首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
S100A6 (calcyclin), a small calcium-binding protein from the S100 family, interacts with several target proteins in a calcium-regulated manner. One target is Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP), a component of a novel pathway of beta-catenin ubiquitination. A recently discovered yeast homolog of CacyBP/SIP, Sgt1, associates with Skp1 and regulates its function in the Skp1/Cullin1/F-box complex ubiquitin ligase and in kinetochore complexes. S100A6-binding domain of CacyBP/SIP is in its C-terminal region, where the homology between CacyBP/SIP and Sgt1 is the greatest. Therefore, we hypothesized that Sgt1, through its C-terminal region, interacts with S100A6. We tested this hypothesis by performing affinity chromatography and chemical cross-linking experiments. Our results showed that Sgt1 binds to S100A6 in a calcium-regulated manner and that the S100A6-binding domain in Sgt1 is comprised of 71 C-terminal residues. Moreover, S100A6 does not influence Skp1-Sgt1 binding, a result suggesting that separate Sgt1 domains are responsible for interactions with S100A6 and Skp1. Sgt1 binds not only to S100A6 but also to S100B and S100P, other members of the S100 family. The interaction between S100A6 and Sgt1 is likely to be physiologically relevant because both proteins were co-immunoprecipitated from HEp-2 cell line extract using monoclonal anti-S100A6 antibody. Phosphorylation of the S100A6-binding domain of Sgt1 by casein kinase II was inhibited by S100A6, a result suggesting that the role of S100A6 binding is to regulate the phosphorylation of Sgt1. These findings suggest that protein ubiquitination via Sgt1-dependent pathway can be regulated by S100 proteins.  相似文献   

3.
4.
Calcyclin (S100A6) binding protein/Siah‐1 interacting protein (CacyBP/SIP) is mainly a cytoplasmic protein; however, some literature data suggested its presence in the nucleus. In this work we examined more precisely the nuclear localization and function of CacyBP/SIP. By applying mass spectrometry, we have identified several nuclear proteins, among them is nucleophosmin (NPM1), that may interact with CacyBP/SIP. Subsequent assays revealed that CacyBP/SIP forms complexes with NPM1 in the cell and that the interaction between these two proteins is direct. Interestingly, although CacyBP/SIP exhibits phosphatase activity, we have found that its overexpression favors phosphorylation of NPM1 on S125. In turn, the RNA immunoprecipitation assay indicated that the altered CacyBP/SIP level has an impact on the amount of 28S and 18S rRNA bound to NPM1. The overexpression of CacyBP/SIP resulted in a significant increase in the binding of 28S and 18S rRNA to NPM1, whereas silencing of CacyBP/SIP expression decreased 28S rRNA binding and had no effect on the binding of 18S rRNA. Further studies have shown that under oxidative stress, CacyBP/SIP overexpression alters NPM1 distribution in cell nuclei. In addition, staining for a nucleolar marker, fibrillarin, revealed that CacyBP/SIP is indispensable for maintaining the nucleolar structure. These results are in agreement with data obtained by western blot analysis, which show that upon oxidative stress the NPM1 level decreases but that CacyBP/SIP overexpression counteracts the effect of stress. Altogether, our results show for the first time that CacyBP/SIP binds to and affects the properties of a nuclear protein, NPM1, and that it is indispensable for preserving the structure of nucleoli under oxidative stress.  相似文献   

