首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we showed that atrial natriuretic factor (ANF) decreases cardiac cell volume by inhibiting ion uptake by Na+/K+/2Cl- cotransport. Digital video microscopy was used to study the role of guanosine 3',5'-monophosphate (cGMP) in this process in rabbit ventricular myocytes. Each cell served as its own control, and relative cell volumes (volume(test)/volume(control)) were determined. Exposure to 10 microM 8-bromo-cGMP (8-Br-cGMP) reversibly decreased cell volume to 0.892 +/- 0.007; the ED50 was 0.77 +/- 0.33 microM. Activating guanylate cyclase with 100 microM sodium nitroprusside also decreased cell volume to 0.889 +/- 0.009. In contrast, 8-bromo-adenosine 3',5'-monophosphate (8-Br-AMP; 0.01-100 microM) neither altered cell volume directly nor modified the response to 8-Br-cGMP. The idea that cGMP decreases cell volume by inhibiting Na+/K+/2Cl- cotransport was tested by blocking the cotransporter with 10 microM bumetanide (BUM) and removing the transported ions. After BUM treatment, 10 microM 8-Br-cGMP failed to decrease cell volume. Replacement of Na+ with N-methyl-D-glucamine or Cl- with methanesulfonate also prevented 8-Br-cGMP from shrinking cells. The data suggest that 8-Br-cGMP, like ANF, decreases ventricular cell volume by inhibiting Na+/K+/2Cl-cotransport. Evidence that ANF modulates cell volume via cGMP was also obtained. Pretreatment with 10 microM 8-Br-cGMP prevented the effect of 1 microM ANF on cell volume, and ANF suppressed 8-Br-cGMP-induced cell shrinkage. Inhibiting guanylate cyclase with the quinolinedione LY83583 (10 microM) diminished ANF-induced cell shrinkage, and inhibiting cGMP-specific phosphodiesterase with M&B22948 (Zaprinast; 100 microM) amplified the volume decrease caused by a low dose of ANF (0.01 microM) approximately fivefold. In contrast, neither 100 microM 8-Br-cAMP nor 50 microM forskolin affected the response to ANF. The effects of ANF, LY83583, and M&B29948 on cGMP levels in isolated ventricular myocytes were confirmed by 125I-cGMP radioimmunoassay. These data argue that ANF shrinks cardiac cells by increasing intracellular cGMP, thereby inhibiting Na+/K+/2Cl- cotransport. Basal cGMP levels also appear to modulate cell volume.  相似文献   

2.
Two receptor sites for [3H]piretanide, a sulfamoylbenzoic acid loop diuretic, have been identified in intact Madin-Darby canine kidney cells, an epithelial cell line derived from dog kidney. The two receptor sites differed in their affinity for piretanide (KD1 = 2.1 +/- 1.4 nM and KD2 = 264 +/- 88 nM) and the maximal number of sites (Bmax1 = 11 +/- 4 and Bmax2 = 120 +/- 80 fmol/mg of protein). Madin-Darby canine kidney cells are known to possess a tightly coupled and highly cooperative Na+,K+,Cl- cotransporter which is sensitive to loop diuretics. Under ionic conditions identical to those used to study piretanide binding (30 mM Na+, 30 mM K+, 30 mM Cl-), the Ki for inhibition of the initial rate of 86Rb+ uptake by piretanide was 333 +/- 92 nM, a value not significantly different from the KD of the low affinity receptor site. [3H]Piretanide binding to three low K+-resistant mutants derived from this cell line was also studied. These mutants had been previously characterized as being partially or completely defective in Na+,K+,Cl- cotransport activity (McRoberts, J. A., Tran, C. T., and Saier, M. H., Jr. (1983) J. Biol. Chem. 258, 12320-12326). One of these mutants had undetectable levels of Na+,K+,Cl- cotransport activity and low to undetectable levels of specific piretanide binding. The second mutant had low but measurable levels of cotransport activity (11% of the wild-type levels) and displayed very low affinity (KD approximately 8000 nM) specific piretanide binding. In the third mutant, expression of Na+,K+,Cl- cotransport activity and both piretanide receptors was cell density-dependent. Subconfluent to just-confluent cultures of this mutant lacked detectable cotransport activity as well as specific piretanide binding, whereas very dense cultures displayed both piretanide receptors and had intermediate to nearly normal levels of cotransport activity. These results demonstrate that the Na+,K+,Cl- cotransporter is a receptor for loop diuretics, but they also raise questions about the functional significance of the two piretanide receptor sites.  相似文献   

