首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA. In another lineage, however, S1-specific thymocytes are subjected to more extensive deletion and far fewer S1-specific CD4+ CD25+ regulatory T cells accumulate in the periphery. We show that radioresistant stromal cells can direct both deletion and CD4+ CD25+ regulatory T cell selection of S1-specific thymocytes. Interestingly, even though their numbers can vary, the S1-specific CD4+ CD25+ regulatory T cells in all cases coexist with clonally related CD4+ CD25- T cells that lack regulatory function. These findings show that the formation of the CD4+ CD25+ regulatory T cell repertoire is sensitive to variations in the expression of self-peptides.  相似文献   

2.
Although somatically mutated autoantibodies are characteristic of many autoimmune diseases, the processes that can lead to their development remain poorly understood. We have examined the formation of autoreactive memory B cells in PevHA mice, which express the influenza virus PR8 hemagglutinin (HA) as a transgenic membrane bound neo-self-Ag. Using a virus immunization strategy, we show that PR8 HA-specific memory B cell formation can occur in PevHA mice, even though a major subset of PR8 HA-specific B cells is negatively selected from the primary repertoire. Moreover, PR8 HA-specific memory B cells develop spontaneously in TS1 x PevHA mice, which coexpress a transgenic PR8 HA-specific TCR and contain a high frequency of HA-specific CD4(+) T cells. Notably, autoreactive memory B cell formation occurred in TS1 x PevHA mice even though approximately half of the HA-specific CD4(+) T cells were CD25(+)Foxp3(+) cells that could significantly attenuate, but did not completely abolish HA-specific autoantibody production in an adoptive transfer setting. The findings provide evidence that a high frequency of autoreactive CD4(+) T cells can be sufficient to promote autoreactive memory B cell formation in the absence of signals provided by overt immunization or infection and despite the presence of abundant autoantigen-specific CD4(+)CD25(+)Foxp3(+) regulatory T cells.  相似文献   

3.
Transplantation tolerance is induced reliably in experimental animals following intrathymic inoculation with the relevant donor strain Ags; however, the immunological mechanisms responsible for the induction and maintenance of the tolerant state remain unknown. We investigated these mechanisms using TCR transgenic mice (TS1) that carry T cells specific for an immunodominant, MHC class II-restricted peptide (S1) of the influenza PR8 hemagglutinin (HA) molecule. We demonstrated that TS1 mice reject skin grafts that have transgene-encoded HA molecules (HA104) as their sole antigenic disparity and that intrathymic but not i.v. inoculation of TS1 mice with S1 peptide induces tolerance to HA-expressing skin grafts. Intrathymic peptide inoculation was associated with a dose-dependent reduction in T cells bearing high levels of TCR specific for HA. However, this reduction was both incomplete and transient, with a full recovery of S1-specific thymocytes by 4 wk. Peptide inoculation into the thymus also resulted in the generation of immunoregulatory T cells (CD4+CD25+) that migrated to the peripheral lymphoid organs. Adoptive transfer experiments using FACS sorted CD4+CD25- and CD4+CD25+ T cells from tolerant mice revealed that the former but not the latter maintain the capacity to induce rejection of HA bearing skin allografts in syngeneic hosts. Our results suggest that both clonal frequency reduction in the thymus and immunoregulatory T cells exported from the thymus are critical to transplantation tolerance induced by intrathymic Ag inoculation.  相似文献   

4.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

5.
We have used TCR transgenic mice directed to different MHC class II-restricted determinants from the influenza virus hemagglutinin (HA) to analyze how specificity for self-peptides can shape CD4+CD25+ regulatory T (Treg) cell formation. We show that substantial increases in the number of CD4+CD25+ Treg cells can occur when an autoreactive TCR directed to a major I-E(d)-restricted determinant from HA develops in mice expressing HA as a self-Ag, and that the efficiency of this process is largely unaffected by the ability to coexpress additional TCR alpha-chains. This increased formation of CD4+CD25+ Treg cells in the presence of the self-peptide argues against models that postulate selective survival rather than induced formation as mechanisms of CD4+CD25+ Treg cell formation. In contrast, T cells bearing a TCR directed to a major I-A(d)-restricted determinant from HA underwent little or no selection to become CD4+CD25+ Treg cells in mice expressing HA as a self-Ag, correlating with inefficient processing and presentation of the peptide from the neo-self-HA polypeptide. These findings show that interactions with a self-peptide can induce thymocytes to differentiate along a pathway to become CD4+CD25+ Treg cells, and that peptide editing by DM molecules may help bias the CD4+CD25+ Treg cell repertoire away from self-peptides that associate weakly with MHC class II molecules.  相似文献   