5.
CacyBP/SIP, originally identified as a S100A6 (calcyclin) target, was later shown to interact with some other members of the S100 family as well as with Siah-1 and Skp1 proteins. Recently, it has been shown that CacyBP/SIP is up-regulated during differentiation of cardiomyocytes. In this work we show that the level of CacyBP/SIP is higher in differentiated neuroblastoma NB2a cells than in undifferentiated ones and that in cells overexpressing CacyBP/SIP the level of GAP-43, a marker of differentiation, was increased. Since the process of differentiation is accompanied by an extensive rearrangement of microtubules, we examined whether CacyBP/SIP interacted with tubulin. By applying cross-linking experiments we found that these two proteins bind directly. The dissociation constant of the tubulin-CacyBP/SIP complex determined by the surface plasmon resonance technique is 1.57 x 10(-7 )M which suggests that the interaction is tight. The interaction and co-localization of CacyBP/SIP and tubulin was also demonstrated by co-immunoprecipitation, affinity chromatography and immunofluorescence methods. Light scattering measurements and electron microscopy studies revealed that CacyBP/SIP, but not its homologue, Sgt1, increased tubulin oligomerization. Altogether, our results suggest that CacyBP/SIP, via its interaction with tubulin, might contribute to the differentiation of neuroblastoma NB2a cells.  相似文献   

6.
7.
8.
The Calcyclin binding protein and Siah-1 interacting protein (CacyBP/SIP) protein is highly expressed in mammalian brain as well as in neuroblastoma NB2a cells and pheochromocytoma PC12 cells. This protein interacts with several targets such as cytoskeletal proteins or ERK1/2 kinase and seems to be involved in many cellular processes. In this work we examined a post-translational modification of CacyBP/SIP which might have an effect on its function. Since theoretical analysis of the amino acid sequence of CacyBP/SIP indicated several lysine residues which could potentially be sumoylated we checked experimentally whether this protein might be modified by SUMO attachment. We have shown that indeed CacyBP/SIP bound the E2 SUMO ligase, Ubc9, in neuroblastoma NB2a cell extract and was sumoylated in these cells. By fractionation of NB2a cell extract we have found that, contrary to the majority of SUMO-modified proteins, sumoylated CacyBP/SIP is present in the cytoplasmic and not in the nuclear fraction. We have also established that lysine 16 is the residue which undergoes sumoylation in the CacyBP/SIP protein.  相似文献   

9.
S100A6 is a member of the S100 subfamily of EF-hand Ca (2+) binding proteins that has been shown to interact with calcyclin binding protein/Siah-1 interacting protein (CacyBP/SIP or SIP), a subunit of an SCF-like E3 ubiquitin ligase complex (SCF-TBL1) formed under genotoxic stress. SIP serves as a scaffold in this complex, linking the E2-recruiting module Siah-1 to the substrate-recruiting module Skp1-TBL1. A cell-based functional assay suggests that S100A6 modulates the activity of SCF-TBL1. The results from the cell-based experiments could be enhanced if it were possible to selectively inhibit S100A6-SIP interactions without perturbing any other functions of the two proteins. To this end, the structure of the S100A6-SIP complex was determined in solution by NMR and the strength of the interaction was characterized by isothermal titration calorimetry. In an initial step, the minimal S100A6 binding region in SIP was mapped to a 31-residue fragment (Ser189-Arg219) in the C-terminal domain. The structure of the S100A6-SIP(189-219) complex revealed that SIP(189-219) forms two helices, the first of which (Met193-Tyr200) interacts with S100A6 in a canonical binding mode. The second helix (Met207-Val216) lies over the S100A6 dimer interface, a mode of binding to S100A6 that has not previously been observed for any target bound to an S100 protein. A series of structure-based SIP mutations showed reduced S100A6 binding affinity, setting the stage for direct functional analysis of S100A6-SIP interactions.  相似文献   

10.
Abstract: A protein target of mouse calcyclin, p30, which we call calcyclin-binding protein (CacyBP), was identified in mouse brain and Ehrlich ascites tumor (EAT) cells. The amino acid sequence of the CacyBP chymotryptic peptide was used to prepare synthetic oligonucleotides that served as a probe to screen the mouse brain cDNA library. A 1.4-kb positive clone was detected, isolated, and sequenced. The analyzed clone contains an open reading frame encoding a protein of a molecular mass of ~26 kDa. The nucleotide and predicted amino acid sequences indicate that CacyBP is a novel protein. The results obtained from northern blots show that the CacyBP gene is expressed predominantly in mouse brain and EAT cells. Using a pGEX vector the recombinant CacyBP was expressed in Escherichia coli, and its properties were analyzed. The recombinant protein interacts with calcyclin at a physiologically relevant range of Ca2+ in solution during affinity chromatography and on blots. Because CacyBP, like calcyclin, is present in the brain, the interaction of these two proteins might be involved in calcium signaling pathways in neuronal tissue.  相似文献   

