首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Biosynthesis of mosquito vitellogenin   总被引:5,自引:0,他引:5  
Vitellogenin (Vg), the hemolymph precursor to the major yolk protein in mosquitoes, is synthesized in the fat body of blood-fed females. Mosquito Vg consists of two subunits with Mr = 200,000 and 66,000. Here, we demonstrate that both the Vg subunits are first synthesized as a single precursor. The identity of this Vg precursor was confirmed by immunoprecipitation with subunit-specific monoclonal antibodies. In cell-free translation of fat body poly (A)+ RNA, the Vg precursor had Mr = 224,000 which increased to 240,000 in the presence of canine pancreatic microsomal membranes. A precursor with Mr = 250,000 was immunoprecipitated in microsomal fractions isolated from rat bodies. With in vitro pulse labeling, the 250-kDa precursor could be detected in homogenates of fat bodies from blood-fed mosquitoes only during the first few hours accumulation of the Vg precursor was achieved by an in vitro stimulation of Vg synthesis in previtellogenic fat bodies cultured with an insect hormone, 20-hydroxyecdysone. The 250-kDa precursor was glycosylated and to a much lesser degree phosphorylated. Treatment of fat bodies with tunicamycin yielded the precursor with Mr = 226,000 which was neither glycosylated nor phosphorylated. The reduction in molecular mass of the 250-kDa Vg precursor and of both mature Vg subunits combined was similar after digestion with endoglycosidase H, indicating that glycosylation is completed prior to cleavage of the Vg precursor. In vitro pulse-chase experiments revealed rapid proteolytic cleavage of the 250-kDa precursor to two polypeptides with Mr = 190,000 and 62,000 which transformed into mature Vg subunits of 200- and 66-kDa as the last step prior to Vg secretion. This last step in Vg processing was inhibited by an ionophore, monensin, and therefore occurred in the Golgi complex. Sulfation as an additional, previously unknown, modification of mosquito Vg was revealed by the incorporation of sodium [35S]sulfate into both Vg subunits. Since sulfation of Vg was predominantly blocked by monensin, the final maturation of Vg subunits in the Golgi complex is, at least in part, due to this modification.  相似文献   

6.
Anautogenous mosquitoes require blood meals to promote egg development. If adequate nutrients are not obtained during larval development, the resulting "small" sized adult mosquitoes require multiple blood meals for egg development; markedly increasing host-vector contacts and the likelihood of disease transmission. Nutrient-sensitive target of rapamycin (TOR) signaling is a key signaling pathway that links elevated hemolymph amino acid levels derived from the blood meal to the expression of yolk protein precursors in the fat body. Here we report that the blood-meal-induced activation of the TOR-signaling pathway and subsequent egg maturation depends on the accumulation of adequate nutritional reserves during larval development. We have established well-nourished, "standard" mosquitoes and malnourished, "small" mosquitoes as models to address this nutrient sensitive pathway. This regulatory mechanism involves juvenile hormone (JH), which acts as a mediator of fat body competence, permitting the response to amino acids derived from the blood meal. We demonstrate that treatment with JH results in recovery of the TOR molecular machinery, Aedes aegypti cationic amino acid transporter 2 (AaiCAT2), TOR, and S6 kinase (S6K), in fat bodies of small mosquitoes, enabling them to complete their first gonotrophic cycle after a single blood meal. These findings establish a direct link between nutrient reserves and the establishment of TOR signaling in mosquitoes.  相似文献   

7.
Female mosquitoes are effective disease vectors, because they take blood from vertebrate hosts to obtain nutrients for egg development. Amino acid signaling via the target of rapamycin (TOR) pathway has been identified as a key requirement for the activation of egg development after a blood meal. We report the characterization of the TOR kinase and one of its major downstream targets, S6 kinase, of the yellow fever mosquito Aedes aegypti during egg development in adult females. Both TOR and S6K mRNA are expressed at high levels in the ovaries and in lower levels in fat body and other tissues. After a blood meal, the subcellular localization of TOR shifts from the cytoplasm to the plasma membrane of fat body cells. By detecting phosphothreonine 388 of mosquito S6 kinase, we show that TOR activity strongly increases in fat body and ovaries after a blood meal in vivo. Furthermore, phosphorylation of S6 kinase increases in in vitro cultured fat bodies after stimulation with amino acids. This increase is sensitive to the TOR inhibitor rapamycin in a concentration-dependent manner but not to the phosphatidylinositol 3-kinase/phosphatidylinositol 3-kinase-related kinase inhibitor LY294002, the MAPK inhibitor PD98059, or the translational inhibitor cycloheximide. RNA interference-mediated reduction of S6 kinase strongly inhibits the amino acid-induced up-regulation of the major yolk protein vitellogenin in vitro and effectively disrupts egg development after a blood meal in vivo. Our data show that TOR-dependent activation of S6 kinase is a central step in the transduction of nutritional information during egg development in mosquitoes.  相似文献   