3.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

4.
This study examines the effect of heat-induced cytoskeleton transitions and phosphoprotein phosphatase inhibitors on the activity of shrinkage-induced Na+, K+, 2Cl- cotransport and Na+/H+ exchange in rat erythrocytes and swelling-induced K+, Cl- cotransport in human and rat blood cells. Preincubation of human and rat erythrocytes at 49 degrees C drastically activated K+, Cl- cotransport and completely (rat) or partly (human) abolished its volume-dependent regulation. The same procedure did not affect basal activity of Na+, K+, 2Cl- cotransport but completely abolished its activation by shrinkage thus suggesting the involvement of a thermosensitive element of cytoskeleton network in the volume-dependent regulation of cotransporters. Both the shrinkage- and electrochemical proton gradient-induced Na+/H+ exchange was inhibited by the heat treatment to the same extent (50-70%), thus indicating the different signaling pathways involved in the activation of Na+, K+, 2Cl- cotransport and Na+/H+ exchange by cell shrinkage. This suggestion is in accordance with data on the different kinetics of volume-dependent activation and inactivation of these carriers as well as on their sensitivity to medium osmolality. Both swelling- and heat-induced increments of K+, Cl- cotransport activity were diminished by inhibitors of phosphoprotein phosphatases (okadaic acid and calyculin). In rat erythrocytes these compounds potentiate shrinkage-induced Na+/H+ exchange. On the contrary, neither basal nor shrinkage-induced Na+, K+, 2Cl- cotransport was affected by these compounds. Our results indicate a key role of cytoskeleton network in volume-dependent activation of K+, Cl- and Na+, K+, 2Cl- cotransport and the involvement of protein phosphorylation-dephosphorylation cycle in regulation of the activity of K+, Cl- cotransport and Na+/H+ exchange.  相似文献   

5.
Na+, K+, and Cl- transport in resting pancreatic acinar cells   总被引:2,自引:1,他引:1  
To understand the role of Na+, K+, and Cl- transporters in fluid and electrolyte secretion by pancreatic acinar cells, we studied the relationship between them in resting and stimulated cells. Measurements of [Cl-]i in resting cells showed that in HCO3(-)-buffered medium [Cl- ]i and Cl- fluxes are dominated by the Cl-/HCO3- exchanger. In the absence of HCO3-, [Cl-]i is regulated by NaCl and NaK2Cl cotransport systems. Measurements of [Na+]i showed that the Na(+)-coupled Cl- transporters contributed to the regulation of [Na+]i, but the major Na+ influx pathway in resting pancreatic acinar cells is the Na+/H+ exchanger. 86Rb influx measurements revealed that > 95% of K+ influx is mediated by the Na+ pump and the NaK2Cl cotransporter. In resting cells, the two transporters appear to be coupled through [K+]i in that inhibition of either transporter had small effect on 86Rb uptake, but inhibition of both transporters largely prevented 86Rb uptake. Another form of coupling occurs between the Na+ influx transporters and the Na+ pump. Thus, inhibition of NaK2Cl cotransport increased Na+ influx by the Na+/H+ exchanger to fuel the Na+ pump. Similarly, inhibition of Na+/H+ exchange increased the activity of the NaK2Cl cotransporter. The combined measurements of [Na+]i and 86Rb influx indicate that the Na+/H+ exchanger contributes twice more than the NaK2Cl cotransporter and three times more than the NaCl cotransporter and a tetraethylammonium-sensitive channel to Na+ influx in resting cells. These findings were used to develop a model for the relationship between the transporters in resting pancreatic acinar cells.  相似文献   

