首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidic acid (PA) and its phosphorylated derivative diacylglycerol pyrophosphate (DGPP) are lipid molecules that have been implicated in plant cell signaling. In this study we report the rapid but transient accumulation of PA and DGPP in suspension-cultured tomato (Lycopersicon esculentum) cells treated with the general elicitors, N,N',N",N"'-tetraacetylchitotetraose, xylanase, and the flagellin-derived peptide flg22. To determine whether PA originated from the activation of phospholipase D or from the phosphorylation of diacylglycerol (DAG) by DAG kinase, a strategy involving differential radiolabeling with [(32)P]orthophosphate was used. DAG kinase was found to be the dominant producer of PA that was subsequently metabolized to DGPP. A minor but significant role for phospholipase D could only be detected when xylanase was used as elicitor. Since PA formation was correlated with the high turnover of polyphosphoinositides, we hypothesize that elicitor treatment activates phospholipase C to produce DAG, which in turn acts as substrate for DAG kinase. The potential roles of PA and DGPP in plant defense signaling are discussed.  相似文献   

2.
The extracellular AVR4 elicitor of the pathogenic fungus Cladosporium fulvum induces defense responses in the tomato genotype Cf-4. Here, the four disulfide bonds of AVR4 were identified as Cys-11-41, Cys-21-27, Cys-35-80, and Cys-57-72 by partial reduction with Tris-(2-carboxyethyl)-phosphine hydrochloride, subsequent cyanylation, and base-catalyzed chain cleavage. The resulting peptide fragments were analyzed by mass spectrometry. Sequence homology and the disulfide bond pattern revealed that AVR4 contains an invertebrate (inv) chitin-binding domain (ChBD). Binding of AVR4 to chitin was confirmed experimentally. The three disulfide bonds encompassing the inv ChBD motif are also required for protein stability of AVR4. Independent disruption of each of the three conserved disulfide bonds in AVR4 resulted in a protease-sensitive protein, whereas the fourth disulfide bond appeared not to be required for protein stability. Most strains of C. fulvum virulent on Cf-4 tomato contain Cys to Tyr substitutions in AVR4 involving two (Cys-11-41, Cys-35-80) of the three disulfide bonds present in the inv ChBD motif. These natural Cys to Tyr mutant AVR4 proteins did retain their chitin binding ability and when bound to chitin were less sensitive to proteases. Thus, the widely applied tomato Cf-4 resistance gene is circumvented by C. fulvum by amino acid substitutions affecting two disulfide bonds in AVR4 resulting in the absence of the corresponding AVR4 isoforms in apoplastic fluid. However, these natural isoforms of AVR4 appear to have retained their intrinsic function, i.e. binding to chitin present in the cell wall of C. fulvum, most likely to protect it against the deleterious effects of plant chitinases.  相似文献   

3.
Rhizobium-secreted nodulation factors are lipochitooligosaccharides that trigger the initiation of nodule formation on host legume roots. The first visible effect is root hair deformation, but the perception and signalling mechanisms that lead to this response are still unclear. When we treated Vicia sativa seedlings with mastoparan root hairs deformed, suggesting that G proteins are involved. To investigate whether mastoparan and Nod factor activate lipid signalling pathways initiated by phospholipase C (PLC) and D (PLD), seedlings were radiolabelled with [(32)P]orthophosphate prior to treatment. Mastoparan stimulated increases in phosphatidic acid (PA) and diacylglycerol pyrophosphate, indicative of PLD or PLC activity in combination with diacylglycerol kinase (DGK) and PA kinase. Treatment with Nod factor had similar effects, although less pronounced. The inactive mastoparan analogue Mas17 had no effect. The increase in PA was partially caused by the activation of PLD that was monitored by its in vivo transphosphatidylation activity. The application of primary butyl alcohols, inhibitors of PLD activity, blocked root hair deformation. Using different labelling strategies, evidence was provided for the activation of DGK. Since the PLC antagonist neomycin inhibited root hair deformation and the formation of PA, we propose that PLC activation produced diacylglycerol (DAG), which was subsequently converted to PA by DGK. The roles of PLC and PLD in Nod factor signalling are discussed.  相似文献   

