首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Cellulose fibres from bagasse were oxidized by sodium periodate in sulphuric acid media at positions 2 and 3 of the anhydroglucose unit to produce dialdehyde cellulose. The aldehyde groups of the dialdehyde cellulose were able to react with amino groups of a glucoamylase to form covalent bonds and result in a dialdehyde cellulose immobilized enzyme. The optimum pH of this immobilized enzyme and free enzyme were in the range of 3.0–5.0 and 3.5–5.0, respectively. The optimum temperature for both the free and immobilized enzymes was 60–65 °C. The relative remaining activity of the immobilized enzyme was 36% and its stability was very good, since it could be reused for over 30 cycles. Its activity decreased from the first to the seventh reuse cycles, due to the slow detachment of non-covalently bound enzyme. However, activity tended to stabilize after the seventh cycle of reuse, indicating very stable covalent binding between the enzyme and dialdehyde cellulose.  相似文献   

5.
Glucoamylase (alpha-1,4-glucan glucohydrolase, EC 3.2.1.3) has been covalently linked to dialdehyde cellulose resulting in an immobilized enzyme containing 0.98% protein and an activity of 4.5 mg of the native enzyme per g of matrix, i.e. 46% relative activity. The complex lost its activity in continuous and batch hydrolysis of starch at 55 degrees C down to a limit of 18% of its original value. In contrast, the activity of the complex did not change when working at a temperature of 25 degrees C. Glucoamylase-carboxymethylcellulose complexes synthesized via carboxymethylcellulose hydrazide and azide, in contrast to MAEDA und SUZUKI [1], showed only an activity of 1 mg of the native enzyme per g of matrix. We did not succeed in coupling periodate-oxidized glucoamylase to carboxymethylcellulose hydrazide because the enzyme used lost nearly all of its activity already during periodate oxidation.  相似文献   

6.
7.
8.
9.
葡萄糖氧化酶的有机相共价固定化   总被引:1,自引:0,他引:1  
将葡萄糖氧化酶(GOD)在最适pH条件下冻干后,以戊二醛活化的壳聚糖为载体,分别在传统水相和1,4-二氧六环、乙醚、乙醇三种不同的有机相中进行共价固定化。通过比较水相固定化酶和有机相固定化酶的酶比活力、酶学性质及酶动力学参数,考察酶在有机相中的刚性特质对酶在共价固定化过程中保持酶活力的影响。结果表明,戊二醛浓度为0.1%、加酶量为80 mg/1 g载体、含水1.6%的1,4-二氧六环有机相固定化GOD与水相共价固定化GOD相比,酶比活力提高2.9倍,有效酶活回收率提高3倍;在连续使用7次后,1,4-二氧六环有机相固定化GOD的酶活力仍为相应水相固定化酶的3倍。在酶动力学参数方面,不论是表观米氏常数,最大反应速度还是转换数,1,4-二氧六环有机相固定化的GOD(Kmapp=5.63 mmol/L,Vmax=1.70μmol/(min.mgGOD),Kcat=0.304 s-1)都优于水相共价固定化GOD(Kmapp=7.33 mmol/L,Vmax=1.02μmol/(min.mg GOD),Kcat=0.221 s-1)。因此,相比于传统水相,GOD在合适的有机相中进行共价固定化可以获得具有更高酶活力和更优催化性质的固定化酶。该发现可能为酶蛋白在共价固定化时因构象改变而丢失生物活性的问题提供解决途径。  相似文献   

10.
The effectiveness of attaching flavin adenine dinucleotide (FAD) via a C bridge to Teflon-bonded carbon black (CB), and the subsequent immobilization of glucose oxidase on the FAD-modified electrodes has been studied by cyclic voltammetry. When FAD alone is bound to the electrode, it undergoes reduction and oxidation at -0.62 and -0.5 V, respectively-values similar to those obtained with free FAD. Compared to the free enzyme, the reduction of FAD as part of the immobilized enzyme is 200 mV more cathodic, while the oxidation potential remains the same in both cases.  相似文献   

11.
1. The spectrophotometric and steady-state kinetic properties of glucose oxidase (EC 1.1.3.4, from Aspergillus niger) that is covalently linked to porous glass beads have been examined. These properties have been compared with those of soluble glucose oxidase, for which the kinetic mechanism at pH5.5 and 25 degrees C has been established previously by a combination of conventional and rapid-reaction techniques to be the following: [Formula: see text] where E(o) and E(r) represent oxidized and reduced forms of the enzyme, respectively. 2. The ratio k(+4)/k(+2) is unchanged after insolubilization, and evidence is presented which suggests that the absolute magnitudes of k(+4) and k(+2) are unchanged. 3. The kinetic efficiency of the insolubilized enzyme is greatly enhanced because of a 14-fold increase in the apparent affinity of glucose for E(o). This effect is attributed either to the binding of glucose to the glass surface or to a change in enzyme structure imposed by the insolubilization process. 4. Only 6% of the insolubilized enzyme which can be reduced by glucose is catalytically active. It is shown by calculation and direct experimental evidence that this fraction of catalytically active enzyme is bound to the exterior bead surface. The remaining 94% of the enzyme is bound within the pore network and may be subject to severe substrate diffusion control.  相似文献   