8.
9.
In anautogenous mosquitoes, a blood meal is required for activation of genes encoding yolk protein precursors (YPP). Vitellogenin (Vg), the major YPP gene, is transcribed at a very high level following blood meal activation. It is expressed exclusively in the female fat body, the tissue producing most of mosquito hemolymph and immune proteins. In this paper, we analyzed the upstream region of the Aedes aegypti Vg gene in order to identify regulatory elements responsible for its unique expression pattern. To achieve this goal, we analyzed the gene using transgenic Drosophila and Aedes as well as DNA-binding assays. These analyses revealed three regulatory regions in the 2.1 kb upstream portion of the Vg gene. The proximal region containing binding sites to EcR/USP, GATA, C/EBP and HNF3/fkh is required for the correct tissue- and stage-specific expression at a low level. The median region carrying sites for early ecdysone response factors E74 and E75 is responsible for hormonal enhancement of Vg expression. Finally, the distal GATA-rich region is necessary for extremely high expression levels characteristic of the Vg gene. The present work elucidates the molecular basis of blood meal-dependent expression of this mosquito gene, laying the foundation for mosquito-specific expression cassettes with predictable stage and tissue specificity.  相似文献   

10.
11.
12.
13.
Bryant B  Raikhel AS 《PloS one》2011,6(11):e25502
Autophagy plays a pivotal role by allowing cells to recycle cellular components under conditions of stress, starvation, development and cancer. In this work, we have demonstrated that programmed autophagy in the mosquito fat body plays a critical role in maintaining of developmental switches required for normal progression of gonadotrophic cycles. Mosquitoes must feed on vertebrate blood for their egg development, with each gonadotrophic cycle being tightly coupled to a separate blood meal. As a consequence, some mosquito species are vectors of pathogens that cause devastating diseases in humans and domestic animals, most importantly malaria and Dengue fever. Hence, deciphering mechanisms to control egg developmental cycles is of paramount importance for devising novel approaches for mosquito control. Central to egg development is vitellogenesis, the production of yolk protein precursors in the fat body, the tissue analogous to a vertebrate liver, and their subsequent specific accumulation in developing oocytes. During each egg developmental cycle, the fat body undergoes a developmental program that includes previtellogenic build-up of biosynthetic machinery, intense production of yolk protein precursors, and termination of vitellogenesis. The importance of autophagy for termination of vitellogenesis was confirmed by RNA interference (RNAi) depletions of several autophagic genes (ATGs), which inhibited autophagy and resulted in untimely hyper activation of TOR and prolonged production of the major yolk protein precursor, vitellogenin (Vg). RNAi depletion of the ecdysone receptor (EcR) demonstrated its activating role of autophagy. Depletion of the autophagic genes and of EcR led to inhibition of the competence factor, betaFTZ-F1, which is required for ecdysone-mediated developmental transitions. Moreover, autophagy-incompetent female mosquitoes were unable to complete the second reproductive cycle and exhibited retardation and abnormalities in egg maturation. Thus, our study has revealed a novel function of programmed autophagy in maintaining egg maturation cycles in mosquitoes.  相似文献   

14.
15.
Injected β-ecdysone was found to induce the synthesis of yolk protein (vitellogenin) in adult female Aedes aegypti without a blood meal. After injection of 5 μg ecdysone per mosquito, vitellogenin constituted 80 per cent of the total protein secreted by explanted fat body, a proportion comparable to that produced by fat body from blood-fed females. Moreover, the time course of induction of vitellogenin synthesis in ecdysone-injected mosquitoes was similar to that triggered by a blood meal. Response to ecdysone is dosedependent: 0·5 μg per female was required to stimulate synthesis to 50 per cent of the level found 18 hr after a blood meal. Ecdysone was effective in decapitated or ovariectomized mosquitoes, and also when applied directly to fat body preparations in vitro. Thus it appears that ecdysone acts directly on the fat body to induce specific protein synthesis, as does the vitellogenin stimulating hormone (VSH) from the ovary of blood-fed mosquitoes. These results suggest that ecdysone can replace VSH in inducing vitellogenin synthesis in the unfed mosquito.  相似文献   

