首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle potentially represents the most abundant source of autoantigens of the body and can be targeted by a variety of severe autoimmune diseases. Yet, the mechanisms of immunological tolerance toward muscle autoantigens remain mostly unknown. We investigated this issue in transgenic SM-Ova mice that express an ovalbumin (Ova) neo-autoantigen specifically in skeletal muscle. We previously reported that antigen specific CD4(+) T cell are immunologically ignorant to endogenous Ova in this model but can be stimulated upon immunization. In contrast, Ova-specific CD8(+) T cells were suspected to be either unresponsive to Ova challenge or functionally defective. We now extend our investigations on the mechanisms governing CD8(+) tolerance in SM-Ova mice. We show herein that Ova-specific CD8(+) T cells are not detected upon challenge with strongly immunogenic Ova vaccines even after depletion of regulatory T cells. Ova-specific CD8(+) T cells from OT-I mice adoptively transferred to SM-Ova mice started to proliferate in vivo, acquired CD69 and PD-1 but subsequently down-regulated Bcl-2 and disappeared from the periphery, suggesting a mechanism of peripheral deletion. Peripheral deletion of endogenous Ova-specific cells was formally demonstrated in chimeric SM-Ova mice engrafted with bone marrow cells containing T cell precursors from OT-I TCR-transgenic mice. Thus, the present findings demonstrate that immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8(+) T cells.  相似文献   

2.
Although somatically mutated autoantibodies are characteristic of many autoimmune diseases, the processes that can lead to their development remain poorly understood. We have examined the formation of autoreactive memory B cells in PevHA mice, which express the influenza virus PR8 hemagglutinin (HA) as a transgenic membrane bound neo-self-Ag. Using a virus immunization strategy, we show that PR8 HA-specific memory B cell formation can occur in PevHA mice, even though a major subset of PR8 HA-specific B cells is negatively selected from the primary repertoire. Moreover, PR8 HA-specific memory B cells develop spontaneously in TS1 x PevHA mice, which coexpress a transgenic PR8 HA-specific TCR and contain a high frequency of HA-specific CD4(+) T cells. Notably, autoreactive memory B cell formation occurred in TS1 x PevHA mice even though approximately half of the HA-specific CD4(+) T cells were CD25(+)Foxp3(+) cells that could significantly attenuate, but did not completely abolish HA-specific autoantibody production in an adoptive transfer setting. The findings provide evidence that a high frequency of autoreactive CD4(+) T cells can be sufficient to promote autoreactive memory B cell formation in the absence of signals provided by overt immunization or infection and despite the presence of abundant autoantigen-specific CD4(+)CD25(+)Foxp3(+) regulatory T cells.  相似文献   

3.
Thymic-derived, naturally occurring, CD4+CD25+ regulatory T cells (nTreg) are potent suppressors of immune responses. A detailed understanding of which components of the development and activation of pathogenic effector T cells are inhibited by nTreg during the course of T cell-mediated, organ-specific autoimmunity is as yet unknown. We have analyzed the effects of polyclonal nTreg on the development of autoimmune gastritis. The nTreg inhibited the development of disease, but failed to inhibit the migration of effector cells into the gastric lymph node or stomach. Notably, nTreg did not inhibit the expansion of autoreactive T cells in the gastric lymph node. The primary effect of nTreg appeared to be inhibition of differentiation of autoantigen-specific T cells to Th1 effector cells, as reflected by a decrease in Ag-stimulated IFN-gamma production and a reduction in T-bet expression.  相似文献   

4.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

5.
We previously demonstrated that cultures of rat uveitogenic T cells rapidly become dominated by CD4+ cells, but activation of CD8+ autoreactive T cells also occurred during the in vitro culture of in vivo-primed T cells. In the present study, we show that the commonly used uveitogenic peptide, interphotoreceptor retinoid-binding protein (IRBP) 1-20, generated both CD4+ and CD8+ autoreactive T cells in the C57BL/6 (B6) mouse and that this 20-mer contains at least two distinct antigenic epitopes. To determine whether the CD8 response was Ag-specific and whether CD4+ and CD8+ IRBP1-20-specific T cells recognize distinct antigenic epitopes, we prepared highly purified CD4+ and CD8+ T cells from IRBP1-20-primed mice and tested their proliferative response to a large panel of truncated peptides derived from IRBP1-20. The results showed that both CD4+ and CD8+ T cells recognized the same spectrum of peptides. In addition, peptides P10-18 were found to bind effectively to CD8+ IRBP1-20-specific T cells when complexed with recombinant H-2K(b) and also stimulate the proliferation and cytokine production of CD4+ IRBP1-20-specific T cells. Our results document for the first time that CD8+ and CD4+ autoreactive T cells display characteristic epitope recognition and they both recognize the same core epitope.  相似文献   

