首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
2.
The clinical usability of pancreatic islet transplantation for the treatment of type I diabetes, despite some encouraging results, is currently hampered by the short lifespan of the transplanted tissue. In vivo studies have demonstrated that co-transplantation of Mesenchymal Stem Cells (MSCs) with transplanted pancreatic islets is more effective with respect to pancreatic islets alone in ensuring glycemia control in diabetic rats, but the molecular mechanisms of this action are still unclear.The aim of this study was to elucidate the molecular mechanisms of the positive effect of MSCs on pancreatic islet functionality by setting up direct, indirect and mixed co-cultures.MSCs were both able to prolong the survival of pancreatic islets, and to directly differentiate into an “insulin-releasing” phenotype. Two distinct mechanisms mediated these effects: i) the survival increase was observed in pancreatic islets indirectly co-cultured with MSCs, probably mediated by the trophic factors released by MSCs; ii) MSCs in direct contact with pancreatic islets started to express Pdx1, a pivotal gene of insulin production, and then differentiated into insulin releasing cells. These results demonstrate that MSCs may be useful for potentiating pancreatic islets'' functionality and feasibility.  相似文献   

3.
Developing a device that protects xenogeneic islets to allow treatment and potentially cure of diabetes in large mammals has been a major challenge in the past decade. Using xenogeneic islets for transplantation is required in light of donor shortage and the large number of diabetic patients that qualify for islet transplantation. Until now, however, host immunoreactivity against the xenogeneic graft has been a major drawback for the use of porcine islets. Our study demonstrates the applicability of a novel immunoprotective membrane that allows successful xenotransplantation of rat islets in diabetic minipigs without immunosuppressive therapy. Rat pancreatic islets were encapsulated in highly purified alginate and integrated into a plastic macrochamber covered by a poly-membrane for subcutaneous transplantation. Diabetic Sinclair pigs were transplanted and followed for up to 90 days. We demonstrated a persistent graft function and restoration of normoglycemia without the need for immunosuppressive therapy. This concept could potentially offer an attractive strategy for a more widespread islet replacement therapy that would restore endogenous insulin secretion in diabetic patients without the need for immunosuppressive drugs and may even open up an avenue for safe utilization of xenogeneic islet donors.  相似文献   

4.
Type I diabetes is an autoimmune disease that results in destructive depletion of the insulin-producing beta cells in the islets of Langerhans in pancreas. With the knowledge that hepatocyte growth factor (HGF) is a potent survival factor for a wide variety of cells, we hypothesized that supplementation of HGF may provide a novel strategy for protecting pancreatic beta cells from destructive death and for preserving insulin production. In this study, we demonstrate that expression of the exogenous HGF gene preserved insulin excretion and mitigated hyperglycemia of diabetic mice induced by streptozotocin. Blood glucose levels were significantly reduced in mice receiving a single intravenous injection of naked HGF gene at various time points after streptozotocin administration. Consistently, HGF concomitantly increased serum insulin levels in diabetic mice. Immunohistochemical staining revealed a marked preservation of insulin-producing beta cells by HGF in the pancreatic islets of the diabetic mice. This beneficial effect of HGF was apparently mediated by both protection of beta cells from death and promotion of their proliferation. Delivery of HGF gene in vivo induced pro-survival Akt kinase activation and Bcl-xL expression in the pancreatic islets of diabetic mice. These findings suggest that supplementation of HGF to prevent beta cells from destructive depletion and to promote their proliferation might be an effective strategy for ameliorating type I diabetes.  相似文献   

