首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of sulphur from external sulphate into different fractions was studied in cells with a P content of 0.6 to 1 mg/g fresh weight as against 3 to 5 mg/g fresh weight in normal cells. — There is a flat and broad optimum for the action of pH in the region between 5.7 and 7. — In most cases, citrate inhibits the uptake of sulphur. — Five per cent CO2 in the air enhances the incorporation of S. It is suggested that the effects of CO2 may well be exerted by way of the carboxylation and decarboxylation mechanisms in the cells. — Selenate inhibits the formation of DNA-S and protein S more than that of lipid S, but the main effect in both cases seems to be in an early step of the assimilation of sulphate. In the absence of external phosphate, the inhibition is counteracted by CO2, especially in darkness. Phosphate enhances the action of selenate on the organic S fractions, and in its presence CO2 and darkness make the inhibition more pronounced. — Without P in the medium, the effects of selenate on uptake into the inorganic sulphate fraction are smaller than when the organic fractions are concerned. In the presence of CO2 even stimulations due to selenate have been observed. External phosphate brings the inhibition of uptake into cellular SO42- to the same level as found in the case of organic S. More than one pathway for the uptake as SO42-seem possible. — Anaerobiosis and menadione affect the organic S fractions more than the sulphate; 2,4-dinitrophenol has a more uniform action all over the field.  相似文献   

2.
In vivo tracer studies with 14C have been performed to help determine pathways of incorporation of newly assimilated nitrogen into N2-fixing cells of Anabaena cylindrica. After photosynthesis in Ar:O2:14CO2 for 30 min, the addition of N2 or NH 4 + resulted in increased rates of 14CO2-incorporation both in the light and dark, and in increased incorporation of 14C into amino acids at the expense of sucrose and sugar phosphates. Evidence of enhanced sucrose catabolism and increased pyruvate kinase activity was obtained on adding nitrogen, and, of the 14C-labelling entering the tricarboxylic acid cycle, more appeared in citrate and 2-oxoglutarate than in malate and oxaloacetate. The kinetics of 14C-incorporation into various amino acids suggest that in the light and dark the most important route of primary ammonia assimilation involves glutamine synthetase and that glutamate, aspartate, glycine and probably alanine are formed secondarily from glutamine.  相似文献   

3.
Abstract

Effect of light on the uptake, utilization and transport of sugars. — The effect of light on the uptake of saccharides, their incorporation into insoluble fractions and their transport by green tissues has been studied under conditions of complete inhibition of the photosynthetic assimilation of CO2. Such conditions were obtained by means of either an inhibitor of O2 evolution (CMU), or by running the experiment in CO2-free atmosphere. When Wolffia arryza plants are incubated with glucose-C14, light stimulates the incorporation of C14 into all fractions examined, and especially into the polysaccharides, like cellulose,' which are synthesized outside the chloroplasts.

Experiments with Elodea canadensis have shown that light stimulates the transport of glucose-C14 from the leaves to the stems, independently of the presence or absence of CO2 assimilation.

These experiments support the hypothesis that ATP synthesyzed in the light by chloroplasts can be utilized by green cells as an energy source for biosyntheses outside the plastids, as well as for other types of biological work, such as active uptake and transport.  相似文献   