4.
The interaction between tomato and the fungal pathogen Cladosporium fulvum complies with the gene-for-gene system. Strains of C. fulvum that produce race-specific elicitor AVR4 induce a hypersensitive response, leading to resistance, in tomato plants that carry the Cf-4 resistance gene. The mechanism of AVR4 perception was examined by performing binding studies with 125I-AVR4 on microsomal membranes of tomato plants. We identified an AVR4 high-affinity binding site (KD = 0.05 nM) which exhibited all the characteristics expected for ligand-receptor interactions, such as saturability, reversibility, and specificity. Surprisingly, the AVR4 high-affinity binding site appeared to originate from fungi present on infected tomato plants rather than from the tomato plants themselves. Detailed analysis showed that this fungus-derived, AVR4-specific binding site is heat- and proteinase K-resistant. Affinity crosslinking demonstrated that AVR4 specifically binds to a component of approximately 75 kDa that is of fungal origin. Our data suggest that binding of AVR4 to a fungal component or components is related to the intrinsic virulence function of AVR4 for C. fulvum.  相似文献   

5.
The tomato resistance gene Cf-9 encodes a membrane-anchored, receptor-like protein that mediates specific recognition of the extracellular elicitor protein AVR9 of Cladosporium fulvum. The C-terminal dilysine motif (KKRY) of Cf-9 suggests that the protein resides in the endoplasmic reticulum. Previously, two conflicting reports on the subcellular location of Cf-9 were published. Here we show that the AARY mutant version of Cf-9 is still functional in mediating AVR9 recognition, suggesting that functional Cf-9 resides in the plasma membrane. The data presented here and in reports by others can be explained by masking the dilysine signal of Cf-9 with other proteins.  相似文献   

6.
The avirulence gene Avr4 conditions avirulence of the biotrophic fungus Cladosporium fulvum on tomato genotypes carrying resistance gene Cf-4 (MM-Cf4). Strains of the fungus that circumvent Cf-4-specific resistance show various single point mutations in the coding region of the Avr4 gene. Similar to expression of the Avr4 gene, expression of the various virulent avr4 alleles is specifically induced during pathogenesis. Polyclonal antibodies raised against the AVR4 elicitor, however, did not detect AVR4 isoforms in MM-Cf4 plants infected by the different virulent strains, indicating that these isoforms are unstable. To analyze whether the AVR4 isoforms still possess specific elicitor activity, the avr4 alleles were expressed in MM-Cf4 plants by using the potato virus X (PVX)-based expression system. Inoculation with PVX::Avr4 resulted in the development of spreading lesions, eventually leading to plant death, whereas the various PVX::avr4 derivatives induced symptoms ranging from severe necrosis to no lesions at all. We conclude that instability of the AVR4 isoforms that are produced by virulent strains is a crucial factor in circumvention of Cf-4-mediated resistance.  相似文献   

7.
In mammalian cells, phospholipase D (PLD) and its product phosphatidic acid (PA) are involved in a number of signalling cascades, including cell proliferation, membrane trafficking and defence responses. In plant cells a signalling role for PLD and PA is also emerging. Plants have the extra ability to phosphorylate PA to produce diacylglycerol pyrophosphate (DGPP), a newly discovered phospholipid whose formation attenuates PA levels, but which could itself be a second messenger. Here we report that increases in PA and its conversion to DGPP are common stress responses to water deficit. Increases occur within minutes of treatment and are dependent on the level of stress. Part of the PA produced is due to PLD activity as measured by the in vivo transphosphatidylation of 1-butanol, and part is due to diacylglycerol kinase activity as monitored via 32P-PA formation in a differential labelling protocol. Increases in PA and DGPP are found not only in the green alga Chlamydomonas moewusii and cell-suspension cultures of tomato and alfalfa when subjected to hyperosmotic stress, but also in dehydrated leaves of the resurrection plant Craterostigma plantagineum. These results provide further evidence that PLD and PA play a role in plant signalling, and provide the first demonstration that DGPP is formed during physiological conditions that evoke PA synthesis.  相似文献   

8.
Mutagenesis was used to identify and characterize plant genes required for fungal disease resistance gene function in tomato. Seed of a stock homozygous for the Cf-9 gene for resistance to Cladosporium fulvum were treated with ethyl methanesulfonate, and 568 M2 families were screened for mutations to C. fulvum sensitivity. Eight mutants with reduced resistance were isolated. Four mutations, all of which mapped to the Cf-9 gene, lost both resistance and response to the race-specific AVR9 elicitor. The other four mutations partially lost resistance and response to the AVR9 elicitor. Cytological analysis revealed that a unique host cell staining pattern accompanied the reduced-resistance phenotype in three mutants. Two of the mutants with reduced resistance mapped to Cf-9, and two mapped to two distinct loci designated Rcr-1 and Rcr-2 (Required for Cladosporium resistance) that are unlinked to Cf-9.  相似文献   