11.
Recently, we have reported that the CacyBP/SIP protein binds ERK1/2 (Kilanczyk et al., BBRC, 2009). In this work we show that CacyBP/SIP exhibits a phosphatase activity toward ERK1/2 kinases while its E217K mutant does not. The Km and Vmax values established for a standard phosphatase substrate, p-NPP, are 16.9 ± 3.6 mM and 4.3 ± 0.4 μmol/min, respectively. The CacyBP/SIP phosphatase activity is decreased by okadaic acid (IC50 = 45 nM). Our experimental results are supported by a theoretical analysis which revealed important sequence similarities between CacyBP/SIP and the phosphatase-like proteins as well as certain MAP kinase phosphatases.  相似文献   

12.
Calcyclin-binding protein (CacyBP)/Siah-1 interacting protein (SIP), a component of ubiquitin-mediated proteolysis, could bind the Skp1-Cul1-F box protein complex. Although CacyBP/SIP was implicated in p53-induced beta-catenin degradation, its exact function was still unknown. Our previous studies showed that CacyBP/SIP could modulate the multidrug-resistant phenotype of gastric cancer cells and was highly expressed in gastric cancer tissues compared with that in non-cancerous tissues. In this study, CacyBP/SIP protein expression profile in a broad range of human normal tissues and carcinomas was analyzed by immunohistochemistry staining with anti-CacyBP/SIP monoclonal antibody first produced in our laboratory. CacyBP/SIP was generally localized in the cytoplasm/nucleus. Positive staining of CacyBP/SIP was found in brain, heart, lymph node, and esophagus. Weak staining was shown in the rectum and kidney. No CacyBP/SIP was detected in other normal tissues. However, CacyBP/SIP was ubiquitously detected in all kinds of tumor tissues and was highly expressed in nasopharyngeal carcinoma, osteogenic sarcoma, and pancreatic cancer. To our knowledge, this is the first study on the CacyBP/SIP expression pattern in a broad range of human normal and tumor tissues. The data presented should serve as a useful reference for other investigators in future studies of CacyBP/SIP functions. Hopefully, this knowledge will lead to discovery of more roles of CacyBP/SIP in tumorigenesis.  相似文献   

13.

Background

Women live about 4 years longer due to lower prevalence of cardiovascular complication with ageing. However, the mechanisms involved in the preservation of heart functionality in women have not been fully elucidated.The endocannabinoid system fulfils a significant role in the regulation of cardiovascular system functioning. Cannabinoids, acting through specific receptors (CB1 and CB2), influence on blood pressure, heart rate and myocardial contractility. The function of cardiac muscle cells is strictly dependent on calcium ions. Calcium homeostasis in cardiomyocytes is subjected to complex regulation via calcium-binding proteins. Among them, increasing attention has been paid to the recently discovered S100A6 and CacyBP/SIP.In order to better understand sex differences in the regulation of cardiomyocyte function during ageing, we undertook the present research aimed at immunohistochemical identification and comparative evaluation of cannabinoid receptors, S100A6 and CacyBP/SIP, in the myocardium of ageing men and women.

Methods

The study was conducted on the hearts of 12 men and 10 women (organ donors) without a history of cardiovascular disease. The subjects were divided into two age groups: subjects older than 50 years and subjects under 50 years old. Paraffin heart sections were processed by immunohistochemistry for detection of cannabinoids receptors, S100A6 and CacyBP/SIP. In the heart samples from each study, participant’s expression of genes coding for CB1, CB2, S100A6 and CacyBP/SIP using real-time PCR method was measured.