4.
Pedunculate oak (Quercus robur L.) was germinated and grown at ambient CO2 concentration and 650 μmol mol?1 CO2 in the presence and absence of the ectomycorrhizal fungus Laccaria laccata for a total of 22 weeks under nonlimiting nutrient conditions. Sulphate uptake, xylem loading and exudation were analysed in excised roots. Despite a relatively high affinity for sulphate (KM= 1.6 mmol m?3), the rates of sulphate uptake by excised lateral roots of mycorrhizal oak trees were low as compared to herbaceous plants. Rates of sulphate uptake were similar in mycorrhizal and non-mycorrhizal roots and were not affected by growth of the trees at elevated CO2. However, the total uptake of sulphate per plant was enhanced by elevated CO2 and further enhanced by elevated CO2 and mycorrhization. Sulphate uptake seemed to be closely correlated with biomass accumulation under the conditions applied. The percentage of the sulphate taken up by mycorrhizal oak roots that was loaded into the xylem was an order of magnitude lower than previously observed for herbaceous plants. The rate of xylem loading was enhanced by mycorrhization and, in roots of mycorrhizal trees only, by growth at elevated CO2. On a whole-plant basis this increase in xylem loading could only partially be explained by the increased growth of the trees. Elevated CO2 and mycorrhization appeared to increase greatly the sulphate supply of the shoot at the level of xylem loading. For all treatments, calculated rates of sulphate exudation were significantly lower than the corresponding rates of xylem loading of sulphate. Radiolabelled sulphate loaded into the xylem therefore seems to be readily diluted by unlabelled sulphate during xylem transport. Allocation of reduced sulphur from oak leaves was studied by flap-feeding radiolabelled GSH to mature oak leaves. The rate of export of radioactivity from the fed leaves was 4–5 times higher in mycorrhizal oak trees grown at elevated CO2 than in those grown at ambient CO2. Export of radiolabel proceeded almost exclusively in a basipetal direction to the roots. From these experiments it can be concluded that, in mycorrhizal oak trees grown at elevated CO2, the transport of sulphate to the shoot is increased at the level of xylem loading to enable increased sulphate reduction in the leaves. Increased sulphate reduction seems to be required for the enhanced allocation of reduced sulphur to the roots which is observed in trees grown at elevated CO2. These changes in sulphate and reduced sulphur allocation may be a prerequisite for the positive effect of elevated CO2 on growth of oak trees previously observed.  相似文献   

5.
J. Coombs  B. E. Volcani 《Planta》1968,80(3):264-279
Summary The distribution of radioactivity in ethanol-water-soluble compounds after short periods of photosynthetic incorporation of 14CO2 is consistent with the operation of the photosynthetic carbon reduction (PCR) cycle in the fresh water diatom Navicula pelliculosa. Incorporation of 14CO2 for extended time periods established the presence of the intermediates of the PCR and tricarboxylic acid (TCA) cycles, amino acids, and organic acids; free sugars were not observed. The main labelled soluble carbohydrate was a glucan. Hydrolysis of the radioactive insoluble material indicated the presence of carbohydrates containing several distinct sugars, and proteins with the usual amino-acid composition. During silicon starvation of exponentially growing cultures, rates of incorporation of both 32P i and 14CO2 decreased. Incorporation into the lipid increased, with a corresponding decrease into protein and carbohydrate. Reintroduction of Si to staryed cells led to an increased rate of incorporation of both isotopes, and transient changes in the radioactivity in most metabolic intermediates investigated. After 30 min the radioactivity in all PCR cycle intermediates, except phosphoglyceric acid, had increased by about 300%. The radioactivity of citrate and -keto-glutarate increased, whereas that of other TCA-cycle intermediates decreased. An initial decrease in the levels of glutamate, aspartate and glutamine was apparently reversed by cleavage of glutamate-aspartate peptides, as radioactivity of other amino acids increased. Incorporation into the soluble glucan and into protein increased markedly although the rate of incorporation into insoluble carbohydrates remained constant.  相似文献   