9.
10.
The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in several clusters and evolve mainly through sequence exchange between homologs. To study the evolution of Cf genes, we set out to identify functional Hcr9s that mediate recognition of Avr4 and Avr9 (designated Hcr9-Avr4s and Hcr9-Avr9s) in all wild tomato species. Plants responsive to the Avr4 and Avr9 elicitor proteins were identified throughout the genus Lycopersicon. Open reading frames of Hcr9s from Avr4- and Avr9-responsive tomato plants were polymerase chain reaction-amplified. Several Hcr9s that mediate Avr4 or Avr9 recognition were identified in diverged tomato species by agroinfiltration assays. These Hcr9-Avr4s and Hcr9-Avr9s are highly identical to Cf-4 and Cf-9, respectively. Therefore, we conclude that both Cf-4 and Cf-9 predate Lycopersicon speciation. These results further suggest that C. fulvum is an ancient pathogen of the genus Lycopersicon, in which Cf-4 and Cf-9 have been maintained by selection pressure imposed by C. fulvum.  相似文献   

11.
Nitric oxide (NO) and the lipid second messenger phosphatidic acid (PA) are involved in plant defense responses during plant-pathogen interactions. NO has been shown to be involved in the induction of PA production in response to the pathogen associated molecular pattern (PAMP) xylanase in tomato cells. It was shown that NO is critical for PA production induced via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK) but not for the xylanase-induced PA via phospholipase D (PLD). In order to study whether this is a general phenomenon during PAMP perception or if it is particular for xylanase, we studied the effect of the PAMP chitosan in tomato cell suspensions. We observed a rapid NO production in tomato cells treated with chitosan. Chitosan induced the formation of PA by activating both PLD and PLC/DGK. The activation of either phospholipase-mediated signaling pathway was inhibited in cells treated with the NO scavenger cPTIO. This indicates that NO is required for PA generation via both the PLD and PLC/DGK pathway during plant defense response in chitosan elicited cells. Responses downstream PA were studied. PLC inhibitors neomycin and U73122 inhibited chitosan-induced ROS production. Differences between xylanase and chitosan-induced phospholipid signaling pathways are discussed.  相似文献   

12.
The role of reversible phosphorylation of the host plasma membrane H+-ATPase in signal transduction during the incompatible interaction between tomato cells and the fungal pathogen Cladosporium fulvum was investigated. Tomato cells (with the Cf-5 resistance gene) or isolated plasma membranes from Cf-5 cells treated with elicitor preparations from race 2.3 or 4 of C. fulvum (containing the avr5 gene product) showed a marked dephosphorylation of plasma membrane H+-ATPase. Similar treatment with elicitor preparations from races 5 and 2.4.5.9.11 (lacking the avr5 gene product) showed no change in dephosphorylation. Elicitor (race 4) treatment of cells, but not of isolated plasma membranes, for 2 hr resulted in rephosphorylation of the ATPase via Ca2+-dependent protein kinases. The initial (first hour) rephosphorylation was enhanced by protein kinase C (PKC) activators and was prevented by PKC inhibitors. Activity of a second kinase appeared after 1 hr and was responsible for the continuing phosphorylation of the H+-ATPase. This latter Ca2+-dependent kinase was inhibited by a calmodulin (CaM) antagonist and by an inhibitor of Ca2+/CaM-dependent protein kinase II. The activation of the Ca2+/CaM-dependent protein kinase depended on the prior activation of the PKC-like kinase.  相似文献   

13.
Nitric Oxide (NO) is a second messenger related to development and (a)biotic stress responses in plants. We have studied the role of NO in signaling during plant defense responses upon xylanase elicitation. Treatment of tomato cell cultures with the fungal elicitor xylanase resulted in a rapid and dose-dependent NO accumulation. We have demonstrated that NO is required for the production of the lipid second messenger phosphatidic acid (PA) via the activation of the phospholipase C (PLC) and diacylglycerol kinase (DGK) pathway. Defense-related responses downstream of PA were studied. PA and, correspondingly, xylanase were shown to induce reactive oxygen species production. Scavenging of NO or inhibition of either the PLC or the DGK enzyme diminished xylanase-induced reactive oxygen species production. Xylanase-induced PLDbeta1 and PR1 mRNA levels decreased when NO or PA production were compromised. Finally, we have shown that NO and PA are involved in the induction of cell death by xylanase. Treatment with NO scavenger cPTIO, PLC inhibitor U73122, or DGK inhibitor R59022 diminished xylanase-induced cell death. On the basis of biochemical and pharmacological experimental results, we have shown that PLC/DGK-derived PA represents a novel downstream component of NO signaling cascade during plant defense.  相似文献   