12.
13.
K Kovács  B Hanusz  B Matkovics 《Enzyme》1975,20(2):123-128
The radical produced aerobically in the glucose oxidase reaction reduces the oxidated cytochrome c. The extent of reduction depends on the concentrations of substrate (glucose) and enzyme. Superoxide dismutase purified from various sources does not inhibit the cytochrome c reduction, but catalase does, in proportion to its concentration. This inhibition, which might be utilized for quantitative catalase determinations, provides further evidence for the formation of H2O2 in the glucose oxidase reaction.  相似文献   

14.
15.
Type II restriction endonucleases Bam HI and Eco RI were covalently coupled to Sepharose. These insolubilized enzymes generated fragment patterns for several viral DNAs identical to those produced by the respective free enzymes. Conditions for optimal activity were similar for both bound and unbound forms of the enzymes. Insolubilization improved thermal stability of Bam HI and Eco RI. The bound enzyme can be recovered from reaction mixtures and reused several times. Upon storage at 4 degrees C, coupled endonucleases remained stable for several months.  相似文献   

16.
Synthetic membranes containing 10% acrylamide units were subjected to activation with formaldehyde at pH 7.5 and 45 degrees C. Trypsin, invertase, and urease were bound to this activated membrane and the kinetic properties of immobilized enzymes were studied. The permeability of the membrane for distilled water manifests certain differences depending on the enzyme bound. The membranes with immobilized enzymes stored at 4 degrees C in a moist state showed no change in their activity for 6 months. The membrane with immobilized invertase has preserved its activity even after 20 operations with 2% sucrose solution at 25 degrees C. The proposed method of binding enzymes to synthetic membranes containing acrylamide groups, through the introduction of N-hydroxymethyl groups, possesses several advantages with respect to the activation of the membrane in a one-step reaction with cheap and accessible reagent, high operative stability of the immobilized enzymes, no danger of bacterial rotting, and long shelf life of the membrane.  相似文献   

17.
Starting from 6-chloropurine riboside and NAD+, different reactive analogues of NAD+ have been obtained by introducing diazoniumaryl or aromatic imidoester groups via flexible spacers into the nonfunctional adenine moiety of the coenzyme. The analogues react with different amino-acid residues of dehydrogenases and form stable amidine or azobridges, respectively. After the formation of a ternary complex by the coenzyme, the enzyme and a pseudosubstrate, the reactive spacer is anchored in the vicinity of the active site. Thus, the coenzyme remains covalently attached to the protein even after decomposition of the complex. On addition of substrates the covalently bound coenzyme is converted to the dihydro-form. In enzymatic tests the modified dehydrogenases show 80-90% of the specific activity of the native enzymes, but they need remarkably higher concentrations of free NAD+ to achieve these values. The dihydro-coenzymes can be reoxidized by oxidizing agents like phenazine methosulfate or by a second enzyme system. Various systems for coenzyme regeneration were investigated; the modified enzymes were lactate dehydrogenase from pig heart and alcohol dehydrogenase from horse liver; the auxiliary enzymes were alcohol dehydrogenase from yeast and liver, lactate dehydrogenase from pig heart, glutamate dehydrogenase and alanine dehydrogenase. Lactate dehydrogenase from heart muscle is inhibited by pyruvate. With alanine dehydrogenase as the auxiliary enzyme, the coenzyme is regenerated and the reaction product, pyruvate, is removed. This system succeeds to convert lactate quantitatively to L-alanine. The thermostability of the binary enzyme systems indicates an interaction of covalently bound coenzymes with both dehydrogenases; both binding sites seem to compete for the coenzyme. The comparison of dehydrogenases with different degrees of modifications shows that product formation mainly depends on the amount of incorporated coenzyme.  相似文献   

18.
The kinetics of an insolubilized substrate inhibited enzyme have previously been shown to lead to the possibility of multiple steady states. This paper examines the precise range of conditions under which multiple steady states will occur taking into account all combinations of the diffusive and electrostatic effects, and sample calculations are given. These calculations suggest that multiple steady states will be, in general, unusual and, within the living cell, unlikely.  相似文献   

19.
Glucose oxidase and peroxidase were immobilized individually to a urea derivative of granulated microcrystallized cellulose activated by formaldehyde. The catalytic properties of the immobilized enzymes were studied and compared to those of the soluble enzymes. The immobilized glucose oxidase and peroxidase were used for the manual determination of the concentration of glucose in sera. The developed method is characterized by high analytical reliability and comparatively low cost. The results correlated well with those obtained by using a BECKMAN glucoanalyzer, utilizing soluble glucose oxidase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号