6.
Spinach plunts (Spinacia oleracea L. cv. Monosa) were exposed to air with and without 0.25 μl l-1 H2S. Effects of H2S exposure for up to 18 days on photosynthesis, dark respiration and on chlorophyll a fluorescence were studied. Dark respiration was not affected by H2S fumigation. Photosynthetic CO2 fixation decreased linearly with time in both control and fumigated plants. The rate of decrease in CO2 fixation was faster in the fumigated plants; after 14 days of exposure the fumigated plants showed a decrease in CO2 fixation of 23%äs compared with the control plants. The H2S-induced decrease in CO2 fixation was accompanied by a decrease in quenching of the chlorophyll fluorescence. The most characteristic change in chlorophyll fluorescence was a decreased difference between maximum and steady-state fluorescence [(P-T)/P), suggesting a reduced efficiency in the use of photochemical energy in photosynthesis. Differences in CO2 fixation were more pronounced whcn measured at high light intensity; the maximum rate of CO2 fixation at light saturation decreased significantly with time in the H2S-exposed plants; after 14 days of H2S exposure a decrease of more than 70% was noted. The decrease in CO2 fixation could not be attributed to a decreased chlorophyll content; on the contrary, chlorophyll content even slightly increased during fumigation. The initial increase in CO2 fixation rate with increasing light intensity was also reduced by prolonged H2S fumigation, indicating an effect of H2S fumigation on photosynthetic electron transport. Finally, the phytotoxicity of H2S is discusscd in relation to the H2S-induced changes in photosynthetic CO2 fixation and chlorophyll a fluorescence, and the effect of H2S on leaf development observed in earlier studies.  相似文献   

7.
Evidence is presented for low rates of carriermediated uptake of sulphate, thiosulphate and sulphite into the stroma of the C3 plant Spinacia oleracea. Uptake of sulphate in the dark was followed using two techniques (1) uptake of sulphate [35S] as determined by silicon oil centrifugal filtration and (2) uptake as indicated by inhibition of CO2-dependant O2 evolution rates after addition of sulphate.Sulphate, thiosulphate and sulphite were transported across the envelope leading to an accumulation in the chloroplasts. Sulphate transport had saturation kinetics of the Michaelis-Menten type (Vmax : 25 μmoles . mg−1 chl . h−1 at 22°C ; Km : 2.5 mM). The rate of transport for sulphate was not influenced either by illumination or pH change in the external medium. Phosphate was a competitive inhibitor of sulphate uptake by chloroplasts (Ki : 0.7 mM, fig. 1). The rate of transport for phosphate appeared to be much higher than for sulphate. When the chloroplasts were pre-loaded with labelled sulphate, radioactivity was rapidly released after addition of phosphate into the external medium. Consequently, the transport of sulphate occurs by a strict counter-exchange : for each molecule of sulphate entering the chloroplast, one molecule of phosphate leaves the stroma, and vice-versa.The uptake of sulphate by isolated intact chloroplasts exchanging for internal free phosphate induced a lower rate of photophosphorylation, which in turn inhibited CO2-dependent O2 evolution.The presence, on the inner membrane of the chloroplast envelope, of a specific sulphate carrier, distinct from the phosphate translocator, is discussed.  相似文献   

8.
The formation of hydroxysulphate green rust 2, a Fe(II-III) compound commonly found during corrosion processes of iron-based materials in seawater, has not yet been reported in bacterial cultures. Here we used Shewanella putrefaciens, a dissimilatory iron-reducing bacterium to anaerobically catalyze the transformation of a ferric oxyhydroxide, lepidocrocite (γ-FeOOH), into Fe(II) in the presence of various sulphate concentrations. Biotransformation assays of γ-FeOOH were performed with formate as the electron donor under a variety of concentrations. The results showed that the competitive formation of hydroxycarbonate green rust 1 (GR1(CO3 2?)) and hydroxysulphate green rust 2 (GR2(SO4 2 ?)) depended upon the relative ratio (R) of bicarbonate and sulphate concentrations. When R ≥ 0.17, GR1(CO3 2 ?) only was formed whereas when R < 0.17, a mixture of GR2(SO4 2 ?) and GR1(CO3 2 ?) was obtained. These results demonstrated that the hydroxysulphate GR2 can originate from the microbial reduction of γ-FeOOH and confirmed the preference for carbonate over sulphate during green rust precipitation. The solid phases were characterized by X-ray diffraction, transmission Mössbauer spectroscopy and scanning electron microscopy. Diffuse reflectance infrared Fourier transform spectroscopy confirmed the presence of intercalated carbonate and sulphate in green rust's structure. This study sheds light on the influence of dissimilatory iron-reducing bacteria on microbiologically influenced corrosion.  相似文献   