16.
Oocyte extracts of anautogenous Dipetalogaster maxima were chromatographed on an ion-exchange column in order to purify vitellin (Vt), the main insect yolk protein precursor. Purified Vt (Mr ~443 kDa) was composed of four subunits with approximate molecular weights of 174, 170, 50, and 44 kDa. Polyclonal anti-Vt antibody, which cross-reacted equally with fat body extracts and hemolymph vitellogenin (Vg), was used to measure the kinetics of Vg expression in the fat body and the levels in hemolymph. In addition, morphological and immunohistochemical changes that took place in the ovary during vitellogenesis were analyzed. The study was performed between 2 and 8 days post-ecdysis and between 2 and 25 days post-blood feeding. During the post-ecdysis period, D. maxima showed decreased synthesis of Vg and concomitantly, low levels of Vg in hemolymph (4.5 x 10(-3) microg/microl at day 4). After a blood meal, Vg synthesis in the fat body and its levels in hemolymph increased significantly, reaching an average of 19.5 microg/microl at day 20. The biochemical changes observed in the fat body and hemolymph were consistent with the histological and immunohistochemical finds. These studies showed noticeable remodeling of tissue after blood feeding.  相似文献   

17.
18.
19.
Vitellogenin (Vg) is the precursor of vitellin (Vn) which is the major yolk protein in eggs. In a previous report, we isolated and characterized the first Vg message from the American dog tick Dermacentor variabilis. In the current study, we describe a second Vg gene from the same tick. The Vg2 cDNA is 5956 nucleotides with a 5775 nt open reading frame coding for 1925 amino acids. The conceptual amino acid translation contains a 16-residues putative signal peptide, N-terminal lipid binding domain and C-terminal von Willebrand factor type D domain present in all known Vgs. Moreover, the amino acid sequence shows a typical GLCG domain and several RXXR cleavage sites present in most isolated Vgs. Tryptic digest-mass fingerprinting of Vg and Vn recognized 11 fragments that exist in the amino acid translation of DvVg2 cDNA. Injection of virgin females with 20 hydroxyecdysone induced DvVg2 expression, vitellogenesis and oviposition. Using RT-PCR, DvVg2 expression was detected only in tick females after mating and feeding to repletion. Northern blot analysis showed that DvVg2 is expressed in fat body and gut cells of vitellogenic females but not in the ovary. DvVg2 expression was not detected in adult fed or unfed males. The characteristics that distinguish Vg from other similar tick storage proteins like the carrier protein, CP (another hemelipoglycoprotein) are discussed.  相似文献   

20.

Background

Mosquitoes are insects that vector many serious pathogens to humans and other vertebrates. Most mosquitoes must feed on the blood of a vertebrate host to produce eggs. In turn, multiple cycles of blood feeding promote frequent contacts with hosts and make mosquitoes ideal disease vectors. Both hormonal and nutritional factors are involved in regulating egg development in the mosquito, Aedes aegypti. However, the processes that regulate digestion of the blood meal remain unclear.

Methodology/Principal Findings

Here we report that insulin peptide 3 (ILP3) directly stimulated late phase trypsin-like gene expression in blood fed females. In vivo knockdown of the mosquito insulin receptor (MIR) by RNA interference (RNAi) delayed but did not fully inhibit trypsin-like gene expression in the midgut, ecdysteroid (ECD) production by ovaries, and vitellogenin (Vg) expression by the fat body. In contrast, in vivo treatment with double-stranded MIR RNA and rapamycin completely blocked egg production. In vitro experiments showed that amino acids did not simulate late phase trypsin-like gene expression in the midgut or ECD production by the ovaries. However, amino acids did enhance ILP3-mediated stimulation of trypsin-like gene expression and ECD production.

Conclusions/Significance

Overall, our results indicate that ILPs from the brain synchronize blood meal digestion and amino acid availability with ovarian ECD production to maximize Vg expression by the fat body. The activation of digestion by ILPs may also underlie the growth promoting effects of insulin and TOR signaling in other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号