6.
Ag-experienced or memory T cells have increased reactivity to recall Ag, and can be distinguished from naive T cells by altered expression of surface markers such as CD44. Memory T cells have a high turnover rate, and CD8(+) memory T cells proliferate upon viral infection, in the presence of IFN-alphabeta and/or IL-15. In this study, we extend these findings by showing that activated NKT cells and superantigen-activated T cells induce extensive bystander proliferation of both CD8(+) and CD4(+) memory T cells. Moreover, proliferation of memory T cells can be induced by an IFN-alphabeta-independent, but IFN-gamma- or IL-12-dependent pathway. In these conditions of bystander activation, proliferating memory (CD44(high)) T cells do not derive from activation of naive (CD44(low)) T cells, but rather from bona fide memory CD44(high) T cells. Together, these data demonstrate that distinct pathways can induce bystander proliferation of memory T cells.  相似文献   

7.
The important role of tumor-specific cytotoxic CD8+ T cells is well defined in the immune control of the tumors, but the role of effector CD4+ T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4+ T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4+ T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8+ T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4+ T cells and increases FV-specific CD4+ T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4+ T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4+ T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.  相似文献   

8.
9.
To evaluate the role of T cells in regulation of lymphomagenesis, experiments were performed using Abelson murine leukemia virus (AMuLV). In vitro transformation of bone marrow target cells by this B lymphotropic retrovirus was inhibited by peripheral lymph node cells from naive mice. The inhibitory activity depended on Thy-1+ L3T4+ cells but did not require Lyt-2+ cells. In vivo depletion of L3T4+ T cells with a mAb (GK1.5) altered the course of AMuLV-induced lymphoma. L3T4 depletion of naturally resistant C57BL/6 mice resulted in dramatic susceptibility to lymphoma induction. Lymphoma cells from anti-L3T4-treated C57BL/6 mice infected with AMuLV displayed the B lineage transformation marker P1606C3. These studies reveal an important immunologic component of Abelson disease resistance involving L3T4+ T cells.  相似文献   

10.
CD4(+)CD25(+) regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4(+)CD25(-) T cells and are potent suppressors of CD4(+)CD25(-) T cell activation in vitro. We demonstrate that CD4(+)CD25(+) T cells also suppress both proliferation and IFN-gamma production by CD8(+) T cells induced either by polyclonal or Ag-specific stimuli. CD4(+)CD25(+) T cells inhibit the activation of CD8(+) responders by inhibiting both IL-2 production and up-regulation of IL-2Ralpha-chain (CD25) expression. Suppression is mediated via a T-T interaction as activated CD4(+)CD25(+) T cells suppress the responses of TCR-transgenic CD8(+) T cells stimulated with soluble peptide-MHC class I tetramers in the complete absence of APC. These results broaden the immunoregulatory role played by CD4(+)CD25(+) T cells in the prevention of autoimmune diseases, but also raise the possibility that they may hinder the induction of effector CD8(+) T cells to tumor or foreign Ags.  相似文献   

11.
Chronic viral infections cause high levels of morbidity and mortality worldwide, making the development of effective therapies a high priority for improving human health. We have used mice infected with Friend virus as a model to study immunotherapeutic approaches to the cure of chronic retroviral infections. In chronic Friend virus infections CD4(+) T regulatory (Treg) cells suppress CD8(+) T cell effector functions critical for virus clearance. In this study, we demonstrate that immunotherapy with a combination of agonistic anti-CD137 Ab and virus-specific, TCR-transgenic CD8(+) T cells produced greater than 99% reductions of virus levels within 2 wk. In vitro studies indicated that the CD137-specific Ab rendered the CD8(+) T cells resistant to Treg cell-mediated suppression with no direct effect on the suppressive function of the Treg cells. By 2 weeks after transfer, the adoptively transferred CD8(+) T cells were lost, likely due to activation-induced cell death. The highly focused immunological pressure placed on the virus by the single specificity CD8(+) T cells led to the appearance of escape variants, indicating that broader epitope specificity will be required for long-term virus control. However, the results demonstrate a potent strategy to potentiate the function of CD8(+) T cells in the context of immunosuppressive Treg cells.  相似文献   