6.
When expressed in NOD, but not C57BL/6 (B6) genetic background mice, the common class I variants encoded by the H2g7 MHC haplotype aberrantly lose the ability to mediate the thymic deletion of autoreactive CD8+ T cells contributing to type 1 diabetes (T1D). This indicated some subset of the T1D susceptibility (Idd) genes located outside the MHC of NOD mice interactively impair the negative selection of diabetogenic CD8+ T cells. In this study, using both linkage and congenic strain analyses, we demonstrate contributions from a polymorphic gene(s) in the previously described Idd7 locus on the proximal portion of Chromosome 7 predominantly, but not exclusively, determines the extent to which H2g7 class I molecules can mediate the thymic deletion of diabetogenic CD8+ T cells as illustrated using the AI4 TCR transgenic system. The polymorphic Idd7 region gene(s) appears to control events that respectively result in high vs low expression of the AI4 clonotypic TCR alpha-chain on developing thymocytes in B6.H2g7 and NOD background mice. This expression difference likely lowers levels of the clonotypic AI4 TCR in NOD, but not B6.H2g7 thymocytes, below the threshold presumably necessary to induce a signaling response sufficient to trigger negative selection upon Ag engagement. These findings provide further insight to how susceptibility genes, both within and outside the MHC, may interact to elicit autoreactive T cell responses mediating T1D development in both NOD mice and human patients.  相似文献   

7.
The critical role of LIGHT, a TNF family member, in T cell development.   总被引:10,自引:0,他引:10  
Negative selection refers to the selective deletion of autoreactive thymocytes but its molecular events have not been well defined. In this study, we demonstrate that a cellular ligand for herpes virus entry mediator and lymphotoxin receptor (LIGHT), a newly identified member of the TNF superfamily, may play a critical role in negative selection. Using TCR transgenic mice, we find that the blockade of LIGHT signaling in vitro and in vivo prevents negative selection induced by peptide and intrathymically expressed Ags, resulting in the rescue of thymocytes from apoptosis. Furthermore, the thymi of LIGHT transgenic mice show severe atrophy with remarkably reduced CD4(+)CD8(+) double-positive cells caused by increased apoptosis, suggesting that LIGHT can delete immature T cells in vivo. Taken together, these results demonstrate a critical role of LIGHT in thymic negative selection of the T cell repertoire.  相似文献   

8.
Development of a C57BL/6-+/+ TCR transgenic mouse containing the rearranged TCR alpha- and beta-chain specific for the Db + HY male Ag results in production of a nearly monoclonal population of early thymocytes expressing the Db + HY reactive TCR. These thymocytes are autoreactive in H-2Db male mice and undergo clonal deletion and down-regulation of CD8. To study the effect of the lpr gene on development of autoreactive T cells, these transgenic mice were backcrossed with C57BL/6-lpr/lpr mice. T cell populations in the thymus and spleen were analyzed by three-color flow cytometry for expression of CD4, CD8, and TCR. The thymus of TCR transgenic H-2b/b lpr/lpr male mice had an increase in percent and absolute number of CD8dull thymocytes compared to TCR transgenic H-2b/b +/+ male mice. However, there was not a complete defect in clonal deletion, because clonal deletion and down-regulation of CD8 was apparent in both +/+ and lpr/lpr H-2Db HY+ male mice compared to H-2Db HY- female mice. The phenotype of splenic T cells was almost identical in TCR transgenic +/+ and lpr/lpr males with about 50% CD4-CD8- T cells and 50% CD8+ T cells. However, there was a dramatic increase in the SMLR proliferative response of splenic T cells from TCR transgenic lpr/lpr males compared to TCR transgenic +/+ males. To determine the specificity of this response, spleen cells from TCR transgenic lpr/lpr and +/+ mice were cultured with irradiated H-2b/b and H-2k/k male and female spleen cells. T cells from TCR transgenic C57BL/6-lpr/lpr male mice had an increased proliferative response to H-2b/b male spleen cells compared to T cells from TCR transgenic C57BL/6(-)+/+ male mice, but both lpr/lpr and +/+ mice had a minimal response to irradiated H-2b/b female or H-2k/k male or female stimulator cells. The splenic T cells from TCR transgenic lpr/lpr mice also had an increased specific cytotoxic activity against H-2b/b male target cells compared to TCR transgenic +/+ mice. These results demonstrate that there is a defect in negative selection of self-reactive T cells in the thymus of lpr/lpr mice and a defect in induction or maintenance of clonal anergy of self-reactive T cells in the periphery of lpr/lpr mice.  相似文献   