6.
Primary rat aortic cells, when treated with arginine vasopressin or depolarizing concentrations of K+, responded to atriopeptin II and 8-bromo-cGMP (8-Br-cGMP) with decreases in intracellular Ca2+ levels. The effects of atriopeptin and 8-Br-cGMP were diminished in cells which had been passaged many times. Low levels of cGMP-dependent protein kinase were present in soluble extracts prepared from the unresponsive cells in later passage compared with extracts from responsive cells. Unresponsive cells, when induced to incorporate cGMP-dependent protein kinase into the cytoplasm using the osmotic lysis procedure of Okada and Rechsteiner (Okada, C. Y., and Rechsteiner, M. (1982) Cell 29, 33-41), responded to atriopeptin and 8-Br-cGMP with reductions in peak Ca2+ levels in response to vasopressin and depolarizing concentrations of K+. Cells which were furnished with affinity-purified antibody to the cGMP-dependent protein kinase after the introduction of the kinase remained unresponsive to the effects of atriopeptin. In addition, antibody furnished to responsive primary cultured cells inhibited the effects of atriopeptin and 8-Br-cGMP on Ca2+ levels. These data suggest that repetitively passaged cultured rat aortic smooth muscle cells lose their responsiveness to cGMP concurrently with the loss of cGMP-dependent protein kinase. Restoration of kinase to the cells results in the restoration of responsiveness to cGMP. Thus cGMP-dependent protein kinase appears to be the mediator of the reduction in Ca2+ levels upon elevation of intracellular cGMP.  相似文献   

7.
Dopamine (DA) and atrial natriuretic factor (ANF) share a number of physiological effects. We hypothesized that ANF and the renal dopaminergic system could interact and enhance the natriuretic and diuretic effects of the peptide. We have previously reported that the ANF-stimulated DA uptake in renal tubular cells is mediated by the natriuretic peptide type-A receptor (NPR-A). Our aim was to investigate the signaling pathways that mediate ANF effects on renal 3H-DA uptake. Methylene blue (10 microM), an unspecific inhibitor of guanylate cyclase (GC), blunted ANF elicited increase of DA uptake. ODQ (10 microM) a specific inhibitor of soluble GC, did not modify DA uptake and did not reverse ANF-induced increase of DA uptake; then the participation of nitric oxide-dependent pathways must be discarded. The second messenger was the cGMP since the analogous 125 microM 8-Br-cGMP mimicked ANF effects. The specific inhibitor of the protein kinase G (PKG), KT 5823 (1 microM) blocked ANF effects indicating that PKG is involved. We examined if ANF effects on DA uptake were able to modify Na+, K+ -adenosine triphosphatase (Na+, K+ -ATPase) activity. The experiments were designed by means of inhibition of renal DA synthesis by carbidopa and neuronal DA uptake blocked by nomifensine. In these conditions renal Na+, K+ -ATPase activity was increased, in agreement with the decrease of DA availability. When in similar conditions, exogenous DA was added to the incubation medium, the activity of the enzyme tended to decrease, following to the restored availability of DA. The addition of ANF alone had similar effects to the addition of DA on the sodium pump, but when both were added together, the activity of Na(+), K(+)-ATPase was decreased. Moreover, the extraneuronal uptake blocker, hydrocortisone, inhibited the latter effect. In conclusion, ANF stimulates extraneuronal DA uptake in external cortex tissues by activation of NPR-A receptors coupled to GC and it signals through cGMP as second messenger and PKG. Dopamine and ANF may achieve their effects through a common pathway that involves reversible deactivation of renal tubular Na+, K+ -ATPase activity. This mechanism demonstrates a DA-ANF relationship involved in the modulation of both decreased sodium reabsorption and increased natriuresis.  相似文献   

8.
Bumetanide-sensitive (BS) unidirectional fluxes of (36)Cl- or (22)Na+ were measured in internally dialyzed squid giant axons while varying the intra- or extracellular concentrations of Na+ and/or Cl-. Raising either [Cl-]i or [Na+]i resulted in a concentration-dependent reduction of the BS influx of both (36)Cl- and (22)Na+. Raising [Cl-]i above 200 mM completely blocked BS influxes. However, raising [Na+]i to 290 mM resulted in saturable but incomplete inhibition of both BS Na+ influx and BS Cl- influx. The consequences of varying intracellular Cl- on cotransporter effluxes were complex. At lower [Cl-]i values (below 100 mM) intracellular Cl- activated cotransporter effluxes. Surprisingly, however, raising [Cl-]i levels > 125 mM resulted in a [Cl-]i-dependent inhibition of BS effluxes of both Na+ and Cl-. On the other hand, raising [Na+]i resulted only in the activation of the BS Na+ efflux; intracellular Na+ did not inhibit BS efflux even at 290 mM. The inhibitory effects of intracellular Na+ on cotransporter-mediated influxes, and lack of inhibitory effects on BS effluxes, are consistent with the trans-side inhibition expected for an ordered binding/release model of cotransporter operation. However, the inhibitory effects of intracellular Cl- on both influxes and effluxes are not explained by such a model. These data suggest that Cl may interact with an intracellular site (or sites), which does not mediate Cl transport, but does modulate the transport activity of the Na+, K+, Cl- cotransporter.  相似文献   