9.
Helal HM  Mengel K 《Plant physiology》1981,67(5):999-1002
Seedings of Vicia faba were grown for four weeks at two different light intensities (55 and 105 watts per square meter) in a saline (50 millimolar NaCl) and nonsaline nutrient solution. NaCl salinity depressed growth and restricted protein formation, CO2 assimilation, and especially the incorporation of photosynthates into the lipid fraction. Conversion of photosynthates in leaves was much more affected by salinity than was photosynthate turnover in roots. The detrimental effect of NaCl salinity on growth, protein formation, and CO2 assimilation was greater under low than under high light conditions. Plants of the high light intensity treatment were more capable of excluding Na+ and Cl and accumulating nutrient cation species (Ca2+, K+, Mg2+) than plants grown under low light intensity. It is suggested that the improved ionic status provided better conditions for protein synthesis, CO2 assimilation, and especially for the conversion of photosynthates into lipids.  相似文献   

10.
Effects of growth light intensity on the temperature dependence of CO2 assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO2 diffusion (gm) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO2 assimilation rate to chloroplast CO2 concentration (Cc) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (Vcmax) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 µmol electrons mol?1 cyt f s?1 at 25 and 40 °C, respectively). The chloroplast CO2 concentration (Ctrans) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO2 assimilation rate at 380 µmol mol?1 CO2 concentration and high light was limited by RuBP carboxylation above 32 °C and by RuBP regeneration below 32 °C.  相似文献   

11.
The lichen Peltigera aphthosa consists of a fungus and green alga (Coccomyxa) in the main thallus and of a Nostoc located in superficial packets, intermixed with fungus, called cephalodia. Dark nitrogenase activity (acetylene reduction) of lichen discs (of alga, fungus and Nostoc) and of excised cephalodia was sustained at higher rates and for longer than was the dark nitrogenase activity of the isolated Nostoc growing exponentially. Dark nitrogenase activity of the symbiotic Nostoc was supported by the catabolism of polyglucose accumulated in the ligh and which in darkness served to supply ATP and reductant. The decrease in glucose content of the cephalodia paralleled the decline in dark nitrogenase activity in the presence of CO2; in the absence of CO2 dark nitrogenase activity declined faster although the rate of glucose loss was similar in the presence and absence of CO2. Dark CO2 fixation, which after 30 min in darkness represented 17 and 20% of the light rates of discs and cephalodia, respectively, also facilitated dark nitrogenase activity. The isolated Nostoc, the Coccomyxa and the excised fungus all fixed CO2 in the dark; in the lichen most dark CO2 fixation was probably due to the fungus. Kinetic studies using discs or cephalodia showed highest initial incorporation of 14CO2 in the dark in to oxaloacetate, aspartate, malate and fumarate; incorporation in to alanine and citrulline was low; incorporation in to sugar phosphates, phosphoglyceric acid and sugar alcohols was not significant. Substantial activities of the enzymes phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and carbamoyl-phosphate synthase (EC 2.7.2.5 and 2.7.2.9) were detected but the activities of PEP carboxykinase (EC 4.1.1.49) and PEP carboxyphosphotransferase (EC 4.1.1.38) were negligible. In the dark nitrogenase activity by the cephalodia, but not by the free-living Nostoc, declined more rapidly in the absence than in the presence of CO2 in the gas phase. Exogenous NH 4 + inhibited nitrogenase activity by cephalodia in the dark especially in the absence of CO2 but had no effect in the light. The overall data suggest that in the lichen dark CO2 fixation by the fungus may provide carbon skeletons which accept NH 4 + released by the cyanobacterium and that in the absence of CO2, NH 4 + directly, or indirectly via a mechanism which involves glutamine synthetase, inhibits nitrogenase activity.Abbreviations CP carbamoyl phosphate - EDTA ethylenedi-amine tetraacetic acid - PEP phosphoenolpyruvate - RuBP ribulose 1,5 bisphosphate  相似文献   