Results

CB1 and CB2 immunoreactivity in the cytoplasm of cardiomyocytes in the heart of subjects over 50 was weaker than in younger individuals. In the heart of younger men, CB1-immunoreactivity was weaker and CB2-immunoreaction was stronger compared to women. In the hearts of older men, the CB1-immunostaining was more intense and CB2-immunoreactivity was weaker than in women. Immunodetection of CB1 shoved the presence of receptor in the intercalated discs, but only in the hearts of individuals over the 50 years old. In the hearts of older individuals, stronger immunolabelling was observed for S100A6 and CacyBP/SIP. Male hearts had greater S100A6-immunoreactivity (both age groups) but less CacyBP/SIP immunostaining (individuals over 50 years) compared to the age-matched women. The expression of genes coding CB1, CB2, S100A6 and CacyBP/SIP in the human heart was sex and age-dependent. Observed changes between men and women as well as between subject under and over 50 years were consistent with immunohistochemically stated changes in peptide content.

Conclusion

Together, the data presented here indicate a close interaction between ageing and sex on the distribution and levels of cannabinoid receptors (CB1, CB2), S100A6 and CacyBP/SIP in the human heart.
  相似文献   

14.
Recently, we have reported that CacyBP/SIP could be a novel phosphatase for ERK1/2 kinase. In this work, we analyzed the CacyBP/SIP phosphatase activity toward ERK1/2 in 2 cell lines of different origin. We showed that overexpression of CacyBP/SIP in NB2a cells resulted in a lower level of phosphorylated ERK1/2 (P-ERK1/2) in the nuclear fraction while such overexpression in HCT116 cells had no effect on the level of P-ERK1/2. Moreover, we found that overexpression of CacyBP/SIP resulted in higher phosphatase activity in the nuclear fraction obtained from NB2a cells when compared with HCT116 cells. Using 2-D electrophoresis we showed that the pattern of spots representing CacyBP/SIP differed in these 2 cell lines and was probably due to a different phosphorylation state of this protein. We also established that after overexpression of CacyBP/SIP in NB2a cells, the amount of nuclear β-catenin was low, while it remained high in HCT116 cells. Since NB2a cells have differentiation potential and HCT116 cells do not, our data suggest that different activity of CacyBP/SIP in these 2 cell lines might affect the ERK1/2 pathway in the differentiation or proliferation processes.  相似文献   

15.
During cardiac muscle development, most cardiomyocytes permanently withdraw from the cell cycle. Previously, by suppressive subtractive hybridization, we identified calcyclin-binding protein/Siah-interacting protein (CacyBP/SIP) as one of the candidates being upregulated in the hyperplastic to hypertrophic switch, suggesting an important role of CacyBP/SIP in cardiac development. To show the importance of CacyBP/SIP during myoblast differentiation, we report here that CacyBP/SIP is developmentally regulated in postnatal rat hearts. The overexpression of CacyBP/SIP promotes the differentiation and DNA synthesis of H9C2 cells and primary rat cardiomyocytes, as well as downregulates the expression of beta-catenin. Besides, CacyBP/SIP promotes the formation of myotubes and multinucleation upon differentiation. To investigate the cardioprotective role of CacyBP/SIP in cardiomyocytes, a hypoxia/reoxygenation model was employed. We found that CacyBP/SIP was upregulated during myocardial infarction (MI) and hypoxia/reoxygenation. As a conclusion, CacyBP/SIP may play a role in cardiomyogenic differentiation and possibly protection of cardiomyocytes during hypoxia/reoxygenation injury.  相似文献   