9.
The influence of cyclic 3',5'-guanosine monophosphate (cGMP) on the lipolytic and antilipolytic (inhibition of glucagon-stimulated lipolysis) responses to GH (1 microgram/ml) was examined in chicken adipose tissue in vitro. Both 8-bromo-cGMP (0.1 mM) and sodium nitroprusside (1 mM) (a guanyl cyclase stimulator) completely inhibited the lipolytic effect of GH. A cGMP-lowering agent, LY83583 (10 microM), reversed the inhibitory effect of sodium nitroprusside on GH-stimulated lipolysis. Furthermore, the suppressive effects of insulin (100 ng/ml), insulin-like growth factor I (IGF-I) (100 ng/ml), or insulin-like growth factor II (IGF-II/MSA) (100 ng/ml), but not somatostatin (1 ng/ml), on GH-stimulated lipolysis were prevented by LY83583 addition. Neither 8-bromo-cGMP, sodium nitroprusside, nor LY83583 altered GH-induced inhibition of glucagon (1 ng/ml)-stimulated lipolysis. It is proposed that cGMP may mediate inhibitory control of GH-stimulated lipolysis by insulin, IGF-I, and IGF-II in chicken adipose tissue.  相似文献   

10.
The mechanisms by which 86Rb+ (used as a tracer for K+) enters human nonpigmented ciliary epithelial cells were investigated. Ouabain-inhibitable bumetanide-insensitive 86Rb+ transport accounted for approximately 70-80% of total, whereas bumetanide-inhibitable ouabain-insensitive uptake accounted for 15-25% of total. K+ channel blockers such as BaCl2 reduced uptake by approximately 5%. Bumetanide inhibited 86Rb+ uptake with an IC50 of 0.5 microM, while furosemide inhibited with an IC50 of about 20 microM. Bumetanide-inhibitable 86Rb+ uptake was reduced in Na(+)-free or Cl(-)-free media, suggesting that Na+ and Cl- were required for optimal uptake via this mechanism. These characteristics are consistent with a Na+, K+, Cl- cotransporter in NPE cells. Treatment of NPE cells for 15 min with phorbol 12-myristate, 13-acetate (PMA), an activator of protein kinase C, caused a 50-70% decrease in 86Rb+ uptake via the Na+, K+, Cl- cotransporter. Other 86Rb+ uptake mechanisms were not affected. 86Rb+ uptake via the Na+, K+, Cl- cotransporter could be inhibited by other phorbol esters and by dioctanoylglycerol, an analog of diacylglycerol, but not by 4 alpha phorbol didecanoate, an ineffective activator of protein kinase C. Staurosporine, a protein kinase C inhibitor, blocked phorbol ester inhibition of 86Rb+ uptake. These data suggest that a Na+, K+, Cl- cotransporter in NPE cells is inhibited by activation of protein kinase C.  相似文献   

11.
Isolated small intestinal epithelial cells, after incubation at 4 degrees C for 30 min, reach ion concentrations (36 mM K+, 113 mM Na+ and 110 mM Cl-) very similar to those of the incubation medium. Upon rewarming to 37 degrees C, cells are able to extrude Na+, Cl- and water and to gain K+. Na+ extrusion is performed by two active mechanisms. The first mechanism, transporting Na+ by exchanging it for K+, is inhibited by ouabain and is insensitive to ethacrynic acid. It is the classical Na+ pump. The second mechanism transports Na+ with Cl- and water, is insensitive to ouabain but is inhibited by ethacrynic acid. Both mechanisms are inhibited by dinitrophenol and anoxia. The second Na+ extruding mechanism could be the Na+/K+/2Cl- cotransport system. However, this possibility can be ruled out because the force driving cotransport would work inwards, and because Na+ extrusion with water loss continues after substitution of Cl- by NO3-. We propose that enterocytes have a second Na+ pump, similar to that proposed in proximal tubular cells.  相似文献   