9.
In normal mice, single-positive thymocytes proliferate before being exported into the peripheral T cell pool. We measured the in vivo proliferation rates of mature thymocytes in several TCR transgenic mice. Different monoclonal TCR transgenic single-positive thymocytes proliferated at different rates in a given MHC context. Conversely, mature thymocytes expressing a given TCR, generated in mice of different MHC haplotypes, also showed different rates of proliferation. In p59(fyn)-deficient mice, the proliferation rate of mature thymocytes was diminished. Thus, premigrant thymocyte expansion is TCR mediated and depends on TCR affinity for self peptide/MHC ligands. In addition, we show that mature thymocyte expansion is clonotypic, increases the daily thymic T cell output, and modifies the TCR repertoire of newly produced T cells.  相似文献   

10.
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.  相似文献   

11.
Editing autoreactive TCR enables efficient positive selection   总被引:2,自引:0,他引:2  
Allelic exclusion is inefficient at the TCRalpha locus, allowing a sizeable portion of T cells to carry two functional TCRs. The potential danger of dual TCR expression is a rescue of autoreactive TCRs during selection in the thymus and subsequent development of autoimmunity. In this study, we examine the reason(s) for replacing an autoreactive TCR and for allowing the survival of cells carrying two TCRs. We compared development of TCR transgenic CD4(+)CD8(-) thymocytes in the presence or absence of MHC class II autoantigen that does not induce deletion of thymocytes. Contrary to the expected negative effect of the presence of autoantigen, approximately 100% more CD4(+)CD8(-) thymocytes were found in the presence of MHC class II autoantigen than in the neutral background. A further increase in the strength of autoantigenic signal via expression of a human CD4 transgene led to an additional increase in the numbers of CD4(+)CD8(-) thymocytes. Thus, editing autoreactive TCR results in more efficient positive selection, and this may be both a reason and a reward for risking autoimmunity.  相似文献   

12.
TCR signaling plays a governing role in both the survival and differentiation of bipotent double-positive thymocytes into the CD4(+) and CD8(+) single-positive T cell lineages. A central mediator of this developmental program is the small GTPase Ras, emitting cytoplasmic signals through downstream MAPK pathways and eventually affecting gene expression. TCR signal transduction orchestrates the activation of Ras by integrating at least two Ras-guanyl nucleotide exchange factors, RasGRP1 and Sos. In this study, we have characterized the relationship between RasGRP1 function and its potential roles in promoting ERK activity, cell survival, maturation, and lineage commitment. Investigations on RasGRP1(-/-) mice expressing a transgenic (Tg) MHC class II-restricted TCR revealed that the development of CD4 T cells expressing this Tg TCR is completely dependent on RasGRP1. Unexpectedly, a small number of functional CD8 single-positive thymocytes expressing the Tg MHC class II-restricted TCR exists in mutant mice. In addition, RasGRP1(-/-) double-positive thymocytes exhibit marked deficits in TCR-stimulated up-regulation of the positive selection marker CD69 and the antiapoptotic protein Bcl-2, whereas CD5 induction is unaffected. To evaluate the role of RasGRP1 in providing cellular survival signaling, we enforced Bcl-2 expression in RasGRP1(-/-) thymocytes. These studies demonstrate that RasGRP1 function cannot be fully complemented by Tg Bcl-2 expression. Therefore, we propose that RasGRP1 transmits differentiation signaling critically required for CD4 T cell development.  相似文献   