5.
Clinical islet transplantation is a promising treatment for patients with type 1 diabetes. However, pancreatic islets vary in size and shape affecting their survival and function after transplantation because of mass transport limitations. To reduce diffusion restrictions and improve islet cell survival, the generation of islets with optimal dimensions by dispersion followed by reassembly of islet cells, can help limit the length of diffusion pathways. This study describes a microwell platform that supports the controlled and reproducible production of three‐dimensional pancreatic cell clusters of human donor islets. We observed that primary human islet cell aggregates with a diameter of 100–150 μm consisting of about 1000 cells best resembled intact pancreatic islets as they showed low apoptotic cell death (<2%), comparable glucose‐responsiveness and increasing PDX1, MAFA and INSULIN gene expression with increasing aggregate size. The re‐associated human islet cells showed an a‐typical core shell configuration with beta cells predominantly on the outside unlike human islets, which became more randomized after implantation similar to native human islets. After transplantation of these islet cell aggregates under the kidney capsule of immunodeficient mice, human C‐peptide was detected in the serum indicating that beta cells retained their endocrine function similar to human islets. The agarose microwell platform was shown to be an easy and very reproducible method to aggregate pancreatic islet cells with high accuracy providing a reliable tool to study cell–cell interactions between insuloma and/or primary islet cells.  相似文献   

6.
7.
To maintain islets survival and function is critical in successful pancreatic transplantation. Pancreatic progenitors cells (PPCs) with lineage potentials, giving rise to exocrine, endocrine, and duct cells, reside in developing and adult pancreas. As tissue-specific stem cells, they can produce pancreatic tissue-specific matrix factors to promote islets survival and function. The aim of our research was to investigate the protective effect of rat pancreatic?Cduodenal homeobox 1 (Pdx1)+/nestin+ PPCs on islets. In vitro, co-culturing islets with Pdx1+/nestin+ PPCs prolonged the former survival from 7 to 14?days. Furthermore, with high glucose (300.8?mg/dl) stimuli, the yield of insulin in co-cultures was significantly higher than that in control group (single islets group). In vivo, co-transplanting islets and Pdx1+/nestin+ PPCs for 3?days, the blood glucose of diabetic rat was significantly decreased to normal level and sustained for 2?weeks. Without Pdx1+/nestin+ PPCs in islets transplantation, hyperglycemia was reversed at day 7 and recovered at day 15. Pathology analysis showed that islets had remnants in co-transplantation at day 21, as complete graft rejection in alone islets transplantation. Our study showed that Pdx1+/nestin+ PPCs displayed the ability of preserving islets viability and function in vitro and prolonging their survival in vivo.  相似文献   

8.
Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation.  相似文献   

9.
10.
11.
Development of techniques for cryopreservation of pancreatic islets of Langerhans could potentially allow for increased freedom from the time restrictions presently affecting viability in islet cell transplantation. While several investigators have attempted islet cell freezing and have obtained favorable in vitro results after thawing, there have been few reported in vivo successes with islets transplanted after freezing. We have developed a simple system for freezing islet cell pancreatic fragments to ?196 °C and have either stored them in liquid nitrogen for 24 hr or immediately thawed the islets prior to transplantation. In addition, antilymphoblast globulin has been used as graft pretreatment modality in order to modify islet cell immunogenicity. We found that ALG was effective in prolongation of graft survival after freezing as well as on fresh nonfrozen transplants. The use of freezing and ALG appears, therefore, to have a favorable effect on the immunogenicity of the pancreatic islet cell allograft.  相似文献   

12.
Engraftment (i.e., the adaptation of transplanted pancreatic islets to their new surroundings with regard to revascularization, reinnervation, and reorganization of other stromal compartments) is of crucial importance for the survival and function of the endocrine cells. Previous studies suggest that transplantation induces both vascular and stromal dysfunctions in the implanted islets when compared with endogenous islets. Thus the vascular density and the blood perfusion of islet grafts is decreased and accompanied with a capillary hypertension. This leads to hypoxic conditions, with an associated shift toward anaerobic metabolism in grafted islets. An improved engraftment will prevent or compensate for the vascular/stromal dysfunction seen in transplanted islets and thereby augment survival of the islet implant. By such means the number of islets needed to cure the recipient will be lessened. This will increase the number of patients that can be transplanted with the limited material available.  相似文献   