12.
Confluent monolayer cultures of the Madin-Darby canine kidney (MDCK) cell line have been shown to possess a furosemide and bumetanide-sensitive (Na+,K+)-cotransport system. We have studied the effect of anion substitutions on (Na+,K+)-cotransport. In Na+-depleted cells, bumetanide-sensitive uptake of 22Na+ or 86Rb+ exhibited an absolute requirement for extracellular Cl-. Chloride could be replaced in the buffers by Br-, but not by F-, I-, acetate, nitrate, thiocyanate, sulfate, or gluconate. The effect of Cl- was saturating, and Na+-stimulated 86RB+ uptake as well as K+-stimulated 22Na+ uptake was shown to be dependent on the square of the Cl- concentration. The concentration of Cl- which gave half-maximal stimulation of cation cotransport varied between 58 and 70 mM. There was a small degree of cooperativity between the binding affinities for Cl- and K+ at constant Na+ concentrations. Bumetanide-sensitive 36Cl- uptake could be demonstrated when extracellular Na+ and K+ were present simultaneously. Uptake through this system was unaffected by changes in the membrane potential or by the imposition of pH gradients. Together these data strongly suggest that the bumetanide-sensitive transport system in Madin-Darby canine kidney cells co-transports Na+, K+, and Cl- in a ratio of 1:1:2.  相似文献   

13.
Recently we reported the presence of both the guanylyl cyclase-linked (116 kDa) and the ANF-C (66 kDa) atrial natriuretic peptide receptors in the rat liver. Since ANF 103-125 (atriopeptin II) stimulates cGMP production in livers and because cGMP has previously been shown to mimic the actions of cAMP in regulating hepatic carbohydrate metabolism, studies were performed to investigate the effects of atriopeptin II on hepatic glycolysis and gluconeogenesis. Additionally, employing analogs of atrial natriuretic hormone [des-(Q116, S117, G118, L119, G120) ANF 102-121 (C-ANF) and des-(C105,121) ANF 104-126 (analog I)] which bind only the ANF-C receptors, the role of the ANF-C receptors in the hepatic actions of atriopeptin II was evaluated. In perfused livers of fed rats atriopeptin II, but not C-ANF and analog I, inhibited hepatic glycolysis and stimulated glucose production. Moreover, analog I did not alter the ability of atriopeptin II to inhibit hepatic glycolysis. Atriopeptin II, but not C-ANF and analog I, also stimulated cGMP production in perfused rat livers. Furthermore, while atriopeptin II inhibited the activity ratio of pyruvate kinase by 30%, C-ANF did not alter hepatic pyruvate kinase activity. Finally, in rat hepatocytes, atriopeptin II stimulated the synthesis of [14C]glucose from [2-14C]pyruvate by 50% and this effect of atriopeptin II was mimicked by the exogenously supplied cGMP analog, 8-bromo cGMP. Thus atriopeptin II increases hepatic gluconeogenesis and inhibits glycolysis, in part by inhibiting pyruvate kinase activity, and the effects of atriopeptin II are mediated via activation of guanylyl cyclase-linked ANF receptors which elevate cGMP production.  相似文献   

14.
The inhibition of passive K+ influx into human red blood cells (RBC) by loop diuretics was found to be dependent on the external Na+ concentration. In the absence of external Na+, there was minimal inhibition but the influx remained dependent on Cl- ions. Thus, raising the external Na+ concentration increased the affinity of the putative (Na+, K+, Cl-) cotransport system in human RBC for loop diuretics.  相似文献   