13.
Insulin-dependent diabetes is an autoimmune disease targeting pancreatic beta-islet cells. Recent data suggest that autoreactive CD8+ T cells are involved in both the early events leading to insulitis and the late destructive phase resulting in diabetes. Although therapeutic injection of protein and synthetic peptides corresponding to CD4+ T cell epitopes has been shown to prevent or block autoimmune disease in several models, down-regulation of an ongoing CD8+ T cell-mediated autoimmune response using this approach has not yet been reported. Using CL4-TCR single transgenic mice, in which most CD8+ T cells express a TCR specific for the influenza virus hemagglutinin HA512-520 peptide:Kd complex, we first show that i.v. injection of soluble HA512-520 peptide induces transient activation followed by apoptosis of Tc1-like CD8+ T cells. We next tested a similar tolerance induction strategy in (CL4-TCR x Ins-HA)F1 double transgenic mice that also express HA in the beta-islet cells and, as a result, spontaneously develop a juvenile onset and lethal diabetes. Soluble HA512-520 peptide treatment, at a time when pathogenic CD8+ T cells have already infiltrated the pancreas, very significantly prolongs survival of the double transgenic pups. In addition, we found that Ag administration eliminates CD8+ T cell infiltrates from the pancreas without histological evidence of bystander damage. Our data indicate that agonist peptide can down-regulate an autoimmune reaction mediated by CD8+ T cells in vivo and block disease progression. Thus, in addition to autoreactive CD4+ T cells, CD8+ T cells may constitute targets for Ag-specific therapy in autoimmune diseases.  相似文献   

14.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are required to restrain the immune system from mounting an autoaggressive systemic inflammatory response, but why their activity can prevent (or allow) organ-specific autoimmunity remains poorly understood. We have examined how TCR specificity contributes to Treg activity using a mouse model of spontaneous autoimmune arthritis, in which CD4(+) T cells expressing a clonotypic TCR induce disease by an IL-17-dependent mechanism. Administration of polyclonal Tregs suppressed Th17 cell formation and prevented arthritis development; notably, Tregs expressing the clonotypic TCR did not. These clonotypic Tregs exerted Ag-specific suppression of effector CD4(+) T cells using the clonotypic TCR in vivo, but failed to mediate bystander suppression and did not prevent Th17 cells using nonclonotypic TCRs from accumulating in joint-draining lymph nodes of arthritic mice. These studies indicate that the availability of Tregs with diverse TCR specificities can be crucial to their activity in autoimmune arthritis.  相似文献   

15.
Positive selection of developing thymocytes is initiated at the double-positive (DP) CD4(+)CD8(+) stage of their maturation. Accordingly, expression of a human CD4 (hCD4) transgene beginning at the DP stage has been shown to restore normal T cell development and function in CD4-deficient mice. However, it is unclear whether later onset CD4 expression would still allow such a restoration. To investigate this issue, we used transgenic mice in which a hCD4 transgene is not expressed on DP, but only on single-positive cells. By crossing these animals with CD4-deficient mice, we show that late hCD4 expression supports the maturation of T cell precursors and the peripheral export of mature TCRalphabeta(+) CD8(-) T cells. These results were confirmed in two different MHC class II-restricted TCR transgenic mice. T cells arising by this process were functional in the periphery because they responded to agonist peptide in vivo. Interestingly, thymocytes of these mice appeared refractory to peptide-induced negative selection. Together, these results indicate that the effect of CD4 on positive selection of class II-restricted T cells extends surprisingly late into the maturation process by a previously unrecognized pathway of differentiation, which might contribute to the generation of autoreactive T cells.  相似文献   