16.
Calcyclin (S100A6) is an S100 calcium-binding protein whose expression is up-regulated in proliferating and differentiating cells. A novel 30-kDa protein exhibiting calcium-dependent calcyclin-binding (calcyclin-binding protein, CacyBP) had been identified, purified, and cloned previously (Filipek, A., and Kuznicki, J. (1998) J. Neurochem. 70, 1793-1798). Here, we have defined the calcyclin binding region using limited proteolysis and a set of deletion mutants of CacyBP. A fragment encompassing residues 178-229 (CacyBP-(178-229)) was capable of full binding to calcyclin. CacyBP-(178-229) was expressed in Escherichia coli as a glutathione S-transferase fusion protein and purified. The protein fragment cleaved from the glutathione S-transferase fusion protein was shown by CD to contain 5% alpha-helix, 15% beta -sheet, and 81% random coil. Fluorescence spectroscopy was used to determine calcyclin dissociation constants of 0.96 and 1.2 microm for intact CacyBP and CacyBP-(178-229), respectively, indicating that the fragment can be used for characterization of calcyclin-CacyBP interactions. NMR analysis of CacyBP-(178-229) binding-induced changes in the chemical shifts of (15)N-enriched calcyclin revealed that CacyBP binding occurs at a discrete site on calcyclin with micromolar affinity.  相似文献   

17.
18.
The calcyclin-binding protein (CacyBP) binds calcyclin (S100A6) at physiological levels of [Ca(2+)] and is highly expressed in brain neurons. Subcellular localization of CacyBP was examined in neurons and neuroblastoma NB-2a cells at different [Ca(2+)](i). Immunostaining indicates that CacyBP is present in the cytoplasm of unstimulated cultured neurons in which resting [Ca(2+)](i) is known to be approximately 50 nm. When [Ca(2+)](i) was increased to above 300 nm by KCl treatment, the immunostaining was mainly apparent as a ring around the nucleus. Such perinuclear localization of CacyBP was observed in untreated neuroblastoma NB-2a cells in which [Ca(2+)](i) is approximately 120 nm. An additional increase in [Ca(2+)](i) to above 300 nm by thapsigargin treatment did not change CacyBP localization. However, when [Ca(2+)](i) in NB-2a cells dropped to 70 nm, because of BAPTA/AM treatment, perinuclear localization was diminished. Ca(2+)-induced translocation of CacyBP was confirmed by immunogold electron microscopy and by fluorescence of NB-2a cells transfected with an EGFP-CacyBP vector. Recombinant CacyBP can be phosphorylated by protein kinase C in vitro. In untreated neuroblastoma NB-2a cells, CacyBP is phosphorylated on a serine residue(s), but exists in the dephosphorylated form in BAPTA/AM-treated cells. Thus, phosphorylation of CacyBP occurs in the same [Ca(2+)](i) range that leads to its perinuclear translocation.  相似文献   

19.
20.
S100A5 is a novel member of the EF-hand superfamily of calcium-binding proteins that is poorly characterized at the protein level. Immunohistochemical analysis demonstrates that it is expressed in very restricted regions of the adult brain. Here we characterized the human recombinant S100A5, especially its interaction with Ca(2+), Zn(2+), and Cu(2+). Flow dialysis revealed that the homodimeric S100A5 binds four Ca(2+) ions with strong positive cooperativity and an affinity 20-100-fold higher than the other S100 proteins studied under identical conditions. S100A5 also binds two Zn(2+) ions and four Cu(2+) ions per dimer. Cu(2+) binding strongly impairs the binding of Ca(2+); however, none of these ions change the alpha-helical-rich secondary structure. After covalent labeling of an exposed thiol with 2-(4'-(iodoacetamide)anilino)-naphthalene-6-sulfonic acid, binding of Cu(2+), but not of Ca(2+) or Zn(2+), strongly decreased its fluorescence. In light of the three-dimensional structure of S100 proteins, our data suggest that in each subunit the single Zn(2+) site is located at the opposite side of the EF-hands. The two Cu(2+)-binding sites likely share ligands of the EF-hands. The potential role of S100A5 in copper homeostasis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号