14.
Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)-95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι-/- synapses show a reduction in metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at neonatal (~2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR-LTD at DGKι-/- synapses. These results suggest that DGKι requires PSD-95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR-LTD.  相似文献   

15.
The Cf-2 gene of tomato confers resistance to strains of the biotrophic pathogenic fungus Cladosporium fulvum carrying avirulence gene Avr2. To allow dissection of the biochemical mechanism of perception of AVR2 by Cf-2, we set out to clone the Avr2 gene. Here, we report the functional cloning of Avr2 cDNA, based on the induction of a hypersensitive response (HR) by the encoded AVR2 protein in Cf2 tomato plants. Analysis of strains of C. fulvum that are virulent on Cf2 tomato lines revealed various independent frameshift mutations in the Avr2 open reading frame (ORF) and a point mutation resulting in a premature stop codon. All modifications result in the production of truncated AVR2 proteins. Interestingly, an additional modification involves the insertion of a LINE-like element, Cfl1, in the Avr2 ORF. Cfl1 is the first LINE-like element identified in C. fulvum and provides the first example of loss of avirulence of a plant pathogen caused by insertion of a retrotransposable element in an Avr gene. Rcr3 represents an additional plant protein that is specifically required for Cf-2-mediated resistance. Analysis of two different rcr3 mutant Cf2 tomato plants revealed that their ability to respond to AVR2 with a HR correlates with their degree of resistance to AVR2-producing strains of C. fulvum. These data support a role for Rcr3 in the perception of AVR2 by Cf-2.  相似文献   

16.
The diacylglycerol kinase (DGK) catalyzes the phosphorylation of diacylglycerol (DAG) yielding phosphatidic acid (PA) signaling molecules which are involved in the modulation of different cell responses. The aim of this work was to characterize the DGK activity associated to the basolateral membranes (BLM) of kidney proximal tubules, in a native preparation that preserves the membrane microenvironment. The Arrhenius plot of DGK activity was non-linear, indicating a complex influence of the lipid environment of the native membrane. The formation of PA was strongly impaired by U73122, an inhibitor of PLC, whereas remained unmodified when exogenous DAG or PLC were added. The Mg.ATP2- complex is the true phosphoryl-donor substrate, and the very narrow peak of activation at pH 7.0 suggests that amino acids that dissociate at this pH, i.e. hystidine residues, play a role by acting in the coordination of the Mg2+ atoms. The renal DGK is almost completely blocked by 0.1 mM sphingosine, but it is insensitive to micromolar free Ca2+ concentrations and to R59499, the most potent inhibitor of the classical DGKs. Taken as a whole, these data suggest that the DGK isoform present in BLM of proximal tubules is different from those included in the type I family, and that membranous PLC could be the main source of DAG for DGK catalysis.  相似文献   

17.
Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial‐associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [33P]‐orthophosphate labelling of tobacco Bright Yellow‐2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide‐dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD‐mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH‐oxidase activity. Amongst cluster III DGKs, the expression of DGK5‐like was up‐regulated in response to cryptogein. Besides DGK5‐like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid‐mediated events in plant immunity.  相似文献   

18.
Stomatal closure is regulated by a complex network of signalling events involving numerous intermediates, among them nitric oxide (NO). Little is known about the signalling events occurring downstream of NO. Previous studies have shown that NO modulates cytosolic calcium concentration and the activation of plasma membrane ion channels. Here we provide evidence that supports the involvement of the lipid second messenger phosphatidic acid (PA) in NO signalling during stomatal closure. PA levels in Vicia faba epidermal peels increased upon NO treatment to maximum levels within 30 min, subsequently decreasing to control levels at 60 min. PA can be generated via phospholipase D (PLD) or via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK). Our results showed that NO-induced PA is produced via the activation of both pathways. NO-induced stomatal closure was blocked either when PLC or PLD activity was inhibited. We have shown that PLC- and PLD-derived PA represents a downstream component of NO signalling cascade during stomatal closure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号