16.
The maturation of CD4+8- and CD4-8+ thymocytes from CD4+8+ thymocytes is dependent on the mandatory interaction of their alpha beta TCR with selecting ligands expressed on thymic epithelial cells (TE). This is referred to as positive selection. The deletion of CD4+8+ thymocytes that express autospecific TCR (negative selection) is mediated primarily by bone marrow-derived cells. Previous studies have shown that TE is relatively ineffective in mediating the deletion of CD4+8- thymocytes expressing autospecific TCR but TE can render them anergic, i.e., nonresponsive, to the self Ag. The mechanism by which anergy is induced in these cells is unknown. In this study, we used thymocytes expressing a transgenic TCR specific for the male Ag presented by H-2Db class I MHC molecules to examine how expression of the deleting ligand by TE affects thymocyte development and phenotype. The development of female TCR-transgenic thymocytes was examined in irradiated male hosts or in female hosts that had received male fetal thymic epithelial implants. It was observed that the development of transgenic-TCR+ thymocytes was affected in mice with male TE. CD4+8+ thymocytes with reduced CD8 expression and markedly enhanced transgenic TCR expression accumulated in mice with male TE. Development of CD4-8+ thymocytes was also affected in these mice in that fewer were present and they expressed an intermediate CD8 coreceptor level. These CD4-8+ thymocytes expressed a high level of the transgenic TCR, retained the ability to respond to anti-TCR antibodies, but were nonresponsive to male APC. However, the maturation of CD4+8- thymocytes, which are also derived from CD4+8+ precursor cells, was relatively unaffected. In an in vitro assay for assessing negative selection, male TE failed to delete CD4+8+ thymocytes expressing the transgenic TCR under conditions where they were efficiently deleted by male dendritic cells. Collectively these results support the conclusion that male TE was inefficient in mediating deletion. Furthermore, expression of the deleting ligand on thymic epithelium interferes with the maturation of functional male-specific T cells and results in the accumulation of CD4+8+ and CD4-8+ thymocytes expressing a lower level of the CD8 coreceptor but a high level of the transgenic TCR.  相似文献   

17.
Mice expressing the Torpedo acetylcholine receptor alpha-chain as a neo-self-Ag exhibit a reduced frequency of T cells responding to the immunodominant epitope Talpha146-162 indicating a degree of tolerance. We characterized tolerance induction in these animals by analyzing the residual Talpha146-162-responsive T cell population and comparing it to that of nontransgenic littermates. Using CD4(high) sorting, we isolated the vast majority of Ag-reactive T cells from both strains of mice. Quantitative studies of the CD4(high) populations in transgenic mice following immunization with Talpha146-162 revealed a diminished expansion of cells expressing the canonical TCRBV6 but not other TCRBV gene segments when compared with nontransgenic littermates. In addition, CD4(high) cells from transgenic mice were functionally hyporesponsive to Talpha146-162 in terms of proliferation and cytokine secretion regardless of TCRBV gene segment use. TCR sequence analysis of transgenic Vbeta6(+)CD4(high) cells revealed a reduced frequency of cells expressing a conserved motif within the TCRbeta CDR3. Thus, the canonical Talpha146-162 responsive, Vbeta6(+) population demonstrates both quantitative and qualitative deficits that correlate with an altered TCR repertoire whereas the non-Vbeta6 population in transgenic mice exhibits only a reduction in peptide responsiveness, a qualitative defect. These data demonstrate that discrete autoreactive T cell populations with identical peptide/MHC specificity in Torpedo acetylcholine receptor-alpha-transgenic animals bear distinct tolerance imprints.  相似文献   