13.
The survival of tissue allografts can be extended by pretreating the tissue to remove the stimulatory leucocytes that populate the graft; with this in mind, we have recently begun to explore a cryobiological approach to modulating tissue immunogenicity by using the differential susceptibility of different cells to freezing injury. The sensitivity of leucocytes to fast cooling rates, which were used in procedures that have been reported to yield viable pancreatic islets of Langerhans, was examined. The loss of both cell numbers and the ability of peripheral blood lymphocytes to undergo blastogenic transformation in response to the mitogen concanavalin A after freezing and thawing was determined over a range of cell concentrations using the "curve-shift" method. Lymphocytes frozen at 1 degree C/min by a control procedure that was designed to yield maximum survival of lymphocytes showed that although there was a decrease in the number of responding cells, there was no reduction in the ability of the recovered cells to undergo blastogenesis when compared with the response of nonfrozen cells. However, cooling at 1 degree C/min in the experimental procedures resulted in both the loss of cells as well as a marked reduction in the ability of recovered cells to incorporate 125I-deoxyuridine into nucleic acid. Cells cooled at either 20 or 75 degrees C/min by any of the procedures showed total inability to respond to stimulation. Lysozyme is produced continuously by all types of macrophages in culture. The large net increase in total lysozyme content of macrophage cultures is therefore a useful measure of the viability of these accessory cells. Cooling at 1 degree C/min by a control, optimized procedure yielded 91% survival of viable peritoneal exudate cells. Cooling at either 1 or 20 degrees C/min in the experimental procedures resulted in 72-75% survival of cells frozen by one method and 33% survival when frozen by an alternative procedure. Negligible recovery of viable cells was obtained after cooling at 75 degree C/min. The preservation protocols employed in this study differ significantly in the variables known to influence the survival of the cells; these include the concentration of cryoprotectant (CPA), the length and temperature of exposure to CPA, the dilution regimen, and the optimum cooling rate for survival of pancreatic islets. This study therefore defines clearly those conditions most likely to effect a depletion of "passenger" lymphoid cells by freezing during the cryopreservation of islets of Langerhans.  相似文献   

14.
15.
The pancreatic islets and their blood vessels have been studied in the head, the body and the tail of the human pancreas. The following methods have been applied: injection, histological and quantitative estimation, graphic and plastic reconstruction. A rather great variability in the form of the pancreatic islets has been stated, with presence of one--two peculiar processes in large islets. In different parts of the pancreatic gland, relative volume of the endocrine parenchyma has been stated to be statistically greater (2.16 +/- 0.45%) in the caudal portion than in the head of the gland (1.31 +/- 0.26%). In every pancreatic islet an afferent arterial vessel is described, two types of its branching are determined: magistral and scattered. Relative volume of the pancreatic islets and morpho-functional coefficient reflecting the ratio of the capillary surface area to the volume of the islet capillaries in different parts of the pancreatic gland have been estimated.  相似文献   

16.
《Organogenesis》2013,9(3):155-166
Transplantation of pancreatic islets for the treatment of diabetes mellitus is widely anticipated to eventually provide a cure once a means for preventing rejection is found without reliance upon global immunosuppression. Long-term storage of islets is crucial for the organization of transplantation, islet banking, tissue matching, organ sharing, immuno-manipulation and multiple donor transplantation. Existing methods of cryopreservation involving freezing are known to be suboptimal providing only about 50% survival. The development of techniques for ice-free cryopreservation of mammalian tissues using both natural and synthetic ice blocking molecules, and the process of vitrification (formation of a glass as opposed to crystalline ice) has been a focus of research during recent years. These approaches have established in other tissues that vitrification can markedly improve survival by circumventing ice-induced injury. Here we review some of the underlying issues that impact the vitrification approach to islet cryopreservation and describe some initial studies to apply these new technologies to the long-term storage of pancreatic islets. These studies were designed to optimize both the pre-vitrification hypothermic exposure conditions using newly developed media and to compare new techniques for ice-free cryopreservation with conventional freezing protocols. Some practical constraints and feasible resolutions are discussed. Eventually the optimized techniques will be applied to clinical allografts and xenografts or genetically-modified islets designed to overcome immune responses in the diabetic host.  相似文献   

