By an extensive genetic and molecular analysis we show that the repressor of light signaling COP1, through its targets HY5 and HYH, controls stamen elongation, and that HY5 – oppositely to ARF8 – directly represses the expression of IAA19 in stamens. In addition, we show that in closed flower buds, when light is shielded by sepals and petals, the blue light receptors CRY1/CRY2 repress stamen elongation. Coherently, at flower disclosure and in subsequent stages, stamen elongation is repressed by the red and far‐red light receptors PHYA/PHYB. In conclusion, different light qualities – sequentially perceived by specific photoreceptors – and the downstream COP1–HY5/HYH module finely tune auxin‐induced stamen elongation and thus male fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号