12.
K. -J. Dietz  U. Schreiber  U. Heber 《Planta》1985,166(2):219-226
The response of chlorophyll fluorescence elicited by a low-fluence-rate modulated measuring beam to actinic light and to superimposed 1-s pulses from a high-fluence-rate light source was used to measure the redox state of the primary acceptor Q A of photosystem II in leaves which were photosynthesizing under steady-state conditions. The leaves were exposed to various O2 and CO2 concentrations and to different energy fluence rates of actinic light to assess the relationship between rates of photosynthesis and the redox state of Q A. Both at low and high fluence rates, the redox state of Q A was little altered when the CO2 concentration was reduced from saturation to about 600 l·l-1 although photosynthesis was decreased particularly at high fluence rates. Upon further reduction in CO2 content the amount of reduced Q A increased appreciably even at low fluence rates where light limited CO2 reduction. Both in the presence and in the absence of CO2, a more reduced Q A was observed when the O2 concentration was below 2%. Q A was almost fully reduced when leaves were exposed to high fluence rates under nitrogen. Even at low fluence rates, Q A was more reduced in shade leaves of Asarum europaeum and Fagus sylvatica than in leaves of Helianthus annuus and Fagus sylvatica grown under high light. Also, in shade leaves the redox state of Q A changed more during a transition from air containing 350 l·l-1 CO2 to CO2-free air than in sun leaves. The results are discussed with respect to the energy status and the CO2-fixation rate of the leaves.Abbreviations and symbols L 1,2 first and second actinic light beam - Q A primary acceptor of photosystem II - q Q Q-quenching  相似文献   

13.
Seven species of marine dinoflagellates were grown in nitrogen-sufficient media under a 12:12 h L:D cycle, and then tested for their ability to take up nitrate and ammonium in the light and in the dark in short-term experiments with 15N-labelled substrate. The effect of the N substrate chosen, and the effect of sampling time in the L:D cycle, on the relative nitrogen content (the C:N ratio) was investigated at the same time. The physiological extremes in the material were represented by Prorocentrum minimum (Pav.) J. Schiller, which took up and presumably assimilated nitrate equally fast in the light and in the dark, and Gyrodinium aureolum Hulburt, which did not take up nitrate in the dark when in a state of nitrogen sufficiency. A strong coupling between nitrate assimilation and photosynthetic carbon assimilation in the latter species was suggested by the close similarity of the light saturation curves of 15NO3? and 14CO2 incorporation, and by a complete blocking of 15NO3? incorporation by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Nitrogen starvation for 24 h induced a capacity in G. aureolum for taking up nitrate in the dark, or in the light in the presence of DCMU, a phenomenon that might be useful for identifying nitrogen limitation in this species in the field. Our study emphasizes the variability of dinoflagellate nitrogen nutrition and illustrates the difficulty of associating mass occurrences of dinoflagellates in nature with any particular nutritional mode.  相似文献   

14.
Thein vivo 14CO2 fixation assay and xylem sap analysis showed that inSesbania rostrata the transport of fixed nitrogen from stem nodules was in the amide form. The majority of nitrogen was transported as asparagine. The close relationship between nodule phosphoenolpyruvate carboxylase and nitrogenase activities suggested that nodule CO2 fixation contributed directly to nitrogen assimilation in stem nodules ofS. rostrata.  相似文献   

15.
A method is described for growing cell suspension cultures of Chenopodium rubrum photoautotrophically for prolonged periods of time. By using a two-tier culture vessel the growth medium with the cells was separated from the CO2 reservoir. Definite CO2 concentrations were established by a K2CO3/KHCO3 buffer. Photoautotrophic growth in C. rubrum cell suspension cultures was correlated with the CO2 level. At 0.5% CO2 the cell cultures contained 68 μg chlorophyll/g fresh weight and showed an increase in fresh weight of about 80% in 18 days. At 1% CO2 an increase in fresh weight of 165% in 18 days was observed. The chlorophyll content rose up to 84 μg/g fresh weight. The photoautotrophic growth was also greatly influenced by the 2,4-D content of the medium. Cell growth was enhanced by lowering the auxin concentration. Best growth was attained (210% increase in fresh weight) at 10?8M 2,4-D. The photosynthetic activity of the cells was measured by the light dependent 14CO2 incorporation. At 0.5% CO2 the cell suspensions assimilated about 100 μmol CO2/mg chlorophyll × h. In the presence of 1% CO2 the light driven assimilation was raised up to 185 μmol CO2/mg chlorophyll × h. In both cases, the dark incorporation of CO2 was merely 1.8% of the values obtained in light.  相似文献   