15.
The renal cell culture model, LLC-PK1, which contains an amiloride-sensitive conductive Na+ transport pathway and a Na+/H+ exchanger, was utilized to examine the direct effects of atriopeptin II and cGMP on Na+ transport in epithelial cells. Exposure of cells to atriopeptin II (10(-7) M) increased cGMP production within 2 min of addition to cells in monolayer. Atriopeptin II (10(-7) M) or exogenous 8-bromo-cGMP (10(-3) M) maximally inhibited the uptake of 22Na+ through the conductive pathway which accounted for up to 60% of total 22Na+ uptake. The apparent Ki for this inhibition by atriopeptin II was 2 X 10(-11) M. Amiloride inhibited 22Na+ uptake to a similar extent as atriopeptin II, and the effects of the presence of both agents was not additive. In contrast, neither atriopeptin II nor cGMP blunted the increment in 22Na+ uptake induced by a pH gradient. Thus atriopeptin II can directly inhibit Na+ transport in renal epithelial cells, probably through its stimulation of cGMP.  相似文献   

16.
alpha-Thrombin, a potent mitogen for the hamster fibroblast cell line CCL 39, stimulates by approximately 3-fold 86Rb+ uptake in a mutant lacking the Na+/H+ antiport activity (PS 120). The major component of this stimulated 86Rb+ (K+) uptake is a bumetanide-sensitive flux (IC50 = 0.4 microM), which accounts for 50% of total K+ uptake in Go-arrested cells and is approximately 4-fold stimulated by maximal thrombin concentrations (EC50 = 5 X 10(-4) units/ml). This bumetanide-sensitive 86Rb+ uptake represents a Na+/K+/Cl- cotransport, as indicated by its dependence on extracellular Na+ and Cl- and by the existence in PS 120 cells of a bumetanide-sensitive K+-dependent 22Na+ uptake. The stimulation reaches its maximum within 2 min, is reduced at acidic intracellular pH values (half-maximal at pHi = 6.8), and can also be induced, to a lesser extent, by EGF and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, the effects of which are nearly additive. In contrast, preincubation with 12-O-tetradecanoylphorbol 13-acetate results in inhibition of thrombin- and EGF-induced stimulations, suggesting that activated protein kinase C might exert a feedback inhibitory control. This study clearly demonstrates that the growth factor-induced activation of the Na+/K+/Cl- cotransport is separated from the activation of the Na+/H+ antiport. However, activation of this cotransporter does not seem to play a major role in the mitogenic signaling pathway since its complete inhibition with bumetanide reduces only by 25-30% reinitiation of DNA synthesis.  相似文献   

17.
Transfer of LM(TK-) cells from normal growth medium to medium lacking K+ leads to a rapid loss of intracellular K+, which is 50-70% inhibited by furosemide or bumetanide. The diuretic-sensitive component of K+ efflux requires both Na+ and Cl-, and is presumably mediated by a K+, Na+, Cl- cotransport system of the kind described in avian erythrocytes and Ehrlich ascites cells. It can be calculated that such a system should be near equilibrium under normal growth conditions but should mediate net efflux (as observed) when the driving force is altered by reducing extracellular K+. The diuretic-sensitive component of net K+ efflux is also sensitive to amiloride. This effect is probably indirect, however, with amiloride acting to block the Na+ influx that supplies Na+ to the cotransport system. At the low extracellular K+ concentrations employed in these studies, the diuretic-sensitive system is a physiologically important pathway of K+ loss. The rate of growth in low-K+ medium can be increased (or the rate of cell lysis decreased) by adding diuretic or by reducing external Na+ or Cl-.  相似文献   