12.
We previously demonstrated that HIV envelope glycoprotein (Env), delivered in the form of a vaccine and expressed by dendritic cells or 293T cells, could suppress Ag-stimulated CD4(+) T cell proliferation. The mechanism remains to be identified but is dependent on CD4 and independent of coreceptor binding. Recently, CD4(+) regulatory T (Treg) cells were found to inhibit protective anti-HIV CD4(+) and CD8(+) T cell responses. However, the role of Tregs in HIV remains highly controversial. HIV Env is a potent immune inhibitory molecule that interacts with host CD4(+) cells, including Treg cells. Using an in vitro model, we investigated whether Treg cells are involved in Env-induced suppression of CD4(+) T cell proliferation, and whether Env directly affects the functional activity of Treg cells. Our data shows that exposure of human CD4(+) T cells to Env neither induced a higher frequency nor a more activated phenotype of Treg cells. Depletion of CD25(+) Treg cells from PBMC did not overcome the Env-induced suppression of CD4(+) T cell proliferation, demonstrating that CD25(+)FoxP3(+) Treg cells are not involved in Env-induced suppression of CD4(+) T cell proliferation. In addition, we extend our observation that similar to Env expressed on cells, Env present on virions also suppresses CD4(+) T cell proliferation.  相似文献   

13.
CD4+CD25+ immunoregulatory T cells (Tregs) can be administered to inhibit graft-vs-host disease (GVHD) while preserving graft-vs-leukemia activity after allogeneic bone marrow transplantation in mice. Preclinical studies suggest that it is necessary to infuse as many Tregs as conventional donor T cells to achieve a clinical effect on GVHD. Thus, it would be necessary to expand Tregs ex vivo before transplantation. Two strategies have been proposed: expansion of Tregs stimulated by anti-CD3/CD28-coated microbeads for polyclonal activation or by host-type allogeneic APCs for selecting Tregs specific for host Ags. In this study, we describe the mechanisms by which ex vivo-expanded Tregs act on donor T cells to prevent GVHD in mice. We demonstrate that expanded Tregs strongly inhibited the division, expansion, and differentiation of donor T cells, with a more pronounced effect with Tregs specific for host Ags. These latter cells permit the efficient and durable control of GVHD and favor immune reconstitution.  相似文献   

14.
Ex vivo treatment of bone marrow-derived dendritic cells (DCs) with TNF-alpha has been previously shown to induce partial maturation of DCs that are able to suppress autoimmunity. In this study, we demonstrate that i.v. administration of TNF-alpha-treated, semimature DCs pulsed with thyrogloblin (Tg), but not with OVA Ag, inhibits the subsequent development of Tg-induced experimental autoimmune thyroiditis (EAT) in CBA/J mice. This protocol activates CD4(+)CD25(+) T cells in vivo, which secrete IL-10 upon specific recognition of Tg in vitro and express regulatory T cell (Treg)-associated markers such as glucocorticoid-induced TNFR, CTLA-4, and Foxp3. These CD4(+)CD25(+) Treg cells suppressed the proliferation and cytokine release of Tg-specific, CD4(+)CD25(-) effector cells in vitro, in an IL-10-independent, cell contact-dependent manner. Prior adoptive transfer of the same CD4(+)CD25(+) Treg cells into CBA/J hosts suppressed Tg-induced EAT. These results demonstrate that the tolerogenic potential of Tg-pulsed, semimature DCs in EAT is likely to be mediated through the selective activation of Tg-specific CD4(+)CD25(+) Treg cells and provide new insights for the study of Ag-specific immunoregulation of autoimmune diseases.  相似文献   

15.
The effects of inflammatory cytokines on naive T cells have been studied using MHC protein/peptide complexes on microspheres, thus avoiding the use of APCs whose functions may be affected by the cytokines. IL-1, but not IL-12, increased proliferation of CD4+ T cells in response to Ag and IL-2, which is consistent with effects on in vivo priming of CD4+ cells. In contrast, proliferation of CD8+ T cells to Ag and IL-2 required IL-12, and IL-12 replaced adjuvant in stimulating an in vivo response to peptide. These results support a model in which distinct inflammatory cytokines act directly on naive CD4+ and CD8+ T cells to provide a third signal, along with Ag and IL-2, to optimally activate differentiation and clonal expansion.  相似文献   