18.
CD8(+) T cells are important effectors, as well as regulators, of organ-specific autoimmunity. Compared with Tc1-type CD8(+) cells, Tc2 cells have impaired anti-viral and anti-tumor effector functions, although no data are yet available on their pathogenic role in autoimmunity. Our aim was to explore the role of autoreactive Tc1 and Tc2 cells in autoimmune diabetes. We set up an adoptive transfer model in which the recipients were transgenic mice expressing influenza virus hemagglutinin (HA) specifically in their pancreatic ss islet cells (rat insulin promoter-HA mice) and islet-specific Tc1 and Tc2 cells were generated in vitro from HA-specific CD8(+) cells of TCR transgenic mice (CL4-TCR mice). One million Tc1 cells, differentiated in vitro in the presence of IL-12, transferred diabetes in 100% of nonirradiated adult rat insulin promoter-HA recipients; the 50% diabetogenic dose was 5 x 10(5). Highly polarized Tc2 cells generated in the presence of IL-4, IL-10, and anti-IFN-gamma mAb had a relatively low, but definite, diabetogenic potential. Thus, 5 x 10(6) Tc2 cells caused diabetes in 6 of 18 recipients, while the same dose of naive CD8(+) cells did not cause diabetes. Looking for the cause of the different diabetogenic potential of Tc1 and Tc2 cells, we found that Tc2 cells are at least as cytotoxic as Tc1 cells but their accumulation in the pancreas is slower, a possible consequence of differential chemokine receptor expression. The diabetogenicity of autoreactive Tc2 cells, most likely caused by their cytotoxic activity, precludes their therapeutic use as regulators of autoimmunity.  相似文献   

19.
Chronic inflammation can associate with autoreactive immune responses, including CD4(+) T cell responses to self-Ags. In this paper, we show that the adipocyte-derived proinflammatory hormone leptin can affect the survival and proliferation of autoreactive CD4(+) T cells in experimental autoimmune encephalomyelitis, an animal model of human multiple sclerosis. We found that myelin olygodendrocyte glycoprotein peptide 35-55 (MOG(35-55))-specific CD4(+) T cells from C57BL/6J wild-type mice could not transfer experimental autoimmune encephalomyelitis into leptin-deficient ob/ob mice. Such a finding was associated with a reduced proliferation of the transferred MOG(35-55)-reactive CD4(+) T cells, which had a reduced degradation of the cyclin-dependent kinase inhibitor p27(kip1) and ERK1/2 phosphorylation. The transferred cells displayed reduced Th1/Th17 responses and reduced delayed-type hypersensitivity. Moreover, MOG(35-55)-reactive CD4(+) T cells in ob/ob mice underwent apoptosis that associated with a downmodulation of Bcl-2. Similar results were observed in transgenic AND-TCR- mice carrying a TCR specific for the pigeon cytochrome c 88-104 peptide. These molecular events reveal a reduced activity of the nutrient/energy-sensing AKT/mammalian target of rapamycin pathway, which can be restored in vivo by exogenous leptin replacement. These results may help to explain a link between chronic inflammation and autoimmune T cell reactivity.  相似文献   

20.
Peripheral CD4(+)Vβ5(+) T cells are tolerized to an endogenous mouse mammary tumor virus superantigen either by deletion or TCR revision. Through TCR revision, RAG reexpression mediates extrathymic TCRβ rearrangement and results in a population of postrevision CD4(+)Vβ5(-) T cells expressing revised TCRβ chains. We have hypothesized that cell death pathways regulate the selection of cells undergoing TCR revision to ensure the safety and utility of the postrevision population. In this study, we investigate the role of Bcl-2-interacting mediator of cell death (Bim)-mediated cell death in autoantigen-driven deletion and TCR revision. Bim deficiency and Bcl-2 overexpression in Vβ5 transgenic (Tg) mice both impair peripheral deletion. Vβ5 Tg Bim-deficient and Bcl-2 Tg mice exhibit an elevated frequency of CD4(+) T cells expressing both the transgene-encoded Vβ5 chain and a revised TCRβ chain. We now show that these dual-TCR-expressing cells are TCR revision intermediates and that the population of RAG-expressing, revising CD4(+) T cells is increased in Bim-deficient Vβ5 Tg mice. These findings support a role for Bim and Bcl-2 in regulating the balance of survival versus apoptosis in peripheral T cells undergoing RAG-dependent TCR rearrangements during TCR revision, thereby ensuring the utility of the postrevision repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号