17.
Transplantation of pancreatic islets for the treatment of diabetes mellitus is widely anticipated to eventually provide a cure once a means for preventing rejection is found without reliance upon global immunosuppression. Long-term storage of islets is crucial for the organization of transplantation, islet banking, tissue matching, organ sharing, immuno-manipulation and multiple donor transplantation. Existing methods of cryopreservation involving freezing are known to be suboptimal providing only about 50% survival. The development of techniques for ice-free cryopreservation of mammalian tissues using both natural and synthetic ice blocking molecules, and the process of vitrification (formation of a glass as opposed to crystalline ice) has been a focus of research during recent years. These approaches have established in other tissues that vitrification can markedly improve survival by circumventing ice-induced injury. Here we review some of the underlying issues that impact the vitrification approach to islet cryopreservation and describe some initial studies to apply these new technologies to the long-term storage of pancreatic islets. These studies were designed to optimize both the pre-vitrification hypothermic exposure conditions using newly developed media and to compare new techniques for ice-free cryopreservation with conventional freezing protocols. Some practical constraints and feasible resolutions are discussed. Eventually the optimized techniques will be applied to clinical allografts and xenografts or genetically-modified islets designed to overcome immune responses in the diabetic host.  相似文献   

18.
Understanding the organisation and role of the extracellular matrix (ECM) in islets of Langerhans is critical for maintaining pancreatic β‐cells, and to recognise and revert the physiopathology of diabetes. Indeed, integrin‐mediated adhesion signalling in response to the pancreatic ECM plays crucial roles in β‐cell survival and insulin secretion, two major functions, which are affected in diabetes. Here, we would like to present an update on the major components of the pancreatic ECM, their role during integrin‐mediated cell‐matrix adhesions and how they are affected during diabetes. To treat diabetes, a promising approach consists in replacing β‐cells by transplantation. However, efficiency is low, because β‐cells suffer of anoikis, due to enzymatic digestion of the pancreatic ECM, which affects the survival of insulin‐secreting β‐cells. The strategy of adding ECM components during transplantation, to reproduce the pancreatic microenvironment, is a challenging task, as many of the regulatory mechanisms that control ECM deposition and turnover are not sufficiently understood. A better comprehension of the impact of the ECM on the adhesion and integrin‐dependent signalling in β‐cells is primordial to improve the healthy state of islets to prevent the onset of diabetes as well as for enhancing the efficiency of the islet transplantation therapy.  相似文献   

19.
Secretion of insulin from pancreatic islets was monitored indirectly by detecting zinc. Anodic stripping voltammetric measurements of zinc were done on a bismuth-modified electrode. Comparison of the performance of bismuth-modified electrodes and mercury film electrodes showed that bismuth is an appropriate alternative for Zn detection. The bismuth-coated electrode was used to detect zinc in insulin samples and insulin secreted from pancreatic islets upon stimulation with high concentrations of K(+). Detection of zinc released from pancreatic islets was done in the culture medium without any further cleanup. This detection method can be used to monitor secretion from pancreatic islets in their native environment.  相似文献   

20.
Culture of pancreatic islets reduces their immunogenicity and results in prolonged graft survival after allotransplantation. The mechanism by which immunogenicity is reduced by culture is not known, but it has been suggested that prolonged graft survival is the result of the depletion of Ia+ cells from the graft. We studied the effect of eliminating Ia+ cells from islets before allotransplantation. Freshly isolated islets were incubated with anti-Ia serum plus complement or with monoclonal antibody to IAk plus complement or were left untreated before transplantation beneath the renal capsule of diabetic recipients. Incubation with anti-Ia serum plus complement eliminated intra-islet IA+ cells as demonstrated by indirect immunofluorescence staining. Incubation with monoclonal antibody to IAk plus complement significantly reduced but did not eliminate IA+ cells. Neither pretreatment regimen influenced survival of islet allografts placed beneath the renal capsule. However, untreated islets injected into the portal circulation were rejected in a low percentage of cases. We conclude that decreased immunogenicity observed after culture is not due solely to the depletion of Ia+ cells and that the site of engraftment has an important impact on graft survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号