16.
In order to clarify the differential activation of CD4+ and CD8+ HSV-specific CTL, we compared the characteristics of CTL generated by different methods of in vitro HSV stimulation by treatment of effectors with anti-CD4 and anti-CD8 mAb and C after the elimination of nonspecific cytotoxic effector cells. Cell-free HSV mainly activated CD4+ CTL precursors, whereas HSV-infected fibroblasts were more effective in activating CD8+ CTL precursors than CD4+ CTL precursors. In addition, limiting dilution analyses with enriched T cells from two HSV-seropositive donors revealed that the frequency of HSV-specific CD4+ CTL precursors responsive to stimulation with free HSV was approximately 1/4,000 to 6,000 CD4+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/19,000 to 22,000 CD4+ T cells. Conversely, the frequency of CD8+ CTL precursors in peripheral blood responsive to stimulation with free HSV was approximately 1/28,000 to 30,000 CD8+ T cells, whereas that of precursors responsive to stimulation with HSV-infected fibroblasts was approximately 1/10,000 to 11,000 CD8+ T cells. The present data suggest that generalized viral infection due to cell-free viruses is fought mainly by CD4+ CTL, which have previously been reported to possess both cytotoxicity and helper function, and that localized viral infection on HLA class II-negative fibroblasts is prevented from spreading to adjacent cells mainly by CD8+ CTL. Such differential activation of CD4+ and CD8+ CTL seems probable when considering the protective mechanisms against viral infection.  相似文献   

17.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.  相似文献   

18.
A CD8+ T cell lymphocytosis in the peripheral blood is associated with the establishment of latency following intranasal infection with murine gammaherpesvirus-68. Remarkably, a large percentage of the activated CD8+ T cells of mice expressing different MHC haplotypes express V beta 4+ TCR. Identification of the ligand driving the V beta 4+CD8+ T cell activation remains elusive, but there is a general correlation between V beta 4+CD8+ T cell stimulatory activity and establishment of latency in the spleen. In the current study, the role of CD4+ T cells in the V beta 4+CD8+ T cell expansion has been addressed. The results show that CD4+ T cells are essential for expansion of the V beta 4+CD8+ subset, but not other V beta subsets, in the peripheral blood. CD4+ T cells are required relatively late in the antiviral response, between 7 and 11 days after infection, and mediate their effect independently of IFN-gamma. Assessment of V beta 4+CD8+ T cell stimulatory activity using murine gammaherpesvirus-68-specific T cell hybridomas generated from latently infected mice supports the idea that CD4+ T cells control levels of the stimulatory ligand that drives the V beta 4+CD8+ T cells. As V beta 4+CD8+ T cell expansion also correlates with levels of activated B cells, these data raise the possibility that CD4+ T cell-mediated B cell activation is required for optimal expression of the stimulatory ligand. In addition, in cases of low ligand expression, there may also be a direct role for CD4+ T cell-mediated help for V beta 4+CD8+ T cells.  相似文献   

19.
20.
The glucocorticoid-induced TNFR (GITR) is expressed at high levels on resting CD4(+)CD25(+) T regulatory (T(R)) cells and regulates their suppressive phenotype. Accordingly, we show that anti-GITR mAb treatment of SJL mice with proteolipid protein 139-151-induced experimental autoimmune encephalomyelitis significantly exacerbated clinical disease severity and CNS inflammation, and induced elevated levels of Ag-specific T cell proliferation and cytokine production. Interestingly, prior depletion of T(R) cells failed to result in exacerbated experimental autoimmune encephalomyelitis suggesting alternative targets for the anti-GITR mAb treatment. Importantly, naive CD4(+)CD25(-) T cells up-regulated GITR expression in an activation-dependent manner and anti-GITR mAb treatment enhanced the level of CD4(+) T cell activation, proliferation, and cytokine production in the absence of T(R) cells both in vivo and in vitro. Taken together, these findings suggest a dual functional role for GITR as GITR cross-linking both inactivates T(R) cells and increases CD4(+)CD25(-) T cell effector function, thus enhancing T cell immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号