18.
Our main objective was to test the efficacy of 6-anilino-5,8-quinolinedione (LY83583) in vivo, a putative inhibitor of cyclic guanosine 3',5'-monophosphate (cGMP) production. If the drug proved capable of lowering plasma, vascular, and kidney levels of cGMP and of inhibiting the hypotensive effect of sodium nitroprusside and methacholine, then LY83583 could be of potential use in exploring the contribution of cGMP to cardiovascular and renal physiology. We found that when administered to trained conscious rats, LY83583 (1-mg/kg bolus, followed by a 2-hr infusion of 3 mg/kg.hr) decreased plasma cGMP concentration by 36% (P less than 0.01). Doubling the dosage of drug (2-mg/kg bolus, 6 mg/kg.hr) decreased plasma cGMP by 46% (P less than 0.05). We next measured tissue levels of cGMP ex vivo from rats that had received LY83583 or vehicle for 2 hr. The cGMP content of aortic segments when LY83583 was infused at the low dose, or renal cortical tissue when LY83583 was infused at both doses, was not significantly different from the cGMP content of tissue from rats that had received vehicle. LY83583 in doses up to 10-mg/kg bolus, followed by 6 mg/kg.hr infusion also failed to attenuate the hypotensive response to sodium nitroprusside or methacholine in conscious rats. Last, we tested whether, in our hands, LY83583 could reduce cGMP of aortic segments and kidney cortical slices in vitro. We found that after 10 min of incubation, 10(-5) M LY83583 decreased intracellular cGMP by approximately 65% and 50% in aortic and kidney tissues, respectively. In order to ascertain whether LY83583 lowered cGMP by stimulating phosphodiesterase, we incubated tissues with 10(-4) M 3-isobutyl-1-methylxanthine to inhibit the enzyme. In the presence of 3-isobutyl-1-methylxanthine LY83583 still exerted an inhibitory effect on cGMP production by aortic and kidney tissues. In conclusion, although LY83583 is a useful agent to lower renal and vascular tissues levels of cGMP in vitro, its efficacy in vivo seems doubtful.  相似文献   

19.
A Na+/K+/Cl- cotransport pathway has been examined in the HT29 human colonic adenocarcinoma cell line using 86Rb as the K congener. Ouabain-resistant bumetanide-sensitive (OR-BS) K+ influx in attached HT29 cells was 17.9 +/- 0.9 nmol/min per mg protein at 25 degrees C. The identity of this pathway as a Na+/K+/Cl- cotransporter has been deduced from the following findings: (a) OR-BS K+ influx ceased if the external Cl- (Cl-o) was replaced by NO3- or the external Na+ (Na+o) by choline; (b) neither OR-BS 24Na+ nor 36Cl- influx was detectable in the absence of external K+ (K+o); and (c) concomitant measurements of 86Rb+, 22Na+, and 36Cl- influx indicated that the stoichiometry of the cotransport system approached a ratio of 1N+:1K+:2Cl-. In addition, OR-BS K+ influx was exquisitely sensitive to cellular ATP levels. Depletion of the normal ATP content of 35-40 nmol/mg protein to 10-15 nmol/mg protein, a concentration at which the ouabain-sensitive K+ influx was unaffected, completely abolished K+ cotransport. OR-BS K+ influx was slightly reduced by the divalent cations Ca2+, Ba2+, Mg2+ and Mn2+. Although changes in cell volume, whether shrinking or swelling, did not influence OR-BS K+ influx, ouabain-sensitive K+ influx was activated by cell swelling. As in T84 cells, we found that the OR-BS K+ influx in HT29 cells was stimulated by exogenous cyclic AMP analogues and by augmented cyclic AMP content in response to vasoactive intestinal peptide, forskolin, norepinephrine and forskolin or prostaglandin E1.  相似文献   

20.
In the present study, we investigated the role of intracellular Ca++ in the stimulation of the Na+/K+/Cl- cotransport in synchronized BALB/c 3T3 cells. The Na+/K+/Cl- cotransport was stimulated by the growth factors EGF, TGF-alpha, IGF-1, and IGF-2, which do not activate protein kinase C, but do induce a transient increase in free cytoplasmic Ca++. In addition, direct activation of protein kinase C by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) did not affect the Na+/K+/Cl- cotransport activity of quiescent cells. The Na+/K+/Cl- cotransport was also stimulated by the above mitogens in cells pretreated with the phorbol ester TPA. This treatment led to a progressive decline in the activity of cellular protein kinase C. This result implies that cells deficient in protein kinase C may still support stimulation of the Na+/K+/Cl- cotransport. Taken as a whole, these findings suggest that the Na+/K+/Cl- cotransport is stimulated predominantly by a protein kinase C-independent mechanism in BALB/c 3T3 fibroblasts. Both the intracellular Ca++ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) and two potent calmodulin antagonists, trifluoperazine (TFP) and chloropromazine (CP), blocked serum- and mitogen-stimulated Na+/K+/Cl- cotransport. These results suggest that the Na+/K+/Cl- cotransport is stimulated by an increase of intracellular Ca++ and subsequently by a Ca(++)-calmodulin-mediated pathway in the synchronized BALB/c 3T3 fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号