16.
Synechococcus R-2 (PCC 1942) actively accumulates sulphate in the light and dark. Intracellular sulphate was 1.35 ± 0.23 mol m?3 (light) and 0.894 ± 0.152 mol m?3 (dark) under control conditions (BG-11 media: pHo, 7.5; [SO42?]o, 0.304 mol m?3). The sulphate transporter is different from that found in higher plants: it appears to be an ATP-driven pump transporting one SO42?/ATP [ΔμSO42?i,o=+ 27.7 ± 0.24 kJ mol?1 (light) and + 24 ± 0.34 kj mol?1 (dark)]. The rate of metabolism of SO42?at pHo, 7.5 was 150 ± 28 pmol m?2 s?1 (n = 185) in the light but only 12.8 ± 3.6 pmol m?2 s?1 (n = 61) in the dark. Light-driven sulphate uptake is partially inhibited by DCMU and chloramphenicol. Sulphate uptake is not linked to potassium, proton, sodium or chloride transport. The alga has a constitutive over-capacity for sulphate uptake [light (n= 105): Km= 0.3 ± 0.1 mmol m?3, Vmax, = 1.8 ± 0.6 nmol m?2 s?1; dark (n= 56): Km= 1.4 ± 0.4 mmol m?3, Vmax= 41 ± 22 pmol m?2 s?1]. Sulphite (SO32?) was a competitive inhibitor of sulphate uptake. Selenate (SeO42?) was an uncompetitive inhibitor.  相似文献   

17.
Elevated CO2 enhances photosynthesis and growth of plants, but the enhancement is strongly influenced by the availability of nitrogen. In this article, we summarise our studies on plant responses to elevated CO2. The photosynthetic capacity of leaves depends not only on leaf nitrogen content but also on nitrogen partitioning within a leaf. In Polygonum cuspidatum, nitrogen partitioning among the photosynthetic components was not influenced by elevated CO2 but changed between seasons. Since the alteration in nitrogen partitioning resulted in different CO2-dependence of photosynthetic rates, enhancement of photosynthesis by elevated CO2 was greater in autumn than in summer. Leaf mass per unit area (LMA) increases in plants grown at elevated CO2. This increase was considered to have resulted from the accumulation of carbohydrates not used for plant growth. With a sensitive analysis of a growth model, however, we suggested that the increase in LMA is advantageous for growth at elevated CO2 by compensating for the reduction in leaf nitrogen concentration per unit mass. Enhancement of reproductive yield by elevated CO2 is often smaller than that expected from vegetative growth. In Xanthium canadense, elevated CO2 did not increase seed production, though the vegetative growth increased by 53%. As nitrogen concentration of seeds remained constant at different CO2 levels, we suggest that the availability of nitrogen limited seed production at elevated CO2 levels. We found that leaf area development of plant canopy was strongly constrained by the availability of nitrogen rather than by CO2. In a rice field cultivated at free-air CO2 enrichment, the leaf area index (LAI) increased with an increase in nitrogen availability but did not change with CO2 elevation. We determined optimal LAI to maximise canopy photosynthesis and demonstrated that enhancement of canopy photosynthesis by elevated CO2 was larger at high than at low nitrogen availability. We also studied competitive asymmetry among individuals in an even-aged, monospecific stand at elevated CO2. Light acquisition (acquired light per unit aboveground mass) and utilisation (photosynthesis per unit acquired light) were calculated for each individual in the stand. Elevated CO2 enhanced photosynthesis and growth of tall dominants, which reduced the light availability for shorter subordinates and consequently increased size inequality in the stand.  相似文献   

18.
The present study investigated the influence of abiotic conditions on microbial mat communities from Shark Bay, a World Heritage area well known for a diverse range of extant mats presenting structural similarities with ancient stromatolites. The distributions and stable carbon isotopic values of lipid biomarkers [aliphatic hydrocarbons and polar lipid fatty acids (PLFAs)] and bulk carbon and nitrogen isotope values of biomass were analysed in four different types of mats along a tidal flat gradient to characterize the microbial communities and systematically investigate the relationship of the above parameters with water depth. Cyanobacteria were dominant in all mats, as demonstrated by the presence of diagnostic hydrocarbons (e.g. n‐C17 and n‐C17:1). Several subtle but important differences in lipid composition across the littoral gradient were, however, evident. For instance, the shallower mats contained a higher diatom contribution, concordant with previous mat studies from other locations (e.g. Antarctica). Conversely, the organic matter (OM) of the deeper mats showed evidence for a higher seagrass contribution [high C/N, 13C‐depleted long‐chain n‐alkanes]. The morphological structure of the mats may have influenced CO2 diffusion leading to more 13C‐enriched lipids in the shallow mats. Alternatively, changes in CO2 fixation pathways, such as increase in the acetyl COA‐pathway by sulphate‐reducing bacteria, could have also caused the observed shifts in δ13C values of the mats. In addition, three smooth mats from different Shark Bay sites were analysed to investigate potential functional relationship of the microbial communities with differing salinity levels. The C25:1 HBI was identified in the high salinity mat only and a lower abundance of PLFAs associated with diatoms was observed in the less saline mats, suggesting a higher abundance of diatoms at the most saline site. Furthermore, it appeared that the most and least saline mats were dominated by autotrophic biomass using different CO2 fixation pathways.  相似文献   

19.
揭示不同恢复阶段热带森林土壤细菌呼吸季节变化及其主控因素,对于探明土壤细菌呼吸对热带森林恢复的响应机制具有重要的科学意义。以西双版纳不同恢复阶段热带森林(白背桐群落、崖豆藤群落和高檐蒲桃群落)为研究对象,运用真菌呼吸抑制法及高通量宏基因组测序技术分别测定土壤细菌呼吸速率和细菌多样性,并采用回归分析及结构方程模型揭示热带森林恢复过程中土壤细菌多样性、pH、土壤碳氮组分变化对土壤细菌呼吸速率的影响特征。结果表明:1)不同恢复阶段热带森林土壤细菌呼吸速率表现为:高檐蒲桃群落((1.51±0.62)CO2 mg g-1 h-1)显著高于崖豆藤群落((1.16±0.56)CO2 mg g-1 h-1)和白背桐群落((0.82±0.60)CO2 mg g-1 h-1)(P<0.05)。2)不同恢复阶段土壤细菌呼吸速率呈显著的单峰型季节变化(P<0.05),最大值均出现在9月:高檐蒲桃群落((...  相似文献   

20.
Abscisic acid inhibited the rate of 14CO2 fixation in leaves of Pennisetum typhoides (Burm. f.) Stapf & Hubbard seedlings, but increased the activities of phosphoenol-pyruvate-carboxylase and malic enzyme. The leaves of the seedlings grown in the presence of abscisic acid incorporated, in comparison to the control, more radioactivity in the fraction of organic acids, but less radioactivity was recorded in the amino acid fraction. On the other hand, gibberellic acid which also inhibits photosynthetic 14CO2 assimilation and decreases the activities of photosynthetic enzymes, favours greater incorporation in alanine, and reduces that in malate. It is deduced that bio-regulants can greatly influence the flow of 14C into individual photosynthetic products. As in growth, abscisic and gibberellic acids in combination tended to antagonize each other in their effects on enzyme activity as well as in incorporation of 14CO2 